Технология экспертных систем является одним из направлений новой области исследования, которая получила наименование искусственного интеллекта. Исследования в этой области сконцентрированы на разработке и внедрении компьютерных программ , способных имитировать, воспроизводить те области деятельности человека, которые требуют мышления, определенного мастерства и накопленного опыта. К ним относятся задачи принятия решений, распознавания образов и понимания человеческого языка. Эта технология уже успешно применяется в некоторых областях техники и жизни общества — органической химии, поиске полезных ископаемых, медицинской диагностике. Вот в этом заключается актуальность. А точнее актуальность заключается в том что, именно интеллектуальные информационные технологии и экспертные системы являются последними прогрессами науки в области информатики и информационного общества. Именно над этим направлением трудятся многие ученые информатики, именная эта тема у всех на слуху, над ней трудятся ее развивают. компьютерный программа мышление
История развития экспертных систем
Наиболее известные ЭС, разработанные в 60-70-х годах, стали в своих областях уже классическими. По происхождению, предметным областям и по преемственности применяемых идей, методов и инструментальных программных средств их можно разделить на несколько семейств.
1. META-DENDRAL.Система DENDRAL позволяет определить наиболее вероятную структуру химического соединения по экспериментальным данным (маспектрографии, данным ядерном магнитного резонанса и др.).M-D автоматизирует процесс приобретения знаний для DENDRAL. Она генерирует правила построения фрагментов химических структур.
2. MYCIN-EMYCIN-TEIREIAS-PUFF-NEOMYCIN. Это семейство медицинских ЭС и сервисных программных средств для их построения.
3. PROSPECTOR-KAS. PROSPECTOR- предназначена для поиска (предсказания) месторождений на основе геологических анализов. KAS- система приобретения знаний для PROSPECTOR.
4. CASNET-EXPERT. Система CASNET- медицинская ЭС для диагностики выдачи рекомендаций по лечению глазных заболеваний. На ее основе разработан язык инженерии знаний EXPERT, с помощью которой создан ряд других медицинских диагностических систем.
5. HEARSAY-HEARSAY-2-HEARSAY-3-AGE. Первые две системы этого ряда являются развитием интеллектуальной системы распознавания слитной человеческой речи, слова которой берутся из заданного словаря. Эти системы отличаются оригинальной структурой, основанной на использовании доски объявлений — глобальной базы данных, содержащей текущие результаты работы системы. В дальнейшем на основе этих систем были созданы инструментальные системы HEARSAY-3 и AGE (Attempt to Generalize- попытка общения) для построения ЭС.
По предметной области «Основы безопасности жизнедеятельности» ...
... (компьютерами) необходимо соблюдать следующие меры безопасности и охраны труда: - эксплуатация ПЭВМ должна осуществляться в помещениях с ... -правовых документов и монографий по теме реферата. Работа носит исследовательский характер, носит традиционную ... экобиозащитной техники. Экобиозащитная техника – аппараты, устройства, системы, предназначенные для предотвращения загрязнения воздуха, охрана чистоты ...
6. Системы AM (Artifical Mathematician- искусственный математик) и EURISCO были разработаны в Станфордском университете доктором Д. Ленатом для исследовательских и учебных целей. Ленат считает, что эффективность любой ЭС определяется закладываемыми в нее знаниями. По его мнению, чтобы система была способна к обучению, в нее должно быть введено около миллиона сведений общего характера. Это примерно соответствует объему информации, каким располагает четырехлетний ребенок со средними способностями. Ленат также считает, что путь создания узкоспециализированных ЭС с уменьшенным объемом знаний ведет к тупику.
В систему AM первоначально было заложено около 100 правил вывода и более 200 эвристических алгоритмов обучения, позволяющих строить произвольные математические теории и представления. Сначала результаты работы системы были весьма многообещающими. Она могла сформулировать понятия натурального ряда и простых чисел. Кроме того, она синтезировала вариант гипотезы Гольдбаха о том, что каждое четное число, большее двух, можно представить в виде суммы двух простых чисел. До сих пор не удалось ни найти доказательства данной гипотезы, ни опровергнуть ее. Дальнейшее развитие системы замедлилось и было отмечено, что, несмотря на проявленные, на первых порах «математические способности», система не может синтезировать новых эвристических правил, т.е. ее возможности определяются только теми эвристиками, что были в нее изначально заложены.
При разработке системы EURISCO была предпринята попытка преодолеть указанные недостатки системы AM. Как и в начале эксплуатации AM, первые результаты, полученные с помощью EURISCO, были эффективными. Сообщалось, что система EURISCO может успешно участвовать в очень сложных играх. С ее помощью в военно-стратегической игре, проводимой ВМФ США, была разработана стратегия, содержащая ряд оригинальных тактических ходов. Согласно одному из них, например, предлагалось взрывать свои корабли, получившие повреждения. При этом корабли, оставшиеся неповрежденными, получает необходимое пространство для выполнения маневра.
Однако через некоторое время обнаружилось, что система не всегда корректно переопределяет первоначально заложенные в нее правила. Так, например, она стала нарушать строгое предписание обращаться к программистам с вопросами только в определенное время суток. Т.о., система EURISCO, так же как и ее предшественница, остановилась в своем развитии, достигнув предела, определенного, в конечном счете, ее разработчиком.
Этапы разработки экспертных систем.
Процесс разработки промышленной экспертной системы, опираясь на традиционные технологии, можно разделить на шесть более или менее независимых этапов (рис 2.1.), практически не зависимых от предметной области.
Последовательность этапов дана для общего представления о создании идеального проекта. Конечно, последовательность эта не вполне фиксированная. В действительности каждый последующий этап разработки ЭС приносит новые идеи, которые могут повлиять на предыдущие решения и даже привести к их переработке. Именно поэтому многие специалисты по информатике весьма критично относятся к методологии экспертных систем. Они считают, что расходы на разработку таких систем очень большие, время разработки слишком длительное, а полученные в результате программы ложатся тяжелым бременем на вычислительные ресурсы.
Разработка системы менеджмента качества на предприятии
... качеством продукции и обеспечением её конкурентоспособности. Цель дипломной работы - изучение процесса управления качеством продукции и разработка системы менеджмента качества ООО "Мегапласт" Объектом исследования является ... процессов и результатов труда во всех подразделениях предприятия. Отличительными элементами этого подхода являются ориентация управления на контроль качества процессов ...
В целом за разработку экспертных систем целесообразно браться организации, где накоплен опыт по автоматизации рутинных процедур обработки информации, например:
— информационный поиск;
— сложные расчеты;
— графика;
— обработка текстов.
Решение таких задач, во-первых, подготавливает высококвалифицированных специалистов по информатике, необходимых для создания интеллектуальных систем, во-вторых, позволяет отделить от экспертных систем неэкспертные задачи.
Этап 1. Выбор подходящей проблемы. Этот этап включает деятельность, предшествующую решению начать разрабатывать конкретную ЭС. Он включает:
— определение проблемной области и задачи;
— нахождение эксперта, желающего сотрудничать при решении проблемы, и назначение коллектива разработчиков;
— определение предварительного подхода к решению проблемы;
— анализ расходов и прибыли от разработки;
— подготовку подробного плана разработки.
Рис. 2.1.. Этапы разработки ЭС
Правильный выбор проблемы представляет, наверное, самую критическую часть разработки в целом. Если выбрать неподходящую проблему, можно очень быстро увязнуть в «болоте» проектирования задач, которые никто не знает, как решать. Неподходящая проблема может также привести к созданию экспертной системы, которая стоит намного больше, чем экономит. Дело будет обстоять еще хуже, если разработать систему, которая работает, но не приемлема для пользователей. Даже если разработка выполняется самой организацией для собственных целей, эта фаза является подходящим моментом для получения рекомендаций извне, чтобы гарантировать удачно выбранный и осуществимый с технической точки зрения первоначальный проект. При выборе области применения следует учитывать, что если знание, необходимое для решения задач, постоянное, четко формулируемое, и связано с вычислительной обработкой, то обычные алгоритмические программы, по всей вероятности, будут самым целесообразным способом решения проблем в этой области,
Экспертная система ни в коем случае не устранит потребность в реляционных базах данных, статистическом программном обеспечении, электронных таблицах и системах текстовой обработки. Но если результативность задачи зависит от знания, которое является субъективным, изменяющимся, символьным или вытекающим частично из соображений здравого смысла, тогда область может обоснованно выступать претендентом на экспертную систему.
Приведем некоторые факты, свидетельствующие о необходимости разработки и внедрения экспертных систем:
— нехватка специалистов, расходующих значительное время для оказания помощи другим;
— потребность в многочисленном коллективе специалистов, поскольку ни один из них не обладает достаточным знанием;
— большое расхождение между решениями самых хороших и самых плохих исполнителей;
— наличие конкурентов, имеющих преимущество в том, что они лучше справляются с поставленной задачей.
Подходящие задачи имеют следующие характеристики:
— являются узкоспециализированными;
— не зависят в значительной степени от общечеловеческих знаний или соображении здравого смысла;
— не являются для эксперта ни слишком легкими, ни слишком сложными (время, необходимое эксперту для решения проблемы, может составлять от трех часов до трех недель);
— условия исполнения задачи определяются самим пользователем системы;
— имеет результаты, которые можно оценить.
Обычно экспертные системы разрабатываются путем получения специфических знаний от эксперта и ввода их в систему. Некоторые системы могут содержать стратегии одного индивида. Следовательно, найти подходящего эксперта — это ключевой шаг в создании экспертных систем.
В процессе разработки и последующего расширения системы инженер по знаниям и эксперт обычно работают вместе. Инженер по знаниям помогает эксперту структурировать знания, определять и формализовать понятия и правила, необходимые для решения проблемы.
Во время первоначальных бесед они решают, будет ли их сотрудничество успешным. Это немаловажно, поскольку обе стороны будут работать вместе, по меньшей мере, в течение одного года. Кроме них в коллектив разработчиков целесообразно включить потенциальных пользователей и профессиональных программистов.
Предварительный подход к программной реализации задачи определяется исходя из характеристик задачи и ресурсов, выделенных на ее решение. Инженер по знаниям выдвигает обычно несколько вариантов, связанных с использованием имеющихся на рынке программных средств. Окончательный выбор возможен лишь на этапе разработки прототипа. После того как задача определена, необходимо подсчитать расходы и прибыли от разработки экспертной системы. В расходы включаются затраты на оплату труда коллектива разработчиков. В дополнительные расходы приобретаемого программного инструментария, с помощью которого разрабатывается экспертная система. Прибыль возможна за счет снижения цены продукции, повышения производительности труда, расширения номенклатуры продукции или услуг или даже разработки новых видов продукции или услуг в этой области. Соответствующие расходы и прибыли от системы определяются относительно времени, в течение которого возвращаются средства, вложенные в разработку. На современном этапе большая часть фирм, развивающих крупные экспертные системы, предпочли разрабатывать дорогостоящие проекты, приносящие значительные прибыли.
Наметились тенденции разработки менее дорогостоящих систем, хотя и с более длительным сроком возвращаемости вложенных в них средств, так как программные средства разработки экспертных систем непрерывно совершенствуются. После того как инженер по знаниям убедился, что:
— данная задача может быть решена с помощью экспертной системы;
— экспертную систему можно создать предлагаемыми на рынке средствами;
— имеется подходящий эксперт;
— предложенные критерии производительности являются разумными;
— затраты и срок их возвращаемости приемлемы для заказчика.
Он составляет план разработки. План определяет шаги процесса разработки и необходимые затраты, а также ожидаемые результаты.
Этап 2. Разработка прототипной системы — его мы рассмотрим позже.
Этап 3. Развитие прототипа до промышленной ЭС. При неудовлетворительном функционировании прототипа эксперт и инженер по знаниям имеют возможность оценить, что именно будет включено в разработку окончательного варианта системы. Если первоначально выбранные объекты или свойства оказываются неподходящими, их необходимо изменить. Можно сделать оценку общего числа эвристических правил, необходимых для создания окончательного варианта экспертной системы. Иногда при разработке промышленной системы выделяют дополнительные этапы для перехода: демонстрационный прототип — исследовательский прототип — действующий прототип — промышленная система. Однако чаще реализуется плавный переход от демонстрационного прототипа к промышленной системе, при этом, если программный инструментарий выбран удачно, необязательна перепись другими программными средствами.
Таблица 2.1
Демонстрационный прототип ЭС |
Система решает часть задач, демонстрируя жизнеспособность полхода (несколько десятков правил или понятий) |
|
Исследовательский прототип ЭС |
Система решает большинство задач, но не устойчива в работе и не полностью проверена несколько сотен правил или понятий. |
|
Действующий прототип ЭС |
Система надежно решает все задачи на реальных примерах, но для сложной задачи требует много времени и памяти |
|
Промышленная система |
Система обеспечивает высокое качество решений при минимизации требуемого времени и памяти: переписывается с использованием более эффективных средств представления знаний |
|
Коммерческая система |
Промышленная система, пригодная к продаже, т.е. хорошо документирована и снабжена сервисом |
|
Переход от прототипа к промышленной экспертной системе
Основное на третьем этапе заключается в добавлении большого числа дополнительных эвристик. После установления основной структуры ЭС инженер по знаниям приступает к разработке и адаптации интерфейсов, с помощью которых система будет общаться с пользователем и экспертом. Необходимо обратить особое внимание на языковые возможности интерфейсов, их простоту и удобство для управления работой ЭС. Система должна обеспечивать пользователю возможность легким и естественным образом спрашивать непонятное, приостанавливать работу и т.д. В частности, могут оказаться полезными графические представления. На этом этапе разработки большинство экспертов узнают достаточно о вводе правил и могут сами вводить в систему новые правила. Таким образом, начинается процесс, во время которого инженер по знаниям передает право собственности и контроля за системой эксперту для уточнения, детальной разработки и обслуживания.
Этап 4. Оценка системы. После завершения этапа разработки промышленной экспертной системы необходимо провести ее тестирование в отношении критериев эффективности. К тестированию широко привлекаются другие эксперты с целью апробирования работоспособности системы на различных примерах. Экспертные системы оцениваются главным образом для того, чтобы проверить точность работы программы и ее полезность. Оценку можно проводить, исходя из различных критериев, которые сгруппируем следующим образом:
— критерии пользователей (понятность и «прозрачность» работы системы, удобство интерфейсов и др.);
— критерии приглашенных экспертов (оценка советов-решений, предлагаемых системой, сравнение ее с собственными решениями, оценка подсистемы объяснений и др.);
— критерии коллектива разработчиков.
Этап 5. Стыковка системы. На этом этапе осуществляется стыковка экспертной системы с другими программными средствами в среде, в которой она будет работать, и обучение людей, которых она будет обслуживать. Иногда это означает внесение существенных изменений. Такое изменение требует непременного вмешательства инженера по знаниям или какого-либо другого специалиста, который сможет модифицировать систему. Под стыковкой подразумевается также разработка связей между экспертной системой и средой, в которой она действует. Когда экспертная система уже готова, инженер по знаниям должен убедиться в том, что эксперты, пользователи и персонал знают, как эксплуатировать и обслуживать ее. После передачи им своего опыта в области информационной технологии инженер по знаниям может полностью предоставить ее в распоряжение пользователей. Для подтверждения полезности системы важно предоставить каждому из пользователей возможность поставить перед ЭС реальные задачи, а затем проследить, как она выполняет эти задачи. Чтобы система была одобрена, необходимо представить ее как помощника, освобождающего пользователей от обременительных задач, а не как средство их замещения.
Стыковка включает обеспечение связи ЭС с существующими базами данных и другими системами на предприятии, а также улучшение системных факторов, зависящих от времени, чтобы можно было обеспечить ее более эффективную работу и улучшить характеристики ее технических средств, если система работает в необычной среде.
Этап 6. Поддержка системы. При перекодировании системы на язык, подобный Си, повышается ее быстродействие и увеличивается переносимость, однако гибкость при этом уменьшается. Это приемлемо лишь в том случае, если система сохраняет все знания проблемной области, и это знание не будет изменяться в ближайшем будущем. Однако если экспертная система создана именно из-за того, что проблемная область изменяется, то необходимо поддерживать систему в инструментальной среде разработки.
Заключение
Экспертные системы являются наиболее известным и распространённым видом интеллектуальных систем.
Как и любые другие системы, они имеют ряд своих особенностей:
* экспертные системы ориентированы на решение широкого круга задач в неформализованных областях, на приложения, которые до недавнего времени считались малодоступными для вычислительной техники.
* с помощью экспертных систем специалисты, не знающие программирования, могут самостоятельно разрабатывать интересующие их приложения, что позволяет резко расширить сферу использования вычислительной техники.
* при решении практических задач экспертные системы достигают результатов, не уступающих, а иногда и превосходящих возможности людей-экспертов, не оснащённых ЭВМ.
Особенно широкое применение экспертные системы получили в медицине, математике, машиностроении, химии, геологии, вычислительной технике, бизнесе, законодательстве, обороне.
А также в настоящее время особенно актуально использование экспертных систем в таких приложениях, как образование, психолого-педагогическая диагностика и тестирование.
Экспертные системы строятся для решения широкого круга проблем в таких областях, как:
* прогнозирование — проектирование возможных последствий данной ситуации.
* диагностика — определение причин неисправностей в сложных ситуациях на основе наблюдаемых симптомов.
* проектирование — нахождение конфигурации компонентов системы, которая удовлетворяет целевым условиям и множеству проектных ограничений.
Список использованной литературы
[Электронный ресурс]//URL: https://inzhpro.ru/referat/tehnologii-razrabotki-ekspertnyih-sistem/
1. Амарселлус Д. Программирование экспертных систем на Турбо Прологе: Пер. с англ. — М.: Финансы и статистика, 2005 г.
2. Моисеев В.Б. Представление знаний в интеллектуальных системах. Информатика и образование,. №2, 2003 г. с. 84-91
3. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы: М. Наука, 2004 г.
4. Зубов В.В., Макушкин В.А., Оглоблин А.Г. Экспертная система диагностирования цифровых устройств и БИС. Средства связи, №3, 2000, с. 32-36.
5. Зубов В.В., Макушкин В.А. Экспертная система диагностирования цифровых устройств ДИЭКС на персональной ЭВМ.ЭКСПЕРТНЫЕ СИСТЕМЫ НА ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРАХ, М.: МДНТП, 2005, с. 115-120.
6. Макушкин В.А., Щербицкий К.А. Экспертная система для контроля и диагностирования цифроаналоговых устройств. НОВЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ПЛАНИРОВАНИИ, УПРАВЛЕНИИ И В ПРОИЗВОДСТВЕ, М.: МДНТП, 2001, с. 121-125.
7. Попов Э.В., Фоминых И.Б., Кисель Е.Б., Шапт М.Д. Статические и динамические экспертные системы. М.: Финансы и статистика, 2003 г.
8. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб: Питер, 2003г.
9. Володичев Д.С., Макушкин В.А. OMEGAMON — эффективная система управления вычислительными ресурсами. М: Научная сессия МФТИ-2004, том 12, с.199-201.