Изготовление коллекторов для электродвигателей

Курсовая работа

Принцип действия электродвигателя.

Электродвигательэто просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Устройство и принцип работы простейшего электродвигателя.

В основе конструкции электрического двигателя лежит эффект, обнаруженный Майклом Фарадеем в 1821 году: что взаимодействие электрического тока и магнита может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Бориса Семеновича Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Однако для широкого использования электродвигателя необходим был источник дешевой электроэнергии — электромагнитный генератор.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором.

Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

14 стр., 6554 слов

Принципы работы холодильника и кондиционера

... компрессор 4, воздухосборник 1 и холодильник 2. Холодильник обдувается потоком воздуха, подаваемого ... между пластинами вращающегося ротора и цилиндром -- статором компрессора. В процессе сжатия ... ротационно-пластинчатые компрессорные установки. Принцип действия поршневого воздушного компрессора ... и давление газа для процессов всасывания и нагнетания остаются неизменными для всего периода работ ...

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки).

При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Простейший электродвигатель

Изготовление коллекторов для электродвигателей 1

Простейший электродвигатель работает только на постоянном токе (от батарейки).

Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе , в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

Изготовление коллекторов для электродвигателей 2

Электроизмерительные приборы.

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Группа электромагнитных приборов является наиболее распространенной. Принцип их действия, использованный впервые еще Ф. Кольраушем в 1884 году, основан на перемещении подвижной железной части под влиянием магнитного потока, создаваемого катушкой, по которой пропускается ток. Практическое осуществление этого принципа отличается разнообразием.

Ориентирующее действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы – амперметрах, вольтметрах и др.

Устройство прибора магнитоэлектрической системы

Измерительный прибор магнитоэлектрической системы устроен следующим образом.

9 стр., 4402 слов

Электрический ток и магнитное поле

... с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, ...

Изготовление коллекторов для электродвигателей 3

Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О», к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок).

Изготовление коллекторов для электродвигателей 4

В результате при любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Векторы F и –F изображают силы, действующие на катушку со стороны магнитного поля и поворачивающие ее. Катушка с током поворачивается до тех пор, пока силы упругости со стороны пружины не уравновесят силы, действующие на рамку со стороны магнитного поля. Увеличивая силу тока в рамке в 2 раза, рамка повернётся на угол, вдвое больший. Это происходит потому, что F m ~I.

Силы, действующие на рамку с током прямо пропорциональны силе тока, то есть можно, проградуировав прибор, измерять силу тока в рамке.

Точно так же можно прибор настроить на измерение напряжения в цепи, если проградуировать шкалу в вольтах, причём сопротивление рамки с током должно быть выбрано очень большим по сравнению с сопротивлением участка цепи, на котором измеряем напряжение.


План:

  • Введение
  • 1 Принцип действия
  • 2 Классификация электродвигателей
    • 2.1 Двигатели постоянного тока
    • 2.2 Двигатели переменного тока
    • 2.3
  • 3 История
  • Примечания


Введение

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу).

Батарейка «Крона» дана для сравнения

Электрический двигатель — это электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, является выделение тепла.


1. Принцип действия

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из статора (неподвижной части) и ротора (якоря в случае машины постоянного тока) (подвижной части), электрическим током (или также постоянными магнитами) в которых создаются неподвижные и/или вращающиеся магнитные поля.

Статор — неподвижная часть электродвигателя, чаще всего — внешняя. В зависимости от типа двигателя, может создавать неподвижное магнитное поле и состоять из постоянных магнитов и/или электромагнитов, либо генерировать вращающееся магнитное поле (и состоять из обмоток, питаемых переменным током).

11 стр., 5371 слов

Шаговый двигатель

... шаговые электродвигатели состоят из статора , на котором расположены обмотки возбуждения, и ротора, выполненного из магнито-мягкого (ферромагнитного) материала или из магнито-твёрдого (магнитного) материала. Шаговые двигатели с магнитным ротором ... статора. Такой двигатель имет шаг 30 град. Рис. 1. Двигатель с переменным магнитным сопротивлением. При включение тока в одной из катушек, ротор стремится ...

Ротор — подвижная часть электродвигателя, чаще всего располагаемая внутри статора.

Ротор может состоять из:

  • постоянных магнитов;
  • обмоток на сердечнике (подключаемых через щёточно-коллекторный узел);
  • короткозамкнутой обмотки («беличье колесо» или «беличья клетка»), в которой токи возникают под действием вращающегося магнитного поля статора).

Взаимодействие магнитных полей статора и ротора создает вращающий момент, приводящий в движение ротор двигателя. Так происходит преобразование электрической энергии, подаваемой на обмотки двигателя, в механическую (кинетическую) энергию вращения. Полученную можно использовать приводя в движение механизмы.


2. Классификация электродвигателей

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические . У двигателей первой группы вращающей момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели , которые могут питаться обоими видами тока).


2.1. Двигатели постоянного тока

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. коллекторные двигатели;
  2. бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании :27 .

По типу возбуждения коллекторные двигатели можно разделить на:

  1. двигатели с возбуждением от электромагнитов;
  2. двигатели с возбуждением от постоянных магнитов.

Двигатели первой группы содержат обмотки возбуждения, которые запитываются электрическим током, при этом возможны различные способы их подключения:

  1. параллельное соединение обмоток возбуждения и якоря;
  2. последовательное соединение обмоток возбуждения и якоря;
  3. смешанное соединение обмоток возбуждения и якоря.

Бесколлекторные двигатели (вентильные двигатели ) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора).

Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей :28 .


2.2. Двигатели переменного тока

Трехфазные асинхронные двигатели

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели . Принципиальное различие состоит в том, что в синхронных машинах первая гаромника магнитодвижущей силы статора движется со скорость вращения ротора, а у асинхронных — всегда должна быть разница скоростей.

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше) :28 .

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели . У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

  • однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;
  • двухфазные — в том числе конденсаторные;
  • трёхфазные;
  • многофазные;


2.3. Универсальный коллекторный двигатель

Универсальный коллекторный двигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы).

При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства).

Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.


3. История

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, т.е. так, как движется поршень в цилиндре паровой машины. Русский ученый Б.С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б.С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».

Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через комутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.


Введение.

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве электродвигателя. Это свойство электрической машины изменять направление преобразуемой ею энергии называется обратимостью машины. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока (частоты, числа фаз переменного тока, напряжения постоянного тока) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В зависимости от рода тока электроустановки, в которой должна работать электрическая машина, они делятся на машины постоянного и переменного тока.

Машины переменного тока могут быть как однофазными, так и много фазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные машины, а также катекторные машины переменного тока, которые допускают экономичное регулирование частоты вращения в широких пределах

В настоящее время асинхронные двигатели являются наиболее распространенными электрическими машинами. Они потребляют около 50% электроэнергии, вырабатываемой электростанциями страны. Такое широкое распространение асинхронные электродвигатели получили из-за своей конструктивной простоты, низкой стоимости, высокой эксплуатационной надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт кпд=0,7:0,95 и только в микродвигателях он снижается до 0,2-0,65.

Наряду с большими достоинствами асинхронные двигатели имеют и некоторые недостатки: потребление из сети реактивного тока, необходимого для создания магнитного потока, в результате чего асинхронные двигатели работают с соs =1. Кроме того, по возможностям регулировать частоту вращения они уступают двигателям постоянного тока.

Появление трехфазных асинхронных двигателей связано с именем М.О.Доливо-Добровольского. Эти двигатели были изобретены им в 1889г.

Принцип действия асинхронных двигателей

Наиболее распространенные среди электрических двигателей получил трехфазный асинхронный двигатель, впервые сконструированный известным русским электриком М.О.Доливо-Добровольским.

Асинхронный двигатель отличается простотой конструкции и несложностью обслуживания. Как и любая машина переменного тока, асинхронный двигатель состоит из двух основных частей — ротора и статора. Статором называется неподвижная часть машины, ротором – ее вращающаяся часть. Асинхронная машина обладает свойством обратимости, то есть может быть использована как в режиме генератора, так и в режиме двигателя. Из-за ряда существенных недостатков асинхронные генераторы практически не применяются, тогда, как асинхронные двигатели получили очень широкое распространение.

Много фазная обмотка переменного тока создает вращающееся магнитное поле, частота вращения которого в минуту рассчитывается по формуле:

n1=60f1/p,

где: n- частота вращения магнитного поля статора;

  • f — частота тока в сети;
  • р — число пар полюсов.

Если ротор вращается с частотой, равной частоте вращения магнитного поля статора, то такая частота называется синхронной.

Если ротор вращается с частотой, не равной частоте магнитного поля статора, то такая частота называется асинхронной.

В асинхронном двигателе рабочий процесс может протекать только при асинхронной частоте, то есть при частоте вращения ротора, не равной частоте вращения магнитного поля.

Номинальная частота вращения асинхронного двигателя зависит от частоты вращения магнитного поля статора и не может быть выбрана произвольно. При стандартной частоте промышленного тока f1=50Гц возможные синхронные частоты вращения (частоты вращения магнитного поля) n1=60f1/p=3000/p

Работа асинхронного электродвигателя основана на явлении, названном “диск Араго — Ленца”

Это явление заключается в следующем: если перед полосами постоянного магнита поместить медный диск, свободно сидящий на оси, и начать вращать магнит вокруг его оси при помощи рукоятки, то медный диск будет вращаться в том же направлении. Это объясняется тем, что при вращении магнита его магнитное поле пронизывает диск и индуктирует в нем вихревые токи. В результате взаимодействия вихревых токов с магнитным полем магнита, возникает сила, приводящая диск во вращение. На основании закона Ленца направление всякого индуктивного тока таково, что он противодействует причине, его вызвавшей. Поэтому вихревые токи в теле диска стремятся задержать вращение магнита, но, не имея возможности сделать это, приводят диск во вращение так, что он следует за магнитом. При этом частота вращения диска всегда меньше, чем частота вращения магнита. Если бы эти частицы почему-либо стали одинаковыми, то магнитное поле не перемещалось бы относительно диска, и, следовательно, в нем не возникали бы вихревые токи, то есть не было бы силы, под действием которой диск вращается.

В асинхронных двигателях постоянный магнит заменен вращающимся магнитным полем, создаваемым трехфазной обмоткой статора при включении ее в сеть переменного тока.

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и индуктирует в них ЭДС, то есть электродвижущую силу. Если обмотка ротора замкнута на какое-либо сопротивление или накоротко, то по ней под действием индуктируемой электродвижущей силы проходит ток.

В результате взаимодействия тока в обмотке ротора с вращающемся магнитным полем обмотки статора создается вращающейся момент, под действием которого ротор начинает вращаться по направлению вращения магнитного поля.

Если предположить, что в какой-то момент времени частота вращения ротора оказалась равной частоте вращения поля статора, то проводники обмотки ротора не будут пересекать магнитное поле статора и тока в роторе не будет. В этом случае вращающийся момент станет равным нулю и частота вращения ротора уменьшится по сравнению с частотой вращения поля статора, пока не возникнет вращающейся момент, уравновешивающий тормозной момент, который складывается из момента нагрузки на валу и момента сил трения в машине.

Асинхронная машина кроме двигательного режима может работать в генераторном режиме и режиме электромагнитного тормоза.

Генераторный режим возникает в том случае, когда ротор с помощью постоянного двигателя вращается в направлении вращения магнитного поля с частотой вращения, большей частоты вращения магнитного поля. Поэтому работе асинхронной машины в генераторном режиме соответствуют скольжения в пределах от 0 до- .Если ротор под действием посторонних сил начнет вращаться в сторону, противоположную направлению вращения магнитного поля, то возникает режим электромагнитного тормоза.

Режим электромагнитного тормоза начинается при n=0 и может продолжаться теоретически до n= , поэтому скольжение находиться в пределах от 1 до + .

Для изменения направления вращения ротора, то есть для реверсирования двигателя, необходимо изменить направление вращения магнитного поля, созданного обмотками статора. Это достигается изменением чередования фаз обмоток статора, для чего следует поменять местами по отношению к зажимам сети любые два из трех проводов, соединяющих обмотку статора с сетью.

Вне зависимости от направления вращения ротора его частота n всегда меньше частоты вращения магнитного поля статора.

Устройство асинхронных электродвигателей.

Асинхронные электродвигатели состоят из двух частей: неподвижной – статора и вращающейся – ротора.

Сердечник статора, представляющий собой полый цилиндр, набирают из отдельных листов электротехнической стали толщиной 0,5-0,35мм. Для сердечников асинхронных двигателей применяются холоднокатаные изотронные электротехнические стали марок 2013,02312,02411 и другие. Листы или пластины штампуют с впадинами (пазами), изолируют лаком или окалиной для уменьшения потерь на вихревые потоки, собирают в отдельные пакеты и крепят в станине двигателя.

К станине прикрепляют также боковые щиты с помещенными на них подшипниками, на которые опирается вал ротора. Станину устанавливают на фундамент.

В продольные пазы статора укладывают проводники его обмотки, которые соединяют между собой так, что образуется трех фазная система. На щитке машины имеется шесть зажимов, к которым присоединяются начала и концы обмоток каждой фазы. Для подключения обмоток статора к трехфазной сети они могут быть соединены звездой или треугольником, что дает возможность включать двигатель в сеть с двумя разными линейными напряжениями.

Например, двигатель может работать от сети с напряжением 220 и 127в. На щитах машины указаны оба напряжения сети, на которые рассчитан двигатель, то есть 220/127в или 380/220в.

Для более низких напряжений, указанных на щитке, обмотка статора соединяется треугольником, для более высоких – звездой.

При соединении обмотки статора треугольником на щитке машины верхние зажимы объединяют перемычками с нижними, а каждую пару соединенную вместе зажимов подключают к линейным проводам трехфазной сети. Для включения звездой три нижних зажима на щитке соединяют перемычками в общую точку, а верхние подключают к линейным проводам трехфазной сети.

Роторы асинхронных электродвигателей выполняют двух видов: с короткозамкнутой и фазной обмотками. Первый вид двигателей называют асинхронными двигателями с короткозамкнутым ротором, а второй – асинхронными двигателями с фазным ротором или асинхронными двигателями с контактными кольцами. Наибольшее распространение имеют двигатели с короткозамкнутым ротором.

Сердечник ротора также набирают из стальных пластин толщиной 0,5мм, изолированных лаком или окалиной для уменьшения потерь на вихревые токи.

Пластины штампуют с впадинами и собирают в пакеты, которые крепят на валу машины. Из пакетов образуются цилиндры с продольными пазами, в которых укладывают проводники обмотки ротора. В зависимости от типа обмотки асинхронные машины могут быть с фазным и короткозамкнутым ротором. Короткозамкнутая обмотка ротора выполняется по типу беличьего колеса. В пазах ротора укладывают массивные стержни, соединенные на торцевых сторонах медными кольцами. Часто короткозамкнутую обмотку ротора изготовляют из алюминия. Алюминий в горячем состоянии заливают в пазы ротора под давлением. Такая обмотка всегда замкнута накоротко и включение сопротивления в нее не возможно. Фазная обмотка ротора выполнена подобно статорной, то есть проводники соответствующим образом соединены между собой, образуя трехфазную систему. Обмотки трех фаз соединены звездой. Начала этих обмоток подключены к трем контактным медным кольцам, укрепленным на валу ротора. Кольца изолированы друг от друга и от вала и вращаются вместе с ротором. При вращении колец поверхности их скользят по угольным или медным щеткам, неподвижно укрепленным над кольцами. Обмотка ротора может быть замкнута на какое-либо сопротивление или накоротко при помощи указанных выше щеток.

Двигатели с короткозамкнутым ротором проще и надежнее в эксплуатации, значительно дешевле, чем двигатели с фазным ротором. Однако двигатели с фазным ротором обладают лучшими пусковыми и регулировочными свойствами.

В настоящее время асинхронные двигатели выполняют преимущественно с короткозамкнутым ротором и лишь при больших мощностях и специальных случаях используют фазную обмотку ротора.

Асинхронные двигатели производят мощностью от нескольких десятков ватт до 15000кВт при напряжениях обмотки статора до 6кВ.

Между статором и ротором имеется воздушный зазор, величина которого оказывает существенное влияние на рабочие свойства двигателя.

Наряду с важными положительными качествами – простой конструкции и обслуживания, малой стоимостью – асинхронный двигатель имеет и некоторые недостатки, из которых наиболее существенным является относительно низкий коэффициент мощности (соs).

У асинхронного двигателя соs при полной нагрузке может достигать значения 0,85-0,9; при недогрузках двигателя его соs резко уменьшается и при холостом ходе составляет 0,2-0,3.

Низкий коэффициент мощности асинхронного двигателя объясняется большим потреблением реактивной мощности, которая необходима для возбуждения магнитного поля. Магнитный поток в асинхронном двигателе встречает на своем пути воздушный зазор между статором и ротором, который в большей степени увеличивает магнитное сопротивление, а следовательно, и потребляемую двигателем мощность.

В целях повышения коэффициента мощности асинхронных двигателей воздушный зазор стремятся делать возможно меньшим, доводя его у малых двигателей (порядка 2-5кВт) до 0,3мм. В двигателях большой мощности воздушный зазор приходится увеличивать по конструктивным соображениям, но все же он не превышает 2-2,5мм.

Вал ротора вращается в подшипниках, которые укреплены в боковых щитах, называемых подшипниковыми щитами. Главным образом это подшипники качения и только в машинах большой мощности иногда используются подшипники скольжения.

Подшипниковые щиты прикрепляют болтами к корпусу статора. В корпус запрессовывают сердечник статора.

Техника безопасности.

Блоки и отдельные панели щитов, а также силовые шкафы следует перевозить на автомашинах в вертикальном положении с закреплением растяжками и упорами. При перемещении шкафов и щитов по прочному полу или настилу необходимо пользоваться рожковыми ломами.

Страховку груза при подъеме производят стропами — короткими кусками цепи или , снабженного крюками, петлями.

Устанавливать на место монтажа щиты, шкафы и пусковые ящики массой более 196Н (20 килограмм) следует не менее чем двум рабочим.

При установке конструкций, закрепляемых в стенах, потолках или полах с помощью , нельзя удалять поддерживающие детали до полного затвердения раствора.

При наличии кабельных каналов сзади или спереди щита на время его монтажа необходимо закрыть их плитами или досками толщиной не менее 50 миллиметров.

Собранные блоки панелей до их постоянного закрепления необходимо временно скрепить между собой и ближайшей стеной.

При установке и регулировке аппаратов щита, имеющих движущиеся части на обратной стороне панели, необходимо принять меры для безопасности работающих сзади щита.

Работы по установке электродвигателей на фундаменты следует выполнять в рукавицах.

Электродвигатели массой до 50 килограмм на низкие фундаменты можно установить вручную, но не менее, чем двумя рабочими.

Запрещается проверять пальцами совмещение отверстий в собираемых панелях щитов или полумуфтах (для этой цели использую специальные шаблоны).

Запрещается перемещение, и установка щитов без принятия мер, предупреждающих их опрокидывание.

При затяжке болтовых соединений полумуфт запрещается: пользоваться вместо гаечных ключей каким-либо другим инструментом; удлинять гаечные ключи другими ключами, отрезками труб и так далее; пользоваться неисправными гаечными ключами или ключами несоответствующих размеров.

Перед пробным пуском электродвигателя необходимо проверить: крепление фундаментных блоков и прочих элементов оборудования; отсутствие посторонних предметов внутри или вблизи оборудования; наличие защитного заземления.

Литература.

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/izgotovlenie-kollektorov-dlya-elektrodvigateley/

1.Китаев Е. В. Электротехника с основами промышленной электроники. — М.: Высшая школа, 1980.

2.Токарев Б.Ф. Электрические машины – М.:Энергоатаниздат, 1989.

3.Гусев Н.Н., Мельцер Б.Н. Устройство и монтаж электрооборудования.-Мн.: Высшая школа,1979.

4.Дьяков В.И. Типовые расчеты по электрооборудованию:- М.: высшая школа, 1991.

Схемы пуска асинхронного двигателя.

Существует множество схем пуска асинхронного двигателя. Можно двигатель включить по средствам прямого пуска, то есть с помощью рубильника или автоматического выключателя. Также асинхронный двигатель можно включить с помощью различной коммутационной аппаратуры, то есть через контактор, магнитный пускатель, и так далее.

На рисунке 1 изображена электрическая система пуска асинхронного двигателя через магнитный пускатель, автоматический выключатель и кнопку управления.

Принцип работы схемы следующий: включаем автоматический выключатель QF, тем самым подавая напряжение на схему. Нажимаем кнопку SBC,то есть кнопку «пуск». При этом запитается катушка магнитного пускателя КМ, магнитный пускатель включается, при этом его силовые контакты замкнутся, замкнется так же его вспомогательный замыкающий контакт, шунтирующий кнопку «пуск». Кнопку «пуск» можно отпустить. Как только силовые контакты магнитного пускателя замкнулись, включается двигатель М и начинает работать в заданном режиме.

Для отключения двигателя необходимо нажать кнопку SBT, КНОПКУ «СТОП». При этом мы размыкаем цепь катушки магнитного пускателя КМ. Магнитный пускатель КМ отключится, разомкнуться его силовые контакты, разомкнется вспомогательный замыкающий контакт КМ, и при этом двигатель М отключиться.

Существуют схемы пуска асинхронного двигателя, в которых необходим реверс, то есть изменение направления вращения ротора двигателя. На рисунке 2 показана схема включения асинхронного двигателя с помощью реверсивного магнитного пускателя.

Реверс мы получаем, изменяя порядок чередования фаз на двигателе или магнитном пускателе.

Межремонтное обслуживание электродвигателей.

Межремонтное обслуживание обязательно для электрических машин, находящихся в эксплуатации. В порядке обслуживания осуществляют надзор за нагрузкой и вибрацией электродвигателей, температурой их подшипников, контроль за температурой входящего и выходящего воздуха в замкнутых системах вентиляции, проверку отсутствия ненормальных шумов и искрения под щетками, уход за подшипниками и контроль количества смазки. Перечисленные операции проводит дежурный персонал цеха. Этот же персонал ежемесячно выполняет наружный осмотр и чистку электродвигателей и аппаратуры от пыли и загрязнений.

Переодические осмотры электродвигателей проводят по графику, установленному главным энергетиком. Целью осмотров является определение технического состояния электродвигателя и выявление объема работ, которые должны быть выполнены при очередном ремонте. Кроме того при осмотре проводят уход за подшипниками, коллекторами, кольцами, щетками и мелкий ремонт без разборки машин.

Мелкий ремонт и устранение незначительных неисправностей электродвигателей проводят во время плановых перерывов в работе (в обеденные перерывы, нерабочие смены, выходные дни).

К этим работам, выполняемым оперативно-ремонтным персоналом цеха, относится подтяжка резьбовых крепежных соединений и соединительных муфт, затяжка разъемных контактных соединений и фундаментных болтов, регулировка защиты и аппаратов управления, регулировка положения траверс, уход за коллекторами, кольцами и щеточными устройствами.

Кроме указанных работ дежурный персонал цеха осуществляет постоянный контроль за состоянием изоляции и исправностью заземляющих устройств электроприводов, ведет надзор за соблюдением правил электродвигателей и правил электробезопасности труда мотористов производственных механизмов и технологического персонала цеха, а также принимает участие в приемо-сдаточных испытаниях электродвигателей и их систем управления и защиты после монтажа, ремонта и наладки.

Перед включением электрической машины в работу дежурный электромонтер убеждается в отсутствии посторонних предметов на машине или внутри ее, проверяет состояние контактных колец или коллектора, положение рукоятки пускового реостата, которая должна быть в положении «Пуск». В небольших машинах провертывают ротор вручную. Устройства защиты, автоматического пуска и остановки, имеющиеся в схеме блокировки и управления, провертывают и регулируют в соответствии с инструкцией, утвержденной главным энергетиком предприятия.

Подготовка электрических машин к пуску после их ремонта проводится силами заводской электролаборатории в присутствии дежурного электромонтера. При наличии на подшипниках электрической машины указателя уровня масла в подшипниках, проверяют наличие и нормальный уровень масла.

После пуска электрической машины контролируют нагрев корпуса машины и подшипников, вибрацию, шум и гудение, искрение на коллекторе, биение ременной передачи или соединительной муфты с механизмом.

Аварийная остановка работающей электрической машины производится в следующих случаях: при несчастном случае, когда требуется остановка машины, при появлении дыма или огня из машины или пускорегулирующей аппаратуры, при поломке приводимого механизма, при сильной вибрации, угрожающей целостности машины, при чрезмерном нагреве машины с заметным снижением частоты вращения.

Неисправности электродвигателей.

Неисправности электродвигателей возникают в результате износа деталей и старения материалов, а также при нарушении правил технической эксплуатации. Причины возникновения неисправности и повреждений электродвигателей различны. Нередко одни и те же неисправности вызываются действиями различных причин, а иногда – и совместными их действием. Успех ремонта во многом зависит от правильного установления причин всех неисправностей и повреждений поступающего в ремонт электродвигателя.

Повреждения электродвигателей по месту их возникновения и характеру происхождения делят на электрические и механические. К электрическим

Относят повреждение или токопроводящих частей обмоток, коллекторов, контактных колец и листов сердечников. Механическими повреждениями считают ослабление крепежных соединительных резьб, посадок, нарушения формы и поверхности деталей, перекосы и поломки. Повреждения обычно имеют очевидные признаки или легко устанавливаются измерениями.

Неисправности электрических двигателей и возможные причины их возникновения.

Признаки неисправности

Причины неисправности

Способ ремонта

Электродвигатели

Двигатель при включении в сеть не развивает нормальной частоты вращения, издает не нормальный шум, при проворачивание вала от руки работает неравномерно

Ротор двигателя не вращается, сильно гудит, быстро нагревается до вышедопустимых температур

Двигатель сильно гудит (особенно при пуске), ротор вращается медленно и работает устойчиво

Двигатель устойчиво работает при номинальной нагрузке на валу, с частотой вращения, меньше номинальной, ток в одной фазе статора увеличен

При работе электродвигателя на холостом ходу наблюдаются местные перегревы активной стали статора

Перегрев обмотки статора в отдельных местах при несимметрии токов в фазах; двигатель гудит и не развивает номинального момента

Равномерный перегрев всего электродвигателя

Перегрев подшипников скольжения с кольцевой смазкой

Перегрев подшипника качения, сопровождающийся ненормальным шумом

Стук в подшипнике скольжения

Стук в подшипнике качения

Повышение вибрации при работе

Электродвигатели

Якорь машины не вращается под нагрузкой; если вал развернуть усилием извне, двигатель идет в «разнос»

Частота вращения якоря меньше или больше номинальной при нормальных значениях напряжения сети и тока возбуждения

Щетки одного знака искрят сильнее щеток другого знака

Щетки искрят; образуется почернение пластин коллектора, расположенных на определенном расстоянии друг от друга; после чистки чернеют те же пластины

Чернеют каждая вторая-третья пластины коллектора

При нормальном нагреве двигателя и совершенно исправных щеточном аппарате и поверхности коллектора щетки искрят

Повышенное искрение щеток от вибрации, перегрев коллектора и щеток, потемнение большей части коллектора

При вращении якоря двигателя в разных направлениях щетки искрят с различной интенсивностью

Повышенное искрение

щеток на коллекторе

переменного

Возможен обрыв фазы при соединении обмоток статора звездой или двух фаз при соединении треугольником

Обрыв фазы обмотки

Обрыв в фазе ротора

Обрыв в одной фазе статора при соединении обмоток треугольником

Замкнуты между собой листы сердечника статора из-за порчи межлистовой изоляции или выгорания зубцов при повреждениях обмотки

Витковое замыкание одной фазы в обмотке статора; межфазное замыкание в обмотках статора

Неисправен вентилятор (система вентиляции)

Одностороннее притяжение роторов из-за чрезмерной выработки вкладыша; плохое прилегание вала к вкладышу

Загрязнение смазки, чрезмерный износ тел качения и дорожек; неточная центровка валов в агрегате

Большой износ вкладыша

Разрушение дорожек или тел качения

Нарушение балансировки ротора шкивами или муфтами; неточная центрова валов агрегата; перекос соединительных полумуфт

постоянного

Обрыв или плохой контакт в цепи возбуждения; короткие или межвитковые замыкания в обмотке независимого возбуждения

Щетки сдвинуты с нейтрали соответственно в направлении вращения или против направления вращения вала

Неодинаковы расстояния между рядами щеток по окружности коллектора; межвитковые замыкания в обмотках одного из главных или добавочных полюсов

Плохой контакт или короткое замыкание в обмотке якоря; обрыв в катушке, присоединенной к почерневшим пластинам

Ослабла прессовка коллектора или выступает миканит дорожек изоляции

Недопустимый износ коллектора

Выступают дорожки изоляции коллектора; коллектор «бьет»

Щетки смещены с централи

Недостаточное прилегание щеток к коллектору; дефект рабочей поверхности щеток; неодинаковое давление щеток на коллектор; заклинивание щеток в обоймах щеткодержателя

Наиболее вероятное место повреждения – межкатушечные соединения или окисления контактных поверхностей замыкающих колец (у двигателей с фазным ротором).

Производят ремонт соединения, зачистку контактов, ремонт обмотки

Удалить заусеницы, обработав места замыкания острым напильником, разъединить листы и покрыть их лаком. При сильном выгорании листов – вырубить поврежденные места, между листами проложить тонкий электрокартон и пролакировать

Найти место повреждения обмотки и устранить замыкание. В случае необходимости – перемотать поврежденную часть обмотки

Снять защитный кожух и отремонтировать вентилятор

Перезалить подшипники скольжения

Удалить старую смазку, промыть подшипник и заложить новую смазку. Заменить подшипник качения. Проверить установку подшипников и центровку машины с агрегатом

Пережалить подшипник

Заменить подшипник

Дополнительно отбалансировать ротор, шкивы или полумуфты; произвести центровку двигателя и машины; снять и вновь правильно установить полумуфту

Найти место обрыва или плохого контакта и исправить повреждение

Чаще всего неисправность бывает в регуляторе возбуждения

Установить щетки коллектора на нейтраль

Обрыв чаще происходит в катушке, находящейся между почерневшими пластинами коллектора. Найти место повреждения и отремонтировать

Проверить пайку всех соединений между обмоткой якоря и почерневшими пластинами коллектора. Обнаруженные неисправности соединения – пропаять

Затянуть пластины коллектора и проточить его поверхность

Двигатель капитально ремонтируют или заменяют на новый

Проточить и прошлифовать коллектор

Проверить положение щеток и установить их по заводским меткам, расположенным на траверсе

Проверить и при необходимости укоротить нажимную пружину щеткодержателей или заменить их новой.

Отшлифовать поверхности щеток. Установить щетки в соответствии с рекомендациями завода-изготовителя, применив щетки одной марки

Неисправности часто можно установить лишь по косвенным признакам. При этом приходится производить не только измерения, но и сопоставлять обнаруженные факты с известными из опыта и делать соответствующие выводы.

Предремонтные испытания. Для электродвигателей, поступающих в ремонт, когда это, возможно, следует проводить предремонтные испытания.

Объем испытаний устанавливают в каждом случае в зависимости от вида ремонта, результатов анализа карт осмотра и внешнего состояния электродвигателя. Работа по предметному выявлению неисправности машин называется дефектацией. Перед испытаниями электродвигатель подготавливают к работе с соблюдением всех требований правил : измеряют размеры зазоров в подшипниках и воздушные зазоры, осматривают доступные узлы и детали и оценивают возможность их использования при испытаниях. Непригодные детали по возможности заменяют исправными (без разборки)

В асинхронных двигателях на холосто ходу измеряют ток холостого хода, контролируют его симметрию и оценивают визуально или с помощью инструментов все параметры, подлежащие контролю при эксплуатации.

В электродвигателях с фазным ротором и двигателях постоянного тока оценивают работу контактных колец, коллекторов. Щеточного аппарата. Нагружая электродвигатель в допустимой мере оценивают влияние нагрузки на работу его основных узлов, контролируют равномерность нагрева доступных частей, вибрацию, определяют неисправности и устанавливают возможные их причины.

Типичные признаки и причины неисправностей асинхронных электродвигателей при номинальных параметрах питающей сети и правильном включении обмоток электродвигателя приведены.

Виды и объемы ремонтов.

В соответствии с Правилами технической эксплуатации в системе планово-предупредительных ремонтов электрооборудования (ППРЭО) предусматривают два вида ремонтов: текущий и капитальный.

Текущий ремонт. Проводится с переодичностью (установленной главным энергетиком) для всех электродвигателей, находящихся в эксплуатации. В типовой объем работ при текущем ремонте входят работ: наружный осмотр электродвигателя, промывка и замена смазки в подшипниках и при необходимости замена подшипников качения, проверка и ремонт вентиляторов и чистка вентиляционных устройств и каналов, чистка и продувка сжатым воздухом обмоток, контактных колец, коллекторов щеточного аппарата, проверка состояния крепления лобовых обмоток, шлифования контактных колец и коллекторов, регулировка щеточного аппарата, протирка и замена щеток, продороживание коллекторов, проверка и затяжка всех резьбовых крепежных соединений, проверка защитного соединения, проведение профилактических испытаний.

Капитальный ремонт. Проводят в условиях электроремонтного цеха (ЭРЦ) или специализированного (СРП).

В объем капитального ремонта входят работы, предусмотренные текущим ремонтом . Он включает в себя также следующие виды работ: полную разборку электродвигателя, проверку всех узлов и деталей и их дефиктация, ремонт станин и подшипников щитов, магнитопроводов ротора и статора, валов, вентиляторов, роторов, коллекторов, устранения местных дефектов изоляции обмоток и соединений, проведение послеремонтных испытаний.

Переодичность электродвигателей Правилами технической эксплуатации не устанавливается. Она определяется лицом, ответственным за электрохозяйство предприятия на основании оценок общей продолжительности работы электродвигателей и местных условий их эксплуатации.

После транспортировки для монтажа электродвигателей на фундаментах производят следующие дополнительные работы: выверка положения электродвигателя, центровка и соосность валов электродвигателя и агрегата, крепление, подливка оснований. Частичная замена обмоток целесообразна в случае повреждения нескольких однослойных катушек или стержневых обмоток (частичная замена двухслойных обмоток статора нецелесообразна, так как при этом повреждается изоляция исправных катушек).

Провода снятые с поврежденных электродвигателей в период ремонта, используют повторно. В этом случае необходимо восстановить электрические и механические параметры обмоток до их первоначальных значений. Для очистки проводов от их старой изоляции применяют отжиг в печах, а механическое отделение остатков изоляции от проводов – волочением через деревянные или текстолитовые клицы. После рихтовки провода обматывают новой изоляцией на станках.

При ремонте статорных обмоток из жестких катушек медные провода прямоугольного сечения используют повторно. Изоляцию восстанавливают с помощью обматывания лентой внахлестку, перекрывая на 1:2 ширины изолировочной ленты. Замену коллекторов проводят лишь при значительных повреждениях (пяти и более коллекторных пластин) с пробоем и выгоранием изоляции.

Кроме того, коллекторы подлежат замене целиком, если запас размера коллекторных пластин по высоте не обеспечивает их естественного износа без уменьшения этого размера ниже допустимого предела за время до следующего капитального ремонта.

Сушка, пропитка и испытание обмоток. Изготовление обмотки статоров, роторов и якорей подвергаются сушке в специальных печах и сушильных камерах при температуре 105-120С. С помощью сушки из гигроскопических изоляционных материалов (электрокартон, хлопчатобумажные ленты) удаляется влага, которая препятствует глубокому проникновению пропиточных лаков в поры изоляционных деталей при пропитке обмотки.

Сушку проводят в инфракрасных лучах специальных электрических ламп, или с использованием горячего воздуха в сушильных камерах. После просушки обмотки пропитывают лаками БТ-987, БТ-95, БТ-99, ГФ-95 в специальных пропиточных ваннах. Помещения оборудуются приточно-вытяжной вентиляцией. Пропитка проводится в ванне, заполненной лаком и оборудованной подогревом для лучшей проникающей способности лака в изоляцию обмотки провода.

С течением времени лак в ванне становится более вязким и густым, в связи с улетучиванием растворителей лаков. В результате этого сильно снижается их способность проникать в изоляцию проводов обмотки, особенно в тех случаях, когда провода обмотки плотно уложены в пазы сердечников. Поэтому при пропитке обмоток постоянно проверяют густоту и вязкость пропиточного лака в ванне и периодически добавляют растворители. Обмотки пропитывают до трех раз в зависимости от условий их эксплуатации.

Для экономии лака, расходуемого за счет прилипания к стенкам станины статора, применяют другой метод пропитки обмотки с использованием специального приспособления. Готовый к пропитке статор с обмоткой устанавливают на крышку специального бака с лаком, предварительно закрыв заглушкой коробку вывода статора. Между торцом статора и крышкой бака прокладывают уплотнение. В центре крышки имеется труба, нижний конец которой располагается ниже уровня лака в баке.

Для пропитки обмотки статора в бак по патрубку подается сжатый воздух давлением 0,45 – 0,5 МПа, с помощью которого уровень лака поднимается до заполнения всей обмотки, но ниже верхней части кромки станины статора. По окончании пропитки выключают подачу воздуха и выдерживают статор примерно 40мин (для слива остатков лака в бак), снимают заглушку с коробки выводов. После этого статор направляют в сушильную камеру.

Это же приспособление используют для пропитки обмоток статора под давлением. Необходимость в этом возникает в тех случаях, когда в пазах статора очень плотно уложены провода и при обычной пропитке (без давления лака)лак не проникает во все поры изоляции витков. Процесс пропитки под давлением заключается в следующем. Статор устанавливается как и в первом случае, но сверху закрывается крышкой. Сжатый воздух подается в бак и цилиндр, который прижимает крышку к торцу станины статора через установленную прокладку уплотнения. Поворотная траверса, укрепленная на колонке, и винтовое соединение крышки с цилиндром позволяют использовать это приспособление для пропитки обмоток статоров различной высоты.

Пропиточный лак в резервуар подается из емкости, расположенной в другом, не пожароопасном помещении. Лак и растворители являются токсичными и пожароопасными и в соответствии с правилами охраны труда работа с ними должна проводиться в защитных очках, рукавицах, резиновом фартуке в помещениях, оборудованных приточно-вытяжной вентиляцией.

После окончания пропитки обмотки машин сушат в специальных камерах. Воздух, подаваемый в камеру принудительной циркуляцией, нагревается электрическими калориферами, газовыми или паровыми подогревателями. Во время сушки обмоток ведется непрерывный контроль за температурой в сушильной камере и температурой выходящего из камеры воздуха. В начале сушки обмоток температуру в камере создают несколько ниже (100-110с).

При этой температуре удаляются растворители из изоляции обмоток и наступает второй период сушки – запекания лаковой пленки. В это время на 5-6 часов повышают температуру сушки обмоток до 140с (для класса изоляции А).

Если после нескольких часов сушки сопротивление изоляции обмоток остается недостаточным, то отключают подогрев и дают остыть обмоткам до температуры, на 10-15С превышающей температуру окружающего воздуха, после чего вновь включают подогрев и продолжают процесс сушки.

Процессы пропитки и сушки обмоток на энергоремонтных предприятиях совмещены и, как правило, механизированы.

В процессе изготовления и ремонта обмоток машин проводят необходимые испытания изоляции катушек. Испытательное напряжение должно быть таким, чтобы в процессе испытаний выявлялись дефектные участки изоляции и не повреждалась изоляция исправных обмоток. Так, для катушек напряжением 400В испытательное напряжение недемонтированной из пазов катушки в течении 1 мин должно быть равно 1600В, а после соединения схемы при обмотки – 1300В.

Сопротивление изоляции обмоток электродвигателей напряжением 500В после пропитки и сушки должно быть не менее 3Мом для обмоток статора и 2Мом – для обмоток ротора после полной перемотки и 1Мом и 0,5Мом соответственно после частичной перемотки. Эти значения сопротивлений изоляции обмоток рекомендованы, исходя из практики ремонта и эксплуатации отремонтированных электрических машин.

Монтаж электродвигателей.

После испытания электродвигателей определяют возможность их включения без сушки. Электродвигатели напряжением до 1000В включают без сушки, если сопротивление изоляции их обмоток при температуре от 10С до 30С не менее 0,5Мом. Если указанные условия не удовлетворяются, электродвигатели должны быть подвергнуты сушке.

Методы сушки электрических машин. Метод сушки внешним нагревом применяют для сильно увлажненных машин. Машину помещают в теплоизоляционную камеру, продуваемую горячим воздухом от воздуходувки.

Инфракрасную сушку производят с помощью теплоизлучателей, в качестве которых применяют зеркальные лампы мощностью 250 или500Вт, располагаемые на расстоянии 200-400мм от нагреваемой поверхности. Лампы размещают на расстоянии 200-300мм одну от другой в шахматном порядке. Температуру регулируют включением и отключением части ламп.

Методы инфракрасной сушки и сушки внешним нагревом применяют для любых электрических машин. Напряжение питания пониженное. Роторы машин переменного тока при сушке от внешних источников затормаживаются. Включение и отключение тока производят плавным изменением сопротивления реостата.

Режим сушки. Перед сушкой машину тщательно очищают и продувают сжатым воздухом. Корпус машины надежно заземляют. Принимают меры по уменьшению теплопотерь: перекрывают деревянными щитами фундаментные ямы, ограждают машину брезентовыми палатками. В процессе сушки первоначальный нагрев проводят медленно (особенно при сильно отсыревшей изоляции крупных машин).

Средняя температура допустимого нагрева 65-70С. Разброс температур нагрева различных частей машины должен быть в пределах 20С. Температуру измеряют термометрами, встроенными или закладными термоиндикаторами, а также методом сопротивления.

В процессе сушки через каждый час (или два часа) измеряют следующие параметры: температуры в контрольных точках машины и окружающего воздуха, сопротивления изоляции каждой обмотки от корпуса и изоляции между обмотками. Коэффициент абсорбции определяют в холодном состоянии машины в начале сушки, после ее нагрева до установившейся температуры, в конце сушки (для принятия решения о ее прекращении) и после сушки при остывании машины.

Сушка заканчивается после того, как устанавливается постоянное сопротивление изоляции при неизменной температуре в течение 3-8ч. Общая продолжительность сушки машин малой и средней мощности должна быть не менее 15-20ч.

Отремонтированный и испытанный электродвигатель транспортируют к месту установки и монтируют в следующем порядке. Устанавливают на плиту электродвигатель и выверяют положение его вала так, чтобы наилучшим образом обеспечить совпадение в пространстве осей всех валов.

Центровка валов с общей осью обычно производится в два этапа. Предварительную центровку производят по рискам, нанесенным на ободы полумуфт. Риски наносят с помощью центроискателей на каждой полумуфте соединяемых валов через 90 .Сначала накладывают контрольную линейку на обе полумуфты в четырех точках окружности, сдвинутых на 90 , и убеждаются в отсутствии параллельного сдвига осей валов. Если оси сдвинуты, то на риску базовой полумуфты накладывают контрольную линейку и, вращая центрируемый вал, совмещают одну из рисок его полумуфты с базовой риской. При совпадении обеих рисок с кромкой линейки без углового расхождения линейку переносят на следующие две риски и так далее. В случае, когда угловое расхождение осей валов установлено, перемещают центрируемый вал до совпадения рисок. Предварительная центровка считается достигнутой, если совпадают все четыре пары рисок соединяемых полумуфт. Для окончательной центровки малогабаритных тихоходных машин применяют монтажные скобы. Центровка может производиться по втулкам или по ободам полумуфт. Для центровки валов крупных быстроходных машин используют более сложные приспособления, в которых несоосность измеряют индикаторами с точным отсчетом по шкале.

Окончательная центровка заключается в измерении зазоров «а» и «в» в четырех положениях валов, совместно поворачиваемых ступнями на 90 . Разность как зазоров «а», так и зазоров «в» в диаметрально противоположных направлениях должна быть меньше допустимых отклонений.

В электроприводах с двигателями мощностью до 100кВт нередко применяют ременные передачи. Валы электродвигателя и производственного механизма в этом случае располагаются параллельно. Для сопряжения валов передачей выверяют горизонтальность их осей валовыми уровнями и вертикальность торцевых плоскостей шкивов рамными уровнями. Затем совмещают поперечные оси симметрии обеих шкивов с осью ременной передачи. При одинаковой ширине шкивов пользуются контрольной линейкой. Ее располагают в плоскости осей обоих валов и прижимают к кромкам обработанных торцов обоих шкивов, добиваясь касания обоих ободов шкивов во всех четырех точках. Если ширина шкивов неодинакова, их расположение регулируют выравниванием зазоров по обе стороны от узкого шкива между его ободами и двумя контрольными линейками, наложенными на торцы широкого шкива. Допустимое отклонение измерений как односторонних зазоров, так и разности сумм накрест лежащих зазоров по ободу узкого шкива не должны превышать 0,3мм.

Для клиноременной передачи допускается осевой сдвиг канавок шкивов не более 16мм на 1000мм расстояния между осями валов.

Предварительно затягивают до отказа фундаментные болты вручную нормальными ключами. Контролируют сохранность центровки, осуществляют окончательную затяжку резьбовых креплений тарированными ключами. Достаточность затяжки контролируют щупом толщиной 0,05мм, который должен проникать в стык резьбового соединения не глубже, чем на 0,5мм.

Проводят пробный пуск электродвигателя: его включают в сеть только на несколько секунд и повторяют включение несколько раз. При благополучном исходе включений «толчком» электродвигатель пускают на 20-30мин, контролируя работу систем смазки, охлаждения и отсутствия ненормальных шумов в машине. Перед остановом измеряют температуру подшипников. Если признаков ненормальной работы не обнаружено, обкатывают электродвигатель на холостом ходу и производят испытание на холостом ходу и под нагрузкой. Время обкатки устанавливают по данным завода-изготовителя для нового электродвигателя.

Регулирование частоты вращения асинхронных двигателей.

Частота вращения ротора в минуту определяется следующим выражением:

n2=n1(1-s)=60f1/p(1-s).[ 1,стр.147].

Из этого выражения видно, что частоту вращения ротора можно регулировать изменением любой из трех величин, определяющих ее, то есть изменением частоты тока сети f1, числа пар полюсов р и скольжения s.

Регулирование частоты вращения асинхронных двигателей изменением частоты тока сети сложно, так как необходим какой-либо регулирующий преобразователь частоты или генератор. Поэтому такой способ не имеет широкого применения.

Число полюсов машины может быть изменено, если на статоре имеется несколько (обычно две) обмоток с разным числом полюсов или одна обмотка, которую можно переключать на различное число полюсов, или две обмотки, каждая из которых может переключаться на различное число полюсов.

Если изменить направление тока в одной из катушек, включив ее встречно с другой, то обмотка может переключаться на два полюса. При изменении числа полюсов обмотки статора изменится частота вращения его магнитного поля, а следовательно, и частота вращения ротора двигателя. Этот способ регулирования частоты вращения асинхронного двигателя экономен, но недостатком его является ступенчатое изменение частоты. Кроме того, стоимость такого двигателя значительно возрастает вследствие усложнения габаритов машины.

Регулирование частоты вращения изменением числа полюсов применяют в двигателях с короткозамкнутым ротором; в двигателях с фазным ротором этот способ не используется, так как приходится одновременно изменять число полюсов обмотки статора и число полюсов обмотки вращающегося ротора, что весьма сложно.

Заводы выпускают двигатели с синхронными частотами вращения 500-750-1000-1500 оборотов в минуту. Такие двигатели имеют на статоре две обмотки, каждая из которых может быть переключена на разное число полюсов.

Скольжение можно изменить регулировочным реостатом, введенным в цепь обмотки ротора, а также регулированием напряжения сети. При регулировании напряжения питающей сети изменяется вращающий момент двигателя пропорционально квадрату напряжения. При изменении вращающего момента уменьшается частота вращения ротора, то есть увеличивается скольжение.

Регулировочный реостат включается в цепь обмотки фазного ротора подобно пусковому реостату, но в отличие от пускового он рассчитывается на длительное прохождение тока.

При включении регулировочного реостата ток в роторе уменьшается, что вызовет снижение вращающего момента двигателя, и, следовательно, уменьшения частоты вращения, или увеличения скольжения. При увеличении скольжения увеличивается электродвижущая сила и ток в роторе. Частота вращения или скольжения будет уменьшаться до восстановления равновесия моментов, то есть пока ток в роторе не примет своего начального значения.

Этот способ регулирования частоты вращения может быть использован только в двигателях с фазным ротором и несмотря на то,что является неэкономичным (так как в регулировочном реостате происходит значительная потеря энергии) имеет широкое распространение.

1)Введение ст.1-2

2)Устройство асинхронного электродвигателя ст.3-6

3)Принцип действия асинхронного электродвигателя ст.7-9

4)Схема пуска асинхронного электродвигателя ст.10-13

5)Регулирование частоты вращения асинхронного электродвигателя ст.14-15

6)Межремонтное обслуживание асинхронного электродвигателя ст.16-17

7)Не исправности электродвигателя ст.18

8) Не исправности электродвигателя и возможные причины их возникновения ст.19-22

9)Виды и объем ремонта ст.23-26

10)Монтаж электродвигателя ст.27-29

11)Техника безопасности ст.30-31

12)Литература ст.32

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/izgotovlenie-kollektorov-dlya-elektrodvigateley/

Объект исследования: электрический двигатель. Предмет исследования: уровень использования его в современном обществе благодаря его . Цель: самостоятельно изготовить модели электродвигателей, являющиеся стартовой точкой создания современных электродвигателей, и экспериментально определить коэффициент полезного действия модели учебного электродвигателя. Задачи:

  • изучить принципы работы электродвигателя;
  • познакомиться с историей развития электродвигателя;
  • выяснить физические основы работы электродвигателя;
  • изготовить модели электродвигателей;
  • рассчитать коэффициент полезного действия электродвигателя.

 история 1

ИСТОРИЧЕСКИЙ ПУТЬ ЭЛЕКТРОДВИГАТЕЛЯ Якоби Б. С год создал первый в мире практически пригодный электродвигатель с вращающимся якорем Майкл Фарадей 1821 год продемонстрировал принцип преобразования электрической энергии в механическую энергию электромагнитным полем Питер Барлоу 1824 колесо Барлоу не имело практического значения и осталось до сегодняшнего дня лабораторным демонстрационным прибором

 история 2

Физика работы электродвигателя Правило левой руки Магнитное поле – это форма материи, окружающая движущиеся электрические заряды. Впервые термин «магнитное поле» был введен в 1845 году английским физиком Фарадеем. Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера. Направление вектора силы Ампера определяется правилом левой руки.

 история 3

ПРИНЦИП РАБОТЫ ЭЛЕКТРОДВИГАТЕЛЯ В электрических двигателях для преобразования электрической энергии в механическую используется действие силы Ампера. Коэффициент полезного действия мощных электрических двигателей достигает 98 %. Такого высокого КПД не имеет никакой другой двигатель.

 история 4

 история 5

Основные выводы работе 1. Самый маленький электрический двигатель в мире изготовил Н. Сядристый. Двигатель имеет 15 деталей, однако размеры его в 4 раза меньше макового зернышка! 2. Самые большие электрические двигатели постоянного тока используются для привода гребных винтов российских атомных ледоколов Сибирь и Арктика. Мощность двигателя к Вт, КПД – 0, Пробуя самостоятельно изготовить тот или иной прибор, я обнаружил, что каждый из них имеет свои «секреты», без знания которых устройства просто не будут работать. 4. Проведя большую работу по изучению литературы о создании первых электродвигателей, о физических принципах их работы, о внедрении их сегодня во все отрасли жизни, я могу с уверенностью сказать, что электродвигатель действительно является современным альтернативным изобретением.

 история 6

Фроловой Анны

Проект,в результате исследований была собрана простейшая установка электродвигателя

Скачать: , Предварительный просмотр:

филиал Муниципального бюджетного общеобразовательного учреждения Сосновская средняя школа №2 «Крутецкая основная школа»

Проект

Тема: Электродвигатель

Конкурс «Физика вокруг нас»

Номинация: «История механизмов»

ученица 8 класса

Филиала МБОУ Сосновская СШ №2

«Крутецкая ОШ»

Руководитель работы:

Рыпова Надежда Александровна,

Учитель физики

2015 г.

Введение

Актуальность: На сегодняшний день практически нет отрасли техники и быта, где не использовались бы электродвигатели, поэтому мне стало интересно, как они устроены и получится ли у меня самостоятельно собрать простейшую модель электродвигателя.

Объект исследования : электромагнитный двигатель.

Цель: познакомиться с историей и устройством электромагнитного двигателя, самостоятельно изготовить модель простейшего электромагнитного двигателя, являющиеся стартовой точкой создания современных электродвигателей.

Задачи:

— познакомиться с историей развития электродвигателя;

Выяснить принципы работы электродвигателя;

— изучить область применения электродвигателей;

— изготовить модель электродвигателя;

Магнитное поле – это форма материи, окружающая движущиеся электрические заряды. Впервые термин «магнитное поле» был введен в 1845 году английским физиком Фарадеем.

Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера.

Направление вектора силы Ампера определяется правилом левой руки.

Перед тем, как начать опыт я познакомилась с историей создания электродвигателей; рассмотрела конструкцию и принцип работы двигателя Бориса Семёновича Якоби, а также собрала информацию о применении электродвигателей.

Суть моего опыта:

За счет источника электричества (зарядного устройства) заряженные частицы в проводнике (проволоке) упорядоченно движутся. При воздействии на него магнитным полем траектория частиц отклоняется согласно правилу «левой руки». Когда направление силы тока перпендикулярно направлению силовых линий магнитного поля, частицы двигаются по окружности.

ИСТОРИЯ СОЗДАНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ

История создания электродвигателей уходит в глубокую древность. Сложными путями шел человек к открытию и познанию законов физики, созданию различных механизмов, машин. Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электродвигателей. Принцип действия электродвигателей основан на физическом явлении: виток проводника, по которому протекает электрический ток, будучи помещенным между магнитами, движется поперек силовых линий магнитного поля. Электродвигатель, как правило, компактнее других двигателей, всегда готов к работе, может управляться на расстоянии.

История электродвигателя — сложная и длинная цепь открытий, находок, изобретений.

Начальный период развития электродвигателя (1821-1834 гг.).

Он тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую. В 1821 г. М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита, или вращение магнита вокруг проводника. Опыт Фарадея показал принципиальную возможность построения электрического двигателя. Многие исследователи предлагали различные конструкции электродвигателей.

Первые электродвигатели напоминали по устройству паровые машины: двигатель Дж. Генри (1832 г.) и двигатель У. Пейджема (1864 г.) имели коромысла, кривошип, шатун, а также золотники (переключатели тока в соленоидах, заменявших собой цилиндр).

П. Барлоу предложил «колесо Барлоу». Оно состояло из постоянного магнита и , скользящий контакт осуществлялся с помощью ртути, а питалось колесо от гальванического элемента.

Дж. Генри предложил в 1832 г. модель двигателя с возвратнопоступательным движением: подвижный электромагнит поочередно притягивался к постоянным магнитам и отталкивался от них, замыкая и размыкая батареи гальванических элементов. Он совершал 75 качаний в минуту. Было еще много попыток создания двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить двигатель с вращательным движением якоря.

Второй этап развития электродвигателей (1834-1860 гг.) характеризуется конструкциями с вращательным движением явнополюсного якоря. Однако вращательный момент на валу у таких двигателей обычно был резко пульсирующим.

В 1834 г. Б.С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. В 1838 г. этот двигатель (0,5 кВт) был испытан на Неве для приведения в движение лодки

с пассажирами, т. е. получил первое практическое применение.

Испытания различных конструкций электродвигателей привели Б.С. Якоби и других исследователей к следующим выводам:

– применение электродвигателей находится в прямой зависимости от удешевления электрической энергии, т.е. от создания генератора, более экономичного, чем гальванические элементы;

– электродвигатели должны иметь по возможности малые габариты и по возможности большую мощность и больший коэффициент полезного действия.

Третий этап в развитии электродвигателей (1860-1887 гг.) связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

На этом этапе нужно отметить электродвигатель итальянца А. Пачинотти (1860 г.).

Его двигатель состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов. Подвод тока осуществлялся роликами. Обмотка электромагнитов включалась последовательно с обмоткой якоря (т.е. электромашина имела последовательное возбуждение).

Габариты двигателя были невелики, он имел практически постоянный вращающий момент. В двигателе Пачинотти явнополюсный якорь был заменен неявнополюсным.

Барабанный якорь, в котором рабочим является проводник, составляющий виток, был изобретен лишь в 1872 г. В. Сименсом. Еще через 10 лет в железе якоря появились пазы для обмотки (1882 г.).

Барабанный якорь машины постоянного тока стал таким, каким мы его можем видеть в настоящее время. Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи, с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешевого источника электрической энергии – электромагнитного генератора постоянного тока. В 1886 г. электродвигатель постоянного тока приобрел основные черты современной конструкции. В дальнейшем он все более и более совершенствовался. По роду тока электродвигатели стали делиться на машины переменного и постоянного тока; по принципу действия машины переменного тока делятся на синхронные и асинхронные.

Асинхронные двигатели отличаются простотой конструкции, малой стоимостью, надежностью в работе. Они являются самым распространенным видом двигателей.

ДВИГАТЕЛЬ БОРИСА СЕМЁНОВИЧА ЯКОБИ

Борис Семенович Якоби (Мориц Герман, как он именовался до приезда в Россию) родился 21 сентября 1801 г. в Потсдаме. получил по специальности архитектор-строитель. Наряду с работой в строительном департаменте Пруссии Якоби с увлечением занимался исследованиями в области электромагнетизма. В 1834 г. он создал модель электродвигателя.

Внешний вид первого двигателя Якоби показан на рисунке. Этот электродвигатель работал по принципу взаимодействия двух комплектов электромагнитов, один из которых располагался на подвижной раме, другой – на неподвижной.

В качестве источника питания электродвигателя, применялась Якоби батарея гальванических элементов. Для изменения полярности подвижных электромагнитов использовался коммутатор.

Коммутатор представлял собой оригинальную и глубоко продуманную часть устройства электродвигателя Якоби. Конструктивно он состоял из четырех. металлических колец, установленных на валу и изолированных от него; каждое кольцо имело четыре выреза по одной восьмой части окружности. Вырезы заполнялись изолирующими вкладками; каждое кольцу было смещено на 45 по отношению к предыдущему.

По окружности кольца скользил рычаг 5, представляющий собой своеобразную щетку; второй конец рычага был погружен в соответствующий сосуд с ртутью, к которому подводились проводники от батареи. Таким образом, при каждом обороте кольца А раза разрывалась электрическая цепь. К электромагнитам вращающегося диска отходили от колец проводники, укрепленные на валу машины. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно, и ток в них имел одно и то же направление.

Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них с помощью коммутатора изменялось 8 раз за один оборот вала. Следовательно, полярность этих электромагнитов также изменялась 8 раз за один оборот вала и электромагниты поочередно притягивались 11 отталкивались электромагнитами неподвижной рамы.

На рис стрелками указаны направления токов для данного положения вала.

ПРИМЕНЕНИЕ ЭЛЕКТРОДВИГАТЕЛЕЙ

Электродвигатели применяются как главная составляющая электро-привода различных станков, так и в составе с отдельными установками, где необходимо преобразование электрической энергии в механическую (движение) например: вентиляторы с клиноременной передачей, косилки различных модификаций и т.д. Низковольтные асинхронные электродвигатели общего назначения мощностью 0,25…400 кВт, именуемые во всем мире стандартные асинхронные двигатели, составляют основу силового электропривода, применяемого во всех областях человеческой деятельности. Их совершенствованию в промышленно развитых странах придают большое значение. В настоящее время рынок, призванный отражать интересы потребителей, не формулирует сколько-нибудь определенных требований к стандартным , кроме ценовых. В связи с этим для выявления тенденций их совершенствования необходимо исходить из требований внешнего рынка и из достижений основных производителей стандартных асинхронных двигателей.

Асинхронные двигатели — наиболее распространенный вид электрических машин, потребляющих в настоящее время около 40% всей вырабатываемой электроэнергии. Их установленная мощность постоянно возрастает.

Асинхронный двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других видов станков, кузнечно-прессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ СВОИМИ РУКАМИ

Для того чтобы сделать электродвигатель из батарейки, нам понадобятся:

Зарядное устройство;

Тонкогубцы;

Нож;

Магнит;

Проволока;

Соединительные провода с зажимами;

Деревянный брусок.

Суть моего опыта:

За счет источника электричества (батарейки) заряженные частицы в проводнике (проволоке) упорядоченно движутся. При воздействии на него магнитным полем траектория частиц отклоняется согласно правилу «левой руки». Когда направление силы тока перпендикулярно направлению силовых линий магнитного поля, частицы двигаются по окружности.

Для катушки необходим неизолированный медный провод диаметром от 0.6 до 1 мм. Для намотки катушки потребуется цилиндрический каркас (батарейка), на который наматывается 10-15 витков, оставляя свободными по 40 мм провода с каждого конца. Свободные концы провода необходимо обернуть вокруг витков катушки таким образом, чтобы скрепляющие витки были симметрично расположены друг относительно друга. Помимо создания дополнительного магнитного поля эти витки помогут сохранить форму катушки.

Катушка (подвижная часть электродвигателя) размещается на двух держателях. Держатели изготавливают из неизолированного провода диаметром от 1 мм. Помимо функции поддержания катушки, держатели позволяют проходить электрическому току через катушку.

Свободным концом держатели присоединяются к полюсам аккумулятора так, чтобы образовывался замкнутый контур. Основанием электродвигателя служит деревянный брусок. Магнит необходимо устанавливать в непосредственной близости от катушки. Общий вид электродвигателя приведен на рисунке в приложении к работе.

Катушке необходимо придать начальный вращающий момент аккуратно крутнув ее.