История развития и создания электродвигателей, электрогенераторов, трансформаторов

Реферат

создание экономичных конструктивных источников электричества – генераторов, электродвигателей, трансформаторов, фабрик электричества (электростанций), электрических линий передач (ЛЭП), подстанций, распределительных

прокладка проводников, кабелей, их защита;

изоляция токоведущих проводов, частей устройств;

методы расчета электросетей, их защита от коротких замыканий;

другие вопросы, которые решались и решаются учеными, инженерами, практиками, изобретателями.

Открытия и исследования Д. Араго, Г. Эрстеда, А. Ампера, Г. Ома, М. Фарадея и других изобретателей и ученых послужили толчком для изобретательской фантазии инженеров, которые стали называться электриками. Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электрических машин.

В технике основными устройствами, использующими явление электромагнитной индукции, являются генераторы электрического тока, электродвигатели и трансформаторы. Рассмотрим их основное современное устройство и назначение, чтобы затем проследить исторические вехи разработки этих устройств и указать их авторов.

Генератор. Состоит из статора и ротора. Массивный неподвижный статор представляет собой полый стальной цилиндр, на внутренние стенки которого уложено большое число витков метал-лического провода, покрытого изоляцией и ведущего электричество во внешнюю электрическую цепь к потребителю.

Ротор представляет собой цилиндр с пазами для проводов, являющийся большим подвижным электромагнитом, установленным внутри статора.

Под действием паровой турбины, гидротурбины, паровой машины или другого двигателя ротор начинает вращаться, а в проводах статора, благодаря электромагнитной индукции, возникает электрический ток.

Электродвигатель. В электродвигателях происходит другое явление: электрический ток, протекая через провода статора, заставляет ротор вращаться. С помощью механических приспособлений движение ротора можно передать ленте трансмиссии, станку, эскалатору

метро и другим механизмам.

25 стр., 12079 слов

Условия правильной эксплуатации электрического и электромеханического ...

... электрооборудования Новые или реконструированные электроустановки должны быть приняты в эксплуатацию в порядке, изложенном в Правилах Технической Эксплуатации: - При организации эксплуатации конкретного вида переносных, передвижных электроприемников (электроинструмент, электрические ... конструкции отдельных узлов всего устройства в целом, технические характеристики оборудования остаются неизменными. ...

Трансформатор. Состоит из магнитного сердечника и двух или более катушек, которые имеют разное число витков. Если подвести переменный электрический ток к катушке с большим числом витков — ток большего напряжения, то со стороны катушки с меньшим числом витков можно снять больший ток, но меньшего напряжения.

Создание электрических генераторов, электродвигателей, трансформаторов требовало изучения свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Первыми в этом направлении были работы профессора Московского Университета Александра Григорьевича Столетова (1839-1896).

В 80-х гг. им была обнаружена петля гистерезиса и доменная структура у ферромагнитных материалов.

Братья Гопкинсоны разработали теорию электромагнитных цепей. В 1895 г. Пьер Кюри обнаружил существование у ферромагнетиков критической температуры, выше которой происходит исчезновение доменной структуры и потеря ферромагнетизма — точки Кюри.

Применение электричества для связи, освещения, двигательной силы потребовало создания электроизмерительных приборов, Системы единиц измерения.

К 80-м гг. появились гальванометры, амперметры, вольтметры, магазины сопротивления, а начало созданию электроизмерительных приборов положили М.В. Ломоносов, Г.В. Рихман, Б. Франклин еще в XVIII в.

В 1881 г. в Париже собрался первый Международный конгресс электриков. Было принято постановление о разработке единой системы единиц. В группу разработчиков входили: Г. Гельмгольц, Г. Кирхгоф, У. Томсон, Р. Клаузиус, А.Г. Столетов и др.

История создания двигателей уходит в глубокую древность. Сложными путями шел человек к открытию и познанию законов физики, созданию различных механизмов, машин.

Впервые двигатель назвал машиной римский зодчий Марк Полион (1 в. до н. э.).

Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электродвигателей. Принцип действия электродвигателей основан на физическом явлении: виток проводника, по которому протекает электрический ток, будучи помещенным между магнитами, движется поперек силовых линий магнитного поля. Электродвигатель, как правило, компактнее других двигателей, всегда готов к работе, может управляться на расстоянии.

История электродвигателя — сложная и длинная цепь открытий, находок, изобретений. Проследим этапы развития электродвигателей.

I этап . Начальный период развития электродвигателя (1821-1834гг.).

Он тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 г. М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита, или вращение магнита вокруг проводника. Опыт Фарадея показал принципиальную возможность построения электрического двигателя.

4 стр., 1733 слов

История изобретения электродвигателя постоянного тока

... электромоторы, работающие на переменном токе.[2,6] 2 Первый этап развития электрических двигателей постоянного тока Начальный период развития электродвигателя (1821 — 1834 гг.) характеризуется созданием физических приборов, демонстрирующих непрерывное преобразование электрической энергии в механическую. Первым ...

Многие исследователи предлагали различные конструкции электродвигателей.

Первые электродвигатели напоминали по устройству паровые машины: двигатель Дж. Генри (1832 г.) и двигатель У. Пейджема (1864 г.) имели коромысла, кривошип, шатун, а также золотники (переключатели тока в солено-идах, заменявших собой цилиндр).

П. Барлоу предложил «колесо Барлоу». Оно состояло из постоянного магнита и зубчатых колес, скользящий контакт осуществлялся с помощью ртути, а питалось колесо от гальванического элемента.

Дж. Генри предложил в 1832 г. модель двигателя с возвратнопоступательным движением: подвижный электромагнит поочередно притягивался к постоянным магнитам и отталкивался от них, замыкая и размыкая батареи гальванических элементов. Он совершал 75 качаний в минуту.

Было еще много попыток создания двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить двигатель с вращательным движением якоря.

II этап . Второй этап развития электродвигателей (1834-1860 гг.) характеризуется конструкциями с вращательным движением явнополюсного якоря. Однако вращательный момент на валу у таких двигателей обычно был резко пульсирующим.

В 1834 г. Б.С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. В 1838 г. этот двигатель (0,5 кВт) был испытан на Неве для приведения в движение лодки с пассажирами (рис. 37), т. е. получил первое практическое применение.

Испытания различных конструкций электродвигателей привели Б.С. Якоби и других исследователей к следующим выводам:

— применение электродвигателей находится в прямой зависимости от удешевления электрической энергии, т.е. от создания генератора, более экономичного, чем гальванические элементы;

— электродвигатели должны иметь по возможности малые габариты и по возможности большую мощность и больший коэффициент полезного действия.

III этап. Третий этап в развитии электродвигателей (1860-1887 гг.) связан сразработкой конструкций с кольцевым неявнополюсным якорем и практическипостоянным вращающим моментом.

На этом этапе нужно отметить электродвигатель итальянца А. Пачинотти (1860 г.).

Его двигатель состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов.

Подвод тока осуществлялся роликами. Обмотка электромагнитов включалась последовательно с обмоткой якоря (т.е. электромашина имела последовательное возбуждение).

Габариты двигателя были невелики, он имел практически постоянный вращающий момент. В двигателе Пачинотти явнополюсный якорь был заменен неявнополюсным.

Барабанный якорь, в котором рабочим является проводник, составляющий виток, был изобретен лишь в 1872 г. В. Сименсом. Еще через 10 лет в железе якоря появились пазы для обмотки (1882 г.).

Барабанный якорь машины постоянного тока стал таким, каким мы его можем видеть в настоящее время.

30 стр., 14932 слов

Изготовление коллекторов для электродвигателей

... В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит - статором. Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного ...

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешевого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 г. электродвигатель постоянного тока приобрел основные черты современной конструкции. В дальнейшем он все более и более совершенствовался.

По роду тока электродвигатели стали делиться на машины переменного и постоянного тока; по принципу действия машины переменного тока делятся на синхронные и асинхронные.

Асинхронные двигатели отличаются простотой конструкции, малой стоимостью, надежностью в работе. Они являются самым распространенным видом двигателей.

Электродвигатель постоянного тока:

1 — коллектор, 2 — щетки, 3 — якорь, 4 — главный полюс, 5 — катушка обмотки возбуждения, 6 — корпус, 7 — подшипниковый щит, 8 — вентилятор, 9 — обмотка якоря

Устройство и принцип работы двигателя постоянного тока. Двигатель постоянного тока (рис. 69) также состоит из двух основных частей: неподвижного корпуса (станины) и вращающегося якоря с коллектором. На станине укреплены главные полюсы с обмоткой возбуждения и дополнительные полюсы. Главные полюсы создают основной магнитный поток, замыкающийся через якорь. Дополнительные полюсы служат для уменьшения искрения на коллекторе, вызываемого электромагнитными процессами в якоре при коммутации.

Режим работы электродвигателей. Допустимые нагрузки электродвигателя определяются его нагревом, а следовательно, зависят от режима работы. Различают три режима работы: длительный, кратковременный и повторно-кратковременный.

В основе конструкции электродвигателя лежит эффект, который обнаружил Майкл Фарадей в 1821 году: что взаимодействие электрического тока и магнитного поля может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Б. С. Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Но для широкого использования электродвигателя необходим был источник дешевой электроэнергии , на то время токового небыло.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором. Сложность заключается в том, чтобы добиться непрерывного вращения электродвигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

9 стр., 4092 слов

Асинхронные двигатели с фазным ротором

... ремонт асинхронного двигателя с фазным ротором Асинхронные электрические двигатели двух типов: модели с фазным или с короткозамкнутым ротором. Основные элементы, обеспечивающие работу асинхронного электродвигателя: статор ... напряжение на контактных кольцах в момент пуска двигателя: Фазный ток ротора: где К j — коэффициент, учитывающий влияние тока намагничивания и сопротивление обмоток на отношение ...

Для автоматического переключения полюсов ротора служит коллектор. Коллектор представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки).

При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Вращающаяся часть электродвигателя называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

В некоторых электродвигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения

Прототип генератора электрического тока, основанный на принципе электромагнитной индукции, был сконструирован Фарадеем в 1831 г. Он состоял из медного диска, вращающегося вручную между полюсами постоянного магнита. При этом в диске индуцировалась электродвижущая сила (ЭДС); полюсами служили ось диска и неподвижная щетка, имеющая скользящий контакт с краем диска.