Когда в 50-х годах XIX столетия органическая химия начала своё триумфальное шествие, одной из важнейших проблем, стоявших перед нею, являлось получение природных красителей синтетическим путём. Вскоре были открыты новые не существовавшие в природе классы красителей и, наконец, были синтезированы красители, обладающие наивысшей прочностью.
После установления формулы бензола Кеккуле было получено множество искусственных красителей. При синтезах исходили из ароматических веществ, содержащихся в каменноугольной смоле, поэтому их назвали смоляными красителями. На русском языке принят термин анилиновые красители. Производство анилиновых красителей было первым промышленным производством органических соединений, и послужило исходным пунктом химической индустрии после открытия в 1842 году знаменитым русским химиком Н.Н. Зининым способа получения анилина из нитробензола.
Первый синтетические красители — фуксин, мовеин, анилиновый жёлтый были получены в конце 50-х годов XIX века, а уже в 70-х годах возникает промышленное производство синтетических красителей.
Мировое производство синтетических красителей в настоящее время составляет порядка 1000000 тонн в год.
АЗОКРАСИТЕЛИ
К этой группе относятся красители, молекула которых содержит в качестве хромофора азогруппу -N = N-.
Азогруппа, как правило, связывает два ароматических ядра с различными заместителями — гидроксильными группами, амино- и сульфогруппами, карбоксильными группами, атомами галогена и др. Иногда место одного из ароматических колец занимает гетероциклический или алифатический остаток.
В молекуле красителя может быть более одной азогруппы, поэтому различают моноазокрасители с одной азогруппой в молекуле, бисазокрасители с двумя азогруппами и полиазокрасители с тремя и более азогруппами.
Простейшее азосоединение — азобензол сам по себе не является красителем. Только после введения в молекулу азобензола амино- или гидроксильной группы она приобретает свойства красителя. Простейшими красителями являются оксиазобензол и аминобензол:
азобензол
оксиазобензол
аминобензол
При этом используют большое количество амино- и оксисоединений бензольного и нафталинового ряда с различными заместителями, простыми и сложными. Это даёт возможность получать красители всех цветов и оттенков — от лимонно-жёлтого до глубоко-чёрного. По технической классификации среди азокрасителей имеются прямые, кислотные, протравные, основные, красители для ацетатного шёлка, компоненты красителей, образующихся на волокне, пигменты и др. Практическое значение имеют азокрасители более сложного строения.
Технология производства газированных напитков
... данном реферате я рассмотрю технологию производства газированных напитков, на основе различных видов сырья, исходя из рецептур приготовления. Классификация и характеристика безалкогольных напитков В ... и синтетических компонентов; вкусо-ароматические смеси (ароматизаторы, эмульсии) с красителями и без красителей; вкусо-ароматические основы для специальных напитков (например, энергетических); - ...
Азокрасители получают из ароматических аминов и оксисоединений при помощи сравнительно простых реакций диазотирования и азосочетания.
Реакции диазотирования
В основе технологии получения азокрасителей лежат две химические реакции: 1) диазотирование ароматического амина, 2) сочетание полученного диазосоединения с амином или фенолом.
Диазотированием называют взаимодействие первичного ароматического амина с азотистой кислотой в присутствии избытка минеральной кислоты. Как правило, минеральная кислота берётся в некотором избытке (2,5 эквивалента на 1 эквивалент амина).
При этом образуется диазосоединение.
Азотистая кислота неустойчива и легко разлагается, поэтому при диазотировании применяют не свободную азотистую кислоту, а её соль — нитрит натрия. Эта соль при действии на неё минеральной кислоты (обычно соляной, реже — серной) образует азотистую кислоту, которая вступает в реакцию с амином. Поэтому часть минеральной кислоты, взятой для реакции, расходуется на разложение нитрита натрия с образованием азотистой кислоты:
NaNO 2 + HCl > HNO2 + NaCl.
Схему реакции диазотирования, в присутствии соляной кислоты, можно представить в общем виде:
соли диазония
Большинство ароматических диазосоединений весьма неустойчиво. В твёрдом состоянии они разлагаются при нагревании, при ударе, причём иногда со взрывом. В растворах при низких температурах они сравнительно устойчивы, но при нагревании водных растворов разложение происходит довольно быстро. Поэтому диазотирование ведут при низкой температуре, а растворы диазосоединений, как правило, не хранят, а сразу же пускают в дальнейшую переработку. Особенно неустойчивы диазосоединения, полученные при диазотировании анилина и его гомологов (толуидина, ксилидонов и др.) Поэтому диазотирование их ведут при температуре от 0 до 5?С. Значительно более устойчивы диазосоединения из изомерных нитроанилинов, хлоранилинов, амино-бензойных кислот, т.е. ароматических аминов, содержащих так называемые отрицательные заместители. Их диазотируют при более высокой температуре (до 20?С).
Амины диазотируются тем легче, чем выше их основность. Когда основность амина сильно понижена вследствие наличия в ядре заместителей II рода, как, например, в п -нитроанилина, диазотирование следует производить в более концентрированных растворах сильных кислот.
Диазотирование ведут, как было указано, в кислой среде, чаще всего в среде соляной кислоты. В серной кислоте диазотирование идёт медленнее, чем в соляной. Так как солянокислые соли большинства ароматических аминов лучше растворяются в воде, чем сернокислые и, кроме того, отличается каталитическое действие ионов галогена. Добавка бромистого натрия (или другого бромида) значительно ускоряет реакцию.
Диазотирование обычно ведут в присутствии значительного избытка кислоты. Это необходимо, чтобы предотвратить побочные реакции, приводящие к снижению выхода основного продукта. Соли диазония химически очень активны и в ходе реакции диазотирования могут вступать в реакцию с исходным аминосоединением, образуя диазоаминосоединения:
Основные классы неорганических соединений и типы химических реакций
... NaOH, гидроксид меди Сu(ОН)2. Важнейшее химическое свойство оснований - способность образовывать с кислотами соли. Например, при взаимодействии перечисленных оснований с соляной кислотой получаются хлористые соли соответствующих металлов - хлориды натрия или меди: ...
[ArN 2 ]+ Cl— + ArNH2 > Ar-N=N-HN-Ar.
В сильнокислой среде эта реакция практически не идёт. Кроме того, в присутствии большого избытка минеральной кислоты повышается стойкость раствора диазосоединения.
Если ароматический амин нерастворим в водном растворе кислоты (как, например, сульфаниловая кислота или n-нитроанилин), то применяют различные приёмы, чтобы перевести его в раствор или в мелкодисперсную форму, удобную для диазотирования. Для этого, например, сульфаниловую кислоту растворяют в растворе аммиака или соды, а затем добавляют в кислоту; при подокислении амин выпадает в осадок в мелкораздробленной форме. Аминосоединения, находящиеся в растворе, обычно диазотируются быстрее, причём скорость диазотирования возрастает с увеличением концентрации в растворе аминосоединения. Аминосоединения, труднорастворимые в кислоте, диазотируются медленнее. При диазотировании таких аминосоединений, находящихся в форме суспензии, скорость диазотирования связана с размером частиц: чем мельче частицы суспензии, тем быстрее диазотируется аминосоединение.
В зависимости от свойств исходного ароматического амина и получаемого диазосоединения диазотирование ведут по-разному.
Анилин и толуидин смешивают с водой, добавляют рассчитанное количество соляной кислоты и образовавшийся раствор солянокислой соли амина охлаждают при размешивании до 0-2?С. Солянокислые соли анилина и его гомологов хорошо растворимы в воде и при охлаждении не выпадают в осадок. К охлаждённому раствору постепенно приливают раствор нитрита натрия. Температура реакционной массы при диазотировании не должна превышать 5?С. Диазосоединение образуется в форме соли диазония C 6 H5 N2 Cl.
Диамины, т.е. соединения с двумя аминогруппами, по-разному ведут себя в реакции диазотирования. м -Диамины, например м -фенилдиамин, легко диазотируются с образованием бисдиазосоединения:
Образовавшееся бисдиазосоединение легко вступает в реакцию сочетания с исходным м -фенилдиамином; при этом образуется краситель. Диазотирование n -диаминов осложняется их склонностью к окислению, которое особенно легко протекает в среде концентрированной серной кислоты. Поэтому красители на основе бисдиазотированного n- фенилдиамина (т.е. дисазокрасители) получают не из n- фенилдиамина, а из n- нитроанилина или N-ацетил-n -фенилдиамина. n- Нитроанилин диазотируют, получают краситель на основе этого диазосоединения (моноазокраситель), а затем в полученном красителе восстанавливают нитрогруппу в аминогруппу, диазотируют её и переводят в дисазокраситель.
Бензидин и другие амины, в которых аминогруппы расположены в разных ароматических ядрах, диазотируются обычными приёмами в обеих аминогруппах:
При диазотировании контролируют температуру, кислотность среды и наличие в реакционной массе азотистой кислоты.
Кислотность контролируют при помощи индикаторной бумаги конго, которая в присутствии соляной или серной кислоты изменяет свой красный цвет на синий. Присутствие значительного избытка кислоты — важнейшее условие проведения реакции диазотирования. При недостатке кислоты снижается условие проведения реакции диазотирования. При недостатке кислоты снижается устойчивость диазосоединения и возникают побочные реакции, приводящие к загрязнению диазосоединения.
Производство синильной и акриловой кислот
... колонна. синильный акриловый кислота этиленциангидрид 3. ПРОИЗВОДСТВО НИТРИЛА АКРИЛОВОЙ КИСЛОТЫ ИЗ АЦЕТИЛЕНА И СИНИЛЬНОЙ КИСЛОТЫ Из ацетилена и синильной кислоты акрилонитрил ... избытком, при этом в реакцию вступает около 10% ацетилена, а синильная кислота реагирует практически полностью. ... волокон, например, хлопка, делает их более прочными и более устойчивыми против гниения. Нитрил акриловой кислоты ...
Наличие азотистой кислоты определяют при помощи индикаторной йодкрахмальной бумаги. Она представляет собой фильтровальную бумагу, пропитанную раствором йодистого калия и крахмала и высушенную. На йодкрахмальную бумагу наносят каплю реакционной массы. При наличии азотистой кислоты на белой полоске бумаги образуется синее пятно, но только в том случае, если раствор содержит избыток минеральной кислоты. Поэтому сначала следует проверить кислотность среды по бумаге конго, а затем — наличие азотистой кислоты по йодкрахмальной бумаге.
Азосочетанием называется взаимодействие диазосоединений с ароматическими аминами и фенолами (нафтолами); оно приводит к образованию азокрасителей.
В реакции азосочетания участвуют два реагента: диазосоединение (обычно в форме соли диазония) и ароматический амин или фенол (нафтол).
Амин, из которого получено диазосоединение, называют диазосотавляющей реакции азосочетания, а второй реагент — азосоставляющей. Например, при получении красителя хризоидина сочетанием диазотированного анилина с м — фенилдиамином:
Диазосоставляющей является анилин, а азосоставляющей — м — фенилдиамин.
В качестве азосоставляющей используют ароматические соединения, содержащие гидроксильную группу OH, аминогруппу NH 2 , а также замещённую аминогруппу NHAlk, N(Alk)2 , NHAr.. Активной формой диазосоставляющей является катион диазония [ArN2 ]+ .
Реакцию азосочетания можно рассматривать как реакцию замещения водорода в молекуле азосоставляющей остатком диазосоединения, точнее — замещённой азогруппой ArN=N-. При азосочетании замещение идёт, как правило, в п -положение к амино- или оксигруппе азосоставляющей. Если п -положение занято, то замещение идёт в о -положение.
Сочетание с аминосоединениями ведут обычно в слабокислой среде, с оксисоединениями — в слабощелочной среде. Чтобы поддерживать во время реакции сочетания необходимую кислотность или щелочность среды, к раствору азосоставляющей добавляют уксуснокислый натрий для создания слабокислой среды, кальцинированную соду или бикарбонат натрия для создания слабощелочной среды. Уксуснокислый натрий взаимодействует с минеральной кислотой, выделяющейся при реакции азосочетания, и связывает её, превращаясь при этом в уксусную кислоту:
HCl+CH 3 COONa>CH3 COOH+NaCl
Благодаря этому в реакционной массе поддерживается слабокислая реакция.
При сочетании диазосоединений с анилином и другими первичными аминами бензольного ряда образуется промежуточное диазоаминосоединение:
При нагревании в кислой среде до 35-38?С оно превращается в азосоединение:
Некоторые амины бензольного ряда, например крезидин, сразу образуют азосоединения. Аминосоединения, имеющие в м -положении к аминогруппе заместитель первого рода, например м- толуидин или м- фенилдиамин, являются активными азосоставляющими, легко вступающими в реакцию сочетания. В молекулу м- фенилендиамина (I) могут вступить две азогруппы: первая вступает в положение 4, вторая — в положение 2 или 6; при этом образуется смесь двух диазокрасителей. В м -толуилендиамине (II) первая азогруппа вступает в положение 5, вторая — в положение 3:
Алканы. Особенности строения. Методы синтеза. Реакции
... но и исходным сырьем для крупнотоннажного производства. Полученные из нефти смеси алканов и других углеводородов применяются в качестве моторного топлива для двигателей внутреннего сгорания и реактивных ... различными соединениями, поскольку они имеют различные физические и химические свойства (табл. 1); например, одно из них кипит при 0°С, а другое - при -12°С. ...
1-Нафтиламин в кислой среде сочетается преимущественно в положении 4:
Таким же образом сочетаются сульфокислоты 1-нафтиламина, например, 1-нафтиламин-6-сульфокислота, 1-нафтиламин-7-сульфокислота, перекислота (1-нафтиламин-8-сульфокислота).
Если положение 4 занято, что сочетание идёт в положение 2:
Легко вступает в реакцию сочетания алкилированные амины, например, диметил- и диэтиланилин:
При сочетании диазосоединений с оксисоединениями нужна слабощелочная среда и температура от 0 до 10?С. С фенолом сочетание идёт в параположение:
Если параположение занято, то сочетание идёт в ортоположение.
Труднее, чем фенол, вступает в реакцию сочетания салициловая кислота. Сочетание с салициловой кислотой ведут в щелочной среде; диазогруппа вступает в параположение к оксигруппе:
- Легко вступает в реакцию сочетания 2-нафтол; здесь сочетание идёт в положение 1:
Большое практическое значение в качестве азосоставляющих имеют нафтолсульфокислоты и аминонафтолсульфокислоты.
При сочетании диазосоединений с нафтолсульфокислотами диазогруппа вступает главным образом в положение, соседнее с гидроксильной группой. Азосоставляющую растворяют в содовом или щелочном растворе. Особое место среди азосоставляющих занимают аминонафтолсульфокислоты, в частности Аш-кислота (I), гамма-кислота (II) и И-кислота (III):
Обычно реакцию азосочетания ведут таким образом, чтобы к её концу в реакционной массе оставался незначительный избыток азосоставляющей и совершенно отсутствовало диазосоединение.
Во всех рассмотренных до сих пор примерах реакцию азосочетания вели в растворе, затем выделяли полученный краситель, фильтровали, высушивали и в готовом виде передавали на текстильные фабрики для крашения ткани. Существует и другой способ крашения ткани, при котором реакцию азосочетания проводят непосредственно на волокне. Для этого ткань пропитывают щелочным раствором азосоставляющей (например 2-нафтолом) а затем погружают в подкисленный раствор диазосоставляющей (например диазотированного п- нитроанилина).
При этом краситель образуется непосредственно на волокне и полученная окраска обладает большой прочностью. Так как реакции диазотирования и азосочетания проводят при низких температурах, а в производстве это достигается охлаждением льдом, то способ этот получил название холодного или ледяного крашения.
Важнейшими азосоставляющими для холодного крашения являются производные в-оксинафтойной кислоты — азотолы. Их получают взаимодействием в-оксинафтойной кислоты с ароматическими аминами.
Азотолы легко переходят на волокно из щелочных растворов и прочно удерживаются на нём, что облегчает последующее сочетание их на волокне с диазосоединением.
Диазосоставляющие для холодного крашения выпускают в различных формах. Наиболее простая форма — азоамины — аминосоединения бензольного и нафталинового ряда. Название азоаминов включает цвет наиболее важного красителя, получаемого, из него в текстильной промышленности. Например азоамин красный Ж ( п- нитроанилин), азоамин жёлтый О (о- хлоранилин).
Химия красителей
... его производство составляло лишь 1 % от мирового производства красителей. Первый синтетический краситель был ... под названием alizari). Этот краситель использовался для крашения обмундирования во французской и ... окрашенные лаки. Некоторые красители были дороже золота, например, Тирийский (античный) пурпур. ... смещается в длинноволновую область. В химии красителей большую роль играют ароматические и ...
В отличие от азотолов азоамины нельзя непосредственно применять для холодного крашения. Их сначала нужно перенести в форму диазосоединения, т.е. продиазотировать, причём обязательно на текстильной фабрике непосредственно перед крашением. Это объясняется неустойчивостью обычных форм диазосоединений и трудностью транспортировки. Поэтому большей частью диазосоединения перерабатывают сразу после диазотирования, не выделяя из раствора. Но специально для холодного крашения некоторые диазосоединения заготавливают в твёрдом виде или в виде паст, переводя их в различные стойкие формы, пригодные для хранения и транспортировки. Стойкие формы азосоединений называются диазолями.
Одна из таких форм — двойная соль диазосоединения с солями тяжёлых металлов, например хлористым цинком. Её получают добавлением хлористого цинка к раствору соли диазония. При последующем добавлении хлористого натрия двойная соль выпадает в осадок, её отфильтровывают и сушат при низкой температуре. Строение соли отвечает формуле . В некоторых случаях диазотирование ведут в среде серной кислоты; тогда двойная соль имеет строение .
Таким образом, из азоамина жёлтого О получают диазоль жёлтый О:
ЗАКЛЮЧЕНИЕ
азокраситель диазотирование амин фенол
Сейчас естественные красители полностью вытеснены синтетическими. Преимущество синтетических красителей — дешевизна, удобство в обращении, разнообразие оттенков, возможность создавать широкий ассортимент красителей с нужными свойствами. Последнее особенно важно, так как число материалов, которые окрашивают органическими красителями, непрерывно растёт. Если раньше единственным потребителем органических красителей была текстильная промышленность, где красили почти исключительно хлопчатобумажные, шерстяные и хлопковые волокна, то сегодня органические красители применяют для крашения многих видов синтетических волокон, пластических масс, резины, бумаги, картона, дерева, кожи, меха и других материалов. Синтетические органические красители широко применяют в полиграфической, лакокрасочной, пищевой, фотокинопромышленности, а также медицине и других отраслях промышленности.
Области применения природных красителей всё больше и больше суживались, и в наши дни они ограничены лишь специальными областями, например, окрашивание некоторых продуктов питания. Азокрасители широко применяются для крашения растительных, животных и синтетических волокон, резины, кожи, пластических масс, в лакокрасочной, полиграфической и других областях промышленности.
СПИСОК ЛИТЕРАТУРЫ
[Электронный ресурс]//URL: https://inzhpro.ru/referat/anilinovyie-krasiteli-istoriya-proizvodstvo-perspektiva/
1. Гурвич Я.А., Кулик С.Т.. Химия и технология промежуточных продуктов органических красителей и химикатов для полимерных материалов. — М.: Высшая школа, 1974.
2. Венкатараман К. Химия синтетических красителей. — Т. 2. — Л.: Химлитература, 1957.
3. Петров А.С. Органическая химия. — М.: Высшая школа, 1980.
Красители:природные, синтетические,»химический портрет»,классификация,крашение ...
... жесткому требованию: метод крашения должен строго соответствовать типу выбранного красителя и химической природе окрашиваемого волокна. Рассмотрим основные типы текстильных волокон и методы крашения для них. Но ... и Каро) и красителей антраценового ряда (синтезы Эмиля и Отто Фишеров). К началу XX в. все ранее используемые природные красители были практически полностью вытеснены их синтетическими ...
4. Писаренко А.П., Хавин З.Я. Курс органической химии. — М.: Высшая школа, 1975.
5. Гауптман, Грефе Ю., Ремане Х. Органическая химия. — М. Химия, 1979.
6. Физер Л., Физер М. Органическая химия. — Т. 2. — М.: Химия, 1969.