Производство витаминов

Реферат

Федеральное государственное образовательное учреждение высшего профессионального образования

«Астраханский Государственный технический университет»

Институт рыбного хозяйства, биологии и природопользования

Доцент, кандидат биологических наук

Куликова И. Ю.

Астрахань — 2009

Витамины представляют собой группу незаменимых органических соединений различной химической природы, необходимых любому организму в ничтожных концентрациях и выполняющих в нем каталитические и регуляторные функции. Недостаток того или иного витамина нарушает обмен веществ и нормальные процессы жизнедеятельности организма, приводя к развитию патологических состояний. Витамины не образуются у гетеротрофов. Способностью к синтезу витаминов обладают лишь автотрофы, в частности растения. Многие микроорганизмы также образуют целый ряд витаминов, поэтому синтез витаминов с помощью микроорганизмов стал основой для разработки технологий промышленного производства этих биологически активных соединений. Благодаря изучению физиологии и генетики микроорганизмов — продуцентов витаминов и выяснению путей биосинтеза каждого из них создана теоретическая основа для получения микробиологическим способом практически всех известных в настоящее время витаминов. Однако с помощью энзимов целесообразнее производить лишь особо сложные по строению витамины: В2, В12, р-ка-ротин (провитамин А) и предшественники витамина D. Остальные витамины либо выделяют из природных источников, либо синтезируют химическим путем. Витамины используются в качестве лечебных препаратов, для создания сбалансированных пищевых и кормовых рационов и для интенсификации биотехнологических процессов.

Получение витамина В2 (рибофлавин).

Вплоть до 30-х годов прошлого столетия рибофлавин выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени — 6 г. В 1935 г. обнаружен активный продуцент рибофлавина — гриб Eremothecium ashbyii, способный при выращивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие штаммы мутагенов, нарушающих механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды. Отбор мутантов ведут по устойчивости к аналогу витамина В2 — розеофлавину. Вопросы биосинтеза рибофлавина и его регуляции детально изучены в работах Г. М. Шавловского.

18 стр., 8595 слов

Технология изготовления и контроль качества лекарственных форм, ...

... при лучевой болезни, заболеваниях печени (болезнь Боткина, гепатит, цирроз), при некоторых заболеваниях нервной системы, инфекциях и др. Витамин В2 (рибофлавин) в организм человека поступает, ... В последнее время на фармацевтическом рынке России появилось множество витаминных препаратов, различающихся по составу и лекарственным формам.Лекарственные препараты, содержащие витамины, в настоящее время ...

В состав среды для роста продуцентов витамина В2 входят достаточно сложные органические вещества — соевая мука, кукурузный экстракт, сахароза, карбонат кальция, хлорид натрия, гидрофосфат калия, витамины, технический жир. Грибы весьма чувствительны к изменению состава среды и подвержены инфицированию. Перед подачей в ферментер среду подвергают стерилизации, добавляя к ней антибиотики и антисептики. Подготавливают жидкую питательную среду и посевной материал культуры дрожжей в разных емкостях — ферментере и посевном аппарате.

В качестве посевного материала используют споры Е. ashbyii, выращенные на пшене (7 —8 дней при 29 — 30 °С).

После стерилизации жидкий посевной материал подается в ферментер. Процесс ферментации грибов для получения кормового рибофлавина длится 3 суток при температуре 28 — 30 °С. Концентрация рибофлавина в культуральной жидкости может достигать 1,4 мг/мл. По завершении процесса ферментации культуральную жидкость концентрируют в вакууме, высушивают на распылительной сушилке (влажность 5 — 10%) и смешивают с наполнителями.

В 1983 г. во ВНИИ генетики микроорганизмов сконструирован рекомбинантный штамм продуцента Bacillus subtilis, характеризующийся увеличенной дозой оперонов, которые контролируют синтез рибофлавина. Клонированием генов рибофлавинового оперо-на в одной из созданных плазмид был получен производственный штамм-продуцент витамина В2, способный синтезировать втрое больше по сравнению с Е. ashbyii количество рибофлавина всего за 40 ч ферментации.

Получение витамина В12 (Соа[а-(5,6-диметилбензимидазолил)]-Сор — цианокобамид).

Витамин В12 открыт в 1948 г. одновременно в США и Англии. В 1972 г. в Гарвг.рдском университете был осуществлен химический синтез корриноидного предшественника витамина В12. Химический синтез корнестерона — структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.

Витамин В12 регулирует углеводный и липидный обмен, участвует в метаболизме незаменимых аминокислот, пуриновых и пири-мидиновых оснований, стимулирует образование предшественников гемоглобина в костном мозге; применяется в медицине для лечения злокачественной анемии, лучевой болезни, заболеваний печени, полиневрита и т. п. Добавление витамина к кормам способствует более полноценному усвоению растительных белков и повышает продуктивность сельскохозяйственных животных на 10 — 15%.

Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время — микробиологический синтез. Обнаружение витамина в качестве побочного продукта при производстве антибиотиков в значительной степени стимулировало поиск организмов-продуцентов витамина и изучение путей его образования. Однако механизмы регуляции биосинтеза витамина В12 до настоящего времени полностью не расшифрованы. Известно, что при высоких концентрациях витамин полностью репрессирует синтез ключевых ферментов своего новообразования.

6 стр., 2759 слов

Особенности синтеза и производства витаминов

... их лечебного применения и точных дозировок при изготовлении кормовых концентратов. Кроме того, издержки на производство синтетических витаминов ниже издержек на получение соответствующих витаминов из ... натурального сырья. За 1959 — 65 в промышленном масштабе освоен синтез всех известных витаминов и ...

Продуцентами витамина В12 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. В 70-х годах XX в. интерес ученых привлекли пропионовокислые бактерии, известные еще с 1906 г. и широко использующиеся для приготовления препаратов животноводства. Выделено 14 видов пропионовокислых бактерий, продуцирующих витамин B12 их физиологобиохимическая характеристика дана Л.И. Воробьевой. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. Добавление в среду предшественника 5,6-диметилбензимидазола (способствует переводу неактивных форм в природный продукт) по окончании первой ростовой фазы (5 — 6 суток) стимулирует быстрый (18 — 24 ч) синтез витамина с выходом последнего 5,6 — 8,7 мг/л. Путем селекции, оптимизации состава среды и условий культивирования выход витамина В]2 в промышленных условиях был значительно повышен. Так, выход витамина на среде с кукурузным экстрактом и глюкозой при поддержании стабильного значения рН близ нейтральных зон достигает 21—23 мг/л. Мутант пропионовокислых бактерий продуцирует до 30 мг/л витамина. Бактерии плохо переносят перемешивание. Применение уплотняющих агентов (агар, крахмал), предотвращающих оседание бактерий, а также использование высокоанаэробных условий и автоматического поддержания рН позволяет получить наиболее высокий выход витамина — 58 мг/л.

Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с послецующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. Усовершенствование технологического процесса идет в направлении удешевления компонентов питательных сред (замена глюкозы сульфитными щелоками) и перехода с периодического культивирования на непрерывный процесс. В последние годы исследуется возможность получения витамина с использованием иммобилизованных клеток пропионовокислых бактерий.

Для нужд животноводства сотрудниками Института биохимии им. А.Н. Баха РАН разработана более простая и дешевая технология получения витамина В,2, в создание которой большой вклад внесли работы В.Н.Букина, В.Я. Быховского, И.С. Логоткина, Е.С. Панцхавы и др.

По указанной технологии ферментацию осуществляет сложный биоценоз термофильных микроорганизмов, производящих метановое брожение. Комплекс микроорганизмов включает целлю-лозоразлагающие, углеводсбраживающие, аммонифицирующие, сульфитвосстанавливающие и метанообразующие бактерии. На первой фазе процесса (10 — 12 дней) развиваются термофильные углеводсбраживающие и аммонифицирующие бактерии. При этом в слабокислой среде (рН 5,0 — 7,0) органические соединения превращаются в жирные кислоты и аммиак. На второй фазе, когда среду подщелачивают до рН 8,5, в биоценозе преобладают метанообразующие бактерии, которые сбраживают возникающие на первой фазе продукты до метана и диоксида углерода. Именно метанообразующие бактерии — главные продуценты витамина. Обогащение сред очищенными культурами метанообразующих бактерий увеличивает выход активных форм витамина В)2.

11 стр., 5422 слов

Получение лимонной кислоты

... создано производство лимонной кислоты методом биохимического синтеза с помощью плесневых грибов Aspergillus niger из сахара. В настоящее время сырьём для получения лимонной кислоты является меласса свекловичная. В кондитерской промышленности лимонная кислота ...

Источником углерода в питательной среде служит ацетонобутиловая и спиртовая барда, которую представляют заводы, перерабатывающие зерно и мелассу. Для оптимизации питательной среды в нее добавляют соединения кобальта (хлорид кобальта — 4 г/м3), который входит в состав молекулы витамина В12, и субстраты для роста метанообразующих бактерий — низшие жирные кислоты и низшие спирты, что позволяет значительно повысить выход витамина.

Подготовленное сырье освобождают в декантаторе от взвешенных частиц и непрерывно подают в нижнюю часть ферментера (метантенка) емкостью 4200 м3. Одновременно в ферментер поступает посевной материал культуры микроорганизмов, предварительно выращенный в специальных аппаратах. Для выращивания продуцента требуются облигатно анаэробные условия, ибо даже следы кислорода подавляют рост бактерий. При создании анаэробных условий в среду подают диоксид углерода или газы, выделяющиеся в процессе ферментации. Ежедневно из метантенка отбирают 25 —30 % объема среды. Продукт ферментации стабилизируют, подкисляя соляной или фосфорной кислотой до рН 6,3 — 6,5 и добавляя 0,2 — 0,25 % сульфита натрия, что предотвращает разрушение витамина при тепловой обработке, особенно существенное в щелочной среде. В дальнейшем отобранная часть культуральной жидкости дегазируется, упаривается в вакууме; концентрат высушивается в распылительной сушилке до влажности 10—15 % и смешивается с наполнителями. Готовый кормовой препарат, имеющий коммерческое название КМВ-12 (концентратмикробный витамин), содержит, кроме витамина В,2 (2,5 %), витамины Вь В2, Вб, пантотеновую кислоту, фолиевую кислоту, биотин, незаменимые аминокислоты.

Процесс промышленного получения витамина В,2 — пример безотходной и экологически чистой технологии. Сырьем для ее реализации служат массовые отходы, а конечными продуктами — биогаз (65 % метана, 30 % диоксида углерода), использующийся как топливо, и биомасса метановых бактерий — источник биологически активных соединений, активирующих, например, рост молочнокислых бактерий.

Витамины — объекты международной торговли. Так, витамин В]2 российского производства экспортируют в Польшу, Германию, Чехию, Словакию и другие страны.

Получение р-каротина и витамина D2. Важное место в обмене веществ у животных занимает р-каротин, который в печени превращается в витамин А (ретинол).

В организме человека и животных каротины не образуются. Основные источники р-каротина для животных — растительные корма; человек получает р-каротин также из продуктов животного происхождения. р-Каротин можно выделить из ряда растительных объектов — моркови, тыквы, облепихи, люцерны. В начале 60-х годов XX в. разработана схема микробиологического синтеза р-каротина, которая стала основой промышленного способа его получения. Установлено, что многие микроорганизмы — фототрофные бактерии, актиномицеты, плесневые грибы, дрожжи — синтезируют каротин. Характерно, что содержание р-каротина у микроорганизмов во много раз превышает содержание этого провитамина у растений. Так, в 1 г моркови присутствует всего 60 мкг р-каротина, в то время как в 1 г биомассы гриба Blaneslea trispora — 3 — 8 тыс. мкг. Разработаны опытные установки как периодического, так и непрерывного действия для синтеза р-каротина, основной недостаток которых — высокая стоимость сырья и большая длительность процесса.

4 стр., 1637 слов

Биотехнология витаминов

... -триен-3β-ол) – исходный продукт производства витамина D2 и кормовых препаратов дрожжей, обогащенных этим витамином. Витамин D2 (эргокальциферол) образуется при облучении ультрафиолетом эргостерина, который в значительных количествах синтезируют бурые водоросли, ...

Микробиологическим способом получают и витамин D2 (эрго-кальциферол), при производстве которого освоено дешевое сырье (углеводороды) и установлен стимулирующий эффект ультрафиолетовых лучей на синтез эргостерина культурой дрожжей.

Витамин В3 (пантотеновая кислота)

В основном в условиях промышленного производства пантотеновую кислоту получают методом химического синтеза. Наиболее важной коферментной формой витамина В3 является кофермент ацетилирования (КоА).

Способностью продуцировать в значительных количествах КоА обладают многие микроорганизмы, в частности актиномицеты. Активно внедряются в промышленное производство способы получения пантотеновой кислоты и ее структурных компонентов из р-аланина и пантотеата калия с помощью иммобилизованных клеток бактерий, а также достигнуты существенные успехи при получении КоА с использованием мутантных штаммов Brevibacterium ammoniagenes, которые позволяют получать КоА в количестве до 3 г на литр.

Витамин РР (никотиновая кислота)

Одним из наиболее распространенных биотехнологических способов получения коферментной формы никотиновой кислоты — никотинамидадениндинуклеотида (НАД) является выделение (экстракция) его из микроорганизмов, как правило, из пекарских дрожжей. Для повышения содержания НАД в дрожжевых клетках культивирование проводят на средах с предшественниками синтеза никотиновой кислоты. Так, при добавлении в среды культивирования аденина или самой никотиновой кислоты получают до 12 мг НАД на 1 г клеток (по сухой массе).

Использование мутантных штаммов Brevibacterium ammoniagenes с одновременным изменением проницаемости мембраны клеток микроорганизмов (коферменты через биомембраны не проникают) с помощью поверхностно-активных соединений (цетилсульфата натрия, цетилпи-ридина хлорида) позволяет получать НАД до 6 г/л.

Аскорбиновая кислота (витамин С)

Аскорбиновая кислота в мировом промышленном производстве витаминной продукции в целом занимает наибольшую долю — около 40 тыс. т в год. Ее синтез был разработан швейцарскими учеными А. Грюсснером и С. Рейхштейном в 1934 г. и используется до настоящего времени. Синтез аскорбиновой кислоты является многостадийным химическим процессом, в котором только одна стадия представлена биотрансформацией. Эта стадия трансформации d-сорбита в L-сорбозу при участии ацетатных бактерий. Для получения сорбозы используют глубинную ферментацию, когда культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического режима с мешалкой и барботером для усиления аэрации и массообмена в течение 20 — 40 ч с результатом по выходу сорбозы до 98% исходного количества сорбита в среде. Обычно для достижения такого высокого выхода целевого продукта в питательную среду вносят кукурузный или дрожжевой экстракт в количестве около 20%. По окончании ферментации сорбозу выделяют из культураль-ой жидкости. Помимо оптимизации среды можно совершенствовать и технологическую аппаратуру. Например, переход от периодического культивирования продуцента Gluconobacter oxydans к непрерывному в аппарате колоночного типа увеличивает скорость образования сорбозы в 1,7 раз.

В настоящее время широкое использование биотехнологических процессов позволяет совершенствовать синтез аскорбиновой кислоты, сокращая многоэтапные и дорогие химические стадии. Например, синтез витамина С осуществляют енолизацией его важнейшего промежуточного продукта — 2-кето-Ь-гулоно-вой кислоты, которую, в свою очередь, получают методом двухстадийного микробиологического синтеза, состоящего из окисления d-глюкозы в 2,5-дикето-й-глюконовую кислоту (2,5-ДКДГК) и биотрансформации последней в 2-кето-Ь-гулоновую кислоту (2-КГК).

15 стр., 7321 слов

Получение вторичных продуктов из торфа и сланцев

... продуктам регламентируются ТУ 12.25.04-90 «Щебень известняковый из отходов производ-ства сланца для дорожных и строительных работ». ... железно-дорожного пути при условии получения зернового состава, со-ответствующего требованиям ... тыс. м 3 известняков-отходов можно получить квалифицированный фракционированный щебень в ... на светло-сером фоне известняка, что придает ему пятнистость или полосчатость; ...

Основными продуктивными микроорганизмами, обеспечивающими процессы окисления d-глюкозы в 2,5-ДКДГК и восстановление последней до 2-КГК, являются мутантные штаммы Erwinia punctata и Corynebacterium sp., при использовании которых выход целевого продукта составляет около 90 % количества глюкозы.

Однако данная технология имеет существенные недостатки, так как при совместном культивировании продуцентов происходит ингибирование синтеза 2-КГК. Поэтому культуральную жидкость после выращивания продуцента 2,5-ДКДГК стерилизуют, применяя поверхностно-активные вещества (ПАВ), что позволяет значительно сократить потери при получении гулоновой кислоты.

Существует и другой биотехнологический способ получения гулоновой кислоты, основанный на синтезе этого продукта штаммом микроорганизмов рода Gluconobacter из сорбозы, производство которой имеет высокую рентабельность. Способность к синтезу целевого продукта обусловлено наличием у этого микроорганизма видоспецифических дегидрогеназ.

Витамин D (кальциферол)

Впервые кальциферол был выделен из рыбьего жира в 1936 г. А. Виндаусом и применен при лечении рахита. Он получил название витамина D3, так как ранее из растительных масел был выделен эргостерин под названием витамин D|, при облучении которого получили витамин D2 — эргокальциферол (кальциферол — в переводе «несущий кальций»).

В настоящее время кальциферол производят из эргостерина с применением УФ-облучения биотехнологическим методом. В процессе преобразования эргостерина в эргокальциферол принимают участие микроорганизмы. Особенно богаты эргостерином клетки дрожжей всех видов и плесневые грибы. В сухой биомассе дрожжей содержится 5—10% эргостерина.

В качестве промышленного источника эргостерина используют дрожжи Saccharomyces cerevisiae вследствие высокого содержания в них эргостерина. В анаэробных условиях культивирования происходит накопление в клетках дрожжей сквалена (предшественника эргостерина).

Индукция синтеза эргостерина начинается при строго определенной концентрации кислорода от 0,03 до 2%. При этом среда должна содержать избыток углеводов и малое количество азота. По окончании процесса спиртового брожения дрожжи отделяют от барды и вносят в питательную среду необходимое количество источников углерода, азота и фосфора. Ферментацию ведут в аэробных условиях 12 — 20 ч, по окончании которой клетки дрожжей отделяют от культуральной жидкости, добавляют антиоксиданты и сушат. Обычно в такой биомассе содержание эргостерина достигает 1,5%.

При дальнейшем УФ-облучении эргостерина получают витамин D2, который либо используется как пищевая добавка, либо подвергается дальнейшей обработке с целью получения кристаллического витамина D2.

При получении эргостерина из дрожжеподобных грибов рода Candida сухую массу грибов экстрагируют петролейным эфиром для извлечения остаточных углеводородов. Полученная таким образом липидная фракция называется «микробный жир» и является побочным продуктом микробиологической промышленности. Эта фракция может быть использована как источник не только эргостерина, но и убихинона, а также других жирорастворимых соединений. Для грибов рода Candida характерно, что при переходе от периодического культивирования на углеводородах к непрерывному в клетках сохраняются как уровень образования стери-нов, так и относительное содержание в них эргостерина.

20 стр., 9674 слов

Ассортимент и особенности технологии приготовления блюд и кулинарных ...

... производительность труда. Целью данной работы является изучить ассортимент и особенности технологии приготовления блюд и кулинарных изделий из грибов. В связи с поставленной целью в работе решался ряд задач: ... клетках человеческого организма. Заметно больше их в молодых грибах. Богаты грибы и витаминами, особенно группы В. Этих витаминов в грибах больше, чем во всех других продуктах. Более богаты, ...

Витамин А (ретинол)

Витамин А — циклический, непредельный одноатомный спирт, образуемый в слизистой кишечника и печени из провитаминов: а-, (}- и у-каротинов (наибольшей активностью обладает р-каротин, так как образует две молекулы ретинола; другие — только одну) под воздействием фермента каротиноксидазы. Каротиноиды — широко распространенная группа природных пигментов, образуемых высшими растениями, водорослями и некоторыми микроорганизмами. У животных эти пигменты не образуются, а поступают с продуктами питания и служат источником витамина А.

Получение р-каротина осуществляется химическим и микробиологическим (с использованием штаммов мицелиальных грибов Blakslea trispora) методами. В настоящее время химический синтез ji-каротина более рентабелен. Микробиологический метод получения р-каротина многостадиен и требует использования достаточно сложной по составу и дорогой кукурузно-соевой среды с растительными маслами, ПАВ и специальными стимуляторами. Разнополые штаммы выращивают сначала отдельно, затем — совместно в ферментере в течение 6 — 7 сут при интенсивной аэрации и 26 °С. Если из измельченного мицелия экстрагировать (J-ка-ротин подсолнечным маслом, то можно использовать его в виде масляных растворов. Применяя экстракцию органическим растворителем с последующей кристаллизацией, получают (5-каротин в кристаллическом виде.

Использование отходов крахмало-паточного производства — кукурузного экстракта и зеленой патоки позволяет снизить себестоимость получаемой продукции, а применение в качестве источника углерода целлобиозы, образующейся при утилизации отходов целлюлозы, позволяет в несколько раз увеличить синтез каротиноидов у штаммов культуры Blakslea trispora.

Убихиноны (коферменты Q)

Убихиноны в последнее время вызывают интерес как перспективные лечебные препараты. С одной стороны, они синтезируются в организме животных и человека, делая необязательным их поступление с пищевыми продуктами, что отличает их от группы витаминов.

С другой стороны, недостаток убихинонов ведет к нарушениям в обменных процессах, характерных для проявлений недостаточности витаминов групп В и К. Убихиноны являются регуляторами тканевого дыхания, окислительного фосфолирирования в цепи транспорта электронов и за счет высокой специфичности проявляют свой регуляторный эффект.

С практической стороны наибольший интерес вызывают высшие гомологи: убихинон-9 (KoQ9) и убихинон-10 (КоОю).

Убихи-нон-10 является коферментом организма человека, вследствие чего на его основе создан лекарственный препарат Ubichynon composi-tum, проявляющий общетонизирующее, антиоксидантное и иммуностимулирующее действие.

В производстве убихинонов применяются биотехнологические методы, в основе которых лежит экстракция KoQ из биологического материала. В промышленном производстве убихинонов в качестве субстрата используются как растительные ткани (каллус риса или опухолевые ткани Carthamus tinctorius), так и микроорганизмы с высоким содержанием убихинонов, например дрожжи Cryptococcus curvatus и грибы Candida maltosa.

27 стр., 13487 слов

Производство подсолнечника (2)

... Целью написания курсовой работы является обоснование направлений повышения эффективности производства и использования маслосемян подсолнечника в ... время испытывает наибольшее давление со стороны потребителей, является производство подсолнечника. Подсолнечник - основная масличная культура. Семена ... фосфора и 25,8 мг каротина (провитамина А). Стебли подсолнечника можно использовать для изготовления ...

В настоящее время используется биотехнология получения уби-хинона-9 и эргостерина из микробных липидов, являющихся побочным продуктом крупного производства белково-витаминного концентрата при выращивании грибов Candida maltosa.

Установлено, что биомасса уксуснокислых бактерий (GIuco-nobacter oxydans), которые используются в производстве аскорбиновой кислоты на этапе окисления d-сорбита в L-сорбозу, содержит значительное количество KoQ,n без примеси его гомологов. Причем, с одной стороны, эта биомасса является отходом производства аскорбиновой кислоты, с другой стороны, штаммы Gluconobacter oxydans в биомассе характеризуются наибольшей окислительной активностью по сорбиту. Этот уникальный факт позволил разработать и внедрить совместную технологию получения L-сорбозы и экстракции убихинона-10 из отсепарированной биомассы с последующей очисткой и с выходом целевого продукта до 85 %.