градусная мера дуги окружности. Также говорится о длине окружности, выводится формула для ее нахождения.
главе учебника «Площадь» вводятся определение площади, как числа, получающегося в результате измерения и показывающего, сколько раз единичный квадрат и его части укладываются в данной фигуре. И приводятся свойства площадей, аналогичные свойствам длин отрезков. Выводятся формулы для нахождения площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции, многоугольника, описанного около окружности, круга и его частей. В данном учебнике рассматривается изопериметрическая задача: какую наибольшую площадь ограничивают кривые заданной длины. В последней главе учебника авторы уделяют время на изучение площади поверхности и объема многогранника.
Определения, реализуемые в рассматриваемом учебнике, являются описательными. Приведено немало задач на косвенные измерения, не рассматриваются задачи на измерения на местности.
3.5 Учебники геометрии 7, 8 – 9 (авторы Александров А.Д. и др.) [1, 2]
Рассматриваемый учебник начинается с истории возникновения геометрии. Затем авторы вводят понятия отрезка, луча, прямой. При рассмотрении понятий длины отрезков, градусной меры углов и др. авторы поясняют, что длина отрезка – первая и самая важная из геометрических величин. Она характеризует его протяженность. Измерять длину постоянно приходится на практике. Длина используется при вычислении других геометрических величин – площадей, объемов, величин углов, показывая возможность косвенного измерения.
Геометрические величины характеризуют форму и размеры фигур. Измерение геометрических величин, по мнению авторов, — одна из важнейших задач геометрии.
Авторы обращаются к уже полученным знаниям учеников, и просто напоминают, что для измерения длины сначала надо выделить единичный отрезок. Также как и в других учебниках, перечисляются свойства длины.
После этого, рассматриваются два важных вопроса:
Как, имея измерительный найти численное значение длины отрезка?
Как можно сделать инструмент для измерения длины?
Также в учебнике отмечается, что мера углов обладает теми же свойствами, что и длина отрезков. Измерение углов, как и отрезков, производится с помощью линейки, которая называется транспортиром. Авторы учебников подробно описывают такую линейку и рассказывают, как ей пользоваться.
Понятие площади многоугольника вводится уже в 8 классе, при этом дается определение площади. Также описывается процесс измерения этой геометрической величины.
Измерение электрических и магнитных величин
... Магнитные измерения относятся к области измерительной техники, занимающейся измерением магнитных величин для определения характеристик магнитных полей, веществ и материалов. Несмотря на разнообразие задач, решаемых с помощью магнитных измерений, определяются в основном несколько магнитных величин: магнитный ... взаимодействия, равную 2*10 Н на 1 м длины. Единица электрической мощности – ватт – ...
И затем, только в конце 8 класса рассматриваются понятия длины окружности и площади круга.
Данный учебник предназначен для учащихся школ и классов с углубленным изучением математики, поэтому авторы уделили внимание как непосредственному измерению, так и косвенному измерению геометрических величин.
Мы рассмотрели пять учебников геометрии, рекомендованных (допущенных) Министерством Образования и Науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2008/2009 учебный год, и можем сделать следующие выводы: в учебниках Атанасяна С.Л. и др. и Александрова А.Д. и др. уделяется внимание непосредственному измерению площадей, различным измерительным и мерам длин, приводятся задачи как на непосредственное измерение, так и на косвенное измерение геометрических величин. Но в учебнике Александрова А.Д. практически не рассматриваются задачи, в которых отражалась бы значимость измерений в жизни. В отличие от этих учебников, у Погорелова А.В. и у Шарыгина И.Ф. и др. практически не уделяется время вопросам об измерительных и возможности применения их на практике. В учебнике Смирновых нет задач, показывающих практическую значимость измерений.
Также из проведенного анализа учебников, мы можем сделать вывод, что учащиеся знакомятся с такими методами геометрии как метод подобия, метод площадей, и используют другие методы: метод дополнительных метод вспомогательного треугольника, координатный метод, метод геометрических мест [16].
Далее мы рассмотрим, с какими измерительными следует знакомить школьников, и как эти инструменты могут помочь в изучении геометрии.
§4. Измерительные в школе
Измерения являются не только неотъемлемой частью процесса обучения математике в школе, но и играют определенную роль в выборе будущей профессии. Уже сейчас возникает профессиональных инженеров, технических специалистов и руководителей среднего звена на производстве. В современном мире область применения измерений геометрических величин чрезвычайно широка.
Измерения являются одной из самых древнейших операций в процессе познания человеком окружающего материального мира. Вся история цивилизации представляет собой непрерывный процесс становления и развития измерений, совершенствования средств, методов измерений, повышения их точности и единообразия мер.
В процессе своего развития человечество прошло путь от измерений на основе органов чувств и частей человеческого тела до научных основ измерений и использования для этих целей сложнейших физических процессов и технических настоящее время измерениями охватываются все физические свойства материи практически независимо от диапазона изменения этих свойств.
Несомненно, для того, чтобы измерять какие-либо геометрические величины, нам нужны специальные – измерительные
В соответствии с действующими «Перечнем учебного оборудования по математике для общеобразовательных учреждений России» [19], утвержденными Министерством образования Российской Федерации кабинеты математики должны быть оснащены комплектом средств обучения, выпускаемых промышленностью,. В комплект классных входит: линейка (рис. 2), транспортир (рис. 3), угольник (30є, 60 є) (рис. 4), угольник (45є, 45є) (рис. 5), циркуль (рис. 6).
Измерение вязкости
... измерений - измерения длины линейкой, температуры - термометром, напряжения - вольтметром и т. п. Косвенные измерения - вид измерения, результат которых определяют из прямых измерений, ... деле, точность определения длины меридиана и деления его на 40 миллионов частей ... метрологии Прежде чем рассматривать различные методы, обеспечивающие единство измерений, необходимо определить основные понятия ...
Рис. 2
Рис. 3 Рис. 4
Рис. 5 Рис. 6
Существует множество измерительных приборов, которые человек применяет в своей деятельности. Для более удобного их рассмотрения, разделим эти приборы на группы. За основание классификации примем измеряемую геометрическую величину. Итак, в школьном курсе геометрии средней школы необходимо уметь измерять: длины отрезков, углы, площади.
4.1 Измерительные для измерения длин отрезков
В первую группу инструментов отнесем инструменты, предназначенные для измерения длин отрезков:
- классная линейка;
- масштабная линейка;
- металлическая линейка;
метр складной,
мерная лента,
рулетка и др.
Рис. 7 10 см – более длинными
На ребре классной линейки (рис. 7) нанесены сантиметровые деления. Каждые 5 см отделяются удлиненными штрихами, а каждые
Наименьшее деление линейки называется ценой деления. Измерения классной линейкой возможны лишь с точностью, не превышающей половины цены деления, то есть с точностью, не превышающей 0,5 см, при этом половина цены деления определяется визуально. Этот измерительный прибор является наиболее распространенным в школе. С помощью него удобно производить на классной доске на уроках математики, где точность измерения не всегда имеет значение.
Масштабная линейка является удобным инструментом для школьников. На одном ребре этой линейки нанесены миллиметровые деления. Каждые 5 мм отделяются удлиненными штрихами, а 10 мм – более длинными. Ценой деления масштабной линейки является 1 мм. Незаштрихованное ребро линейки используется для проведения на бумаге прямых линий, при построении различных прямолинейных фигур. Ребро линейки с делениями используется для измерения на бумаге длины отрезка.
Металлическая линейка используется для более тщательных измерений. Различают жесткие и упругие металлические линейки. На одном ребре жесткой линейки нанесены миллиметровые деления. Второе ребро оставлено свободным от делений и используется для проведения прямых линий. Упругая линейка может свертываться в кольцо, благодаря чему она применима для измерения длины кривой линии. Метр складной (рис. 8) обычно состоит из пяти или десяти звеньев, соединенных между собой шарнирами. На одном из ребер метра нанесены миллиметровые деления. Складные метры бывают стальные и деревянные. Стальной метр применяется в слесарном деле, а деревянный является измерительным плотника и столяра. Практически точность складного метра очень низкая из-за шарнирного соединения звеньев. В связи с этим складные метры применяются лишь в тех случаях, когда не требуется большой точности измерения.
Рис. 8
Существует еще несколько предназначенных для измерения длин. Одним из них является мерная лента. Для измерения линейных размеров сравнительно больших предметов используются рулетки: стальная или матерчатая. На стальной ленте рулетки нанесены миллиметровые деления, а на матерчатой – сантиметровые. Матерчатые рулетки применяются в тех случаях, когда не требуется большой точности измерения. Стальная лента используется при измерении расстояний на местности и при съемке планов земельных участков. Ценой деления является дециметр.
Для измерения длин на планах и картах и определения затем расстояний на местности пользуются линейным масштабом. Для его построения необходимо на прямой линии отложить равные отрезки, принимая за единицу меры один сантиметр. Концы отрезков обозначить штрихами, против которых ставятся числа, соответствующие расстоянию на местности. Конец первого отрезка обозначается нулевым штрихом. Этот отрезок делится на десять равных частей. В этом случае точность измерения не будет превышать 1 мм, хотя на глаз она может быть повышена до 0,5 мм. Для получения точности измерения до 0,1 мм служит поперечный масштаб. Этот применяется в сельском хозяйстве при измерении длины и ширины земельных участков.
Единицы измерения длины
... – способ определения количества по принятой единице. Погонная, линейная мера служит для обозначения расстояний или величины линий». Первые единицы для измерения величин длины были не слишком точными. Например, расстояния ... время метрической системой мер. Узнаем, что образцом меры длины при определении величины аршина и сажени послужила линейка, принадлежавшая ранее Петру I. По этой полуаршинной мере ...
О таком измерительном как линейка упоминается во всех рассмотренных учебниках. Помимо этого, в учебнике А.Д. Александрова и др. рассматривается вопрос о том, как можно самому сделать инструмент для измерения длин.
Для измерения диаметров поперечного сечения тел цилиндрической формы применяются такие приборы как диаметромер-центроискатель (рис. 9) или мерная вилка лесовода (рис. 10).
Рис. 9
Мерная вилка лесовода состоит из линейки с делениями, неподвижной планки, прикрепленной на конце линейки, и подвижной планки.
Все эти инструменты могут быть использованы при изучении понятия длины отрезка. Учащимся могут быть предложены разные виды задач на:
- измерение длины отрезков, изображенных на бумаге в различных положениях;
- Рис. 10
измерение длины, ширины и высоты прямоугольных параллелепипедов;
- измерение длины, ширины комнаты, коридора, двора;
- измерение расстояний на классном и индивидуальном полигонах;
- измерение расстояний на местности мерной лентой;
- измерение длины шага и измерение расстояний шагами;
- глазомерная оценка небольших расстояний измерением мерной лентой;
- измерение геометрических величин с помощью частей тела: фаланги пальца, локтя, стопы и др.
измерение периметров прямолинейных фигур на местности и др.
4.2 Приборы для переноса измеряемого размера с объекта на линейку
Очень часто непосредственное измерение рассмотренными затрудняется или становится невозможным в связи со сложностью измеряемого предмета. В этом случае пользуются особыми инструментами для переноса измеряемого размера с объекта на линейку. Такие инструменты отнесем ко второй группе. Примерами рассматриваемых приборов являются циркуль, кронциркуль, нутромер, рейсмас. Рассмотрим их.
Различают несколько видов циркулей: переносный циркуль и кронциркуль (рис. 11).
Переносный циркуль служит для перенесения линейных размеров с объекта на измерительную линейку, для нанесения окружности и дуг на объект. Точность измерения циркулем очень мала, так как она зависит от величины угла раствора ножек, исправности шарнирного соединения, заточки концов игл циркуля и от точности шкалы измерительной линейки.
Рис. 11
Кронциркуль служит для снятия размера диаметров цилиндров и шаров и перенесения его на измерительную линейку. Для снятия внутренних размеров деталей и перенесения их на измерительную линейку служит нутромер (рис. 12).
Для более точного измерения диаметров отверстий и других внутренних размеров применяется микрометрический нутромер, дающий результаты с точностью до 0,01 мм. К переносным измерительным также можно отнести и рейсмас (рис. 13).
Рейсмасы бывают разнообразных
Рис. 12
Например, столярный рейсмас применяется в столярном деле и служит для перенесения и прочерчивания параллельных линий на устанавливаемом расстоянии. Процесс прочерчивания называется разметкой, а металлический стержень, прочерчивающий линию, называется чертилкой. Рейсмас с подвижной муфтой состоит из основания, стойки, подвижной муфты и чертилки. Благодаря подвижности муфты и прикрепленной к ней чертилки легко установить под нужным углом и на нужном расстоянии от разметочной плиты.
Рис. 13
Рассмотрение таких инструментов позволит ученикам получить более полное представление о возможностях измерений. При изучении этих приборов с учащимися можно разобрать задачи:
- с помощью кронциркуля определить диаметры данных шаров, цилиндров;
- на деревянном бруске прочертить линию, параллельную ребру бруска на расстоянии нескольких миллиметров;
- определить внутренние размеры отверстий деталей: плиток, трубок и пр.
Для получения при измерении большей точности применяются с нониусом. В середине 16 века португалец Нуньес изобрел приспособление в виде дополнительной подвижной линейки с особыми делениями. Это приспособление и названо нониусом. Рассмотрим один из инструментов с нониусом: штангенциркуль (рис. 14).
На линейке штангенциркуля нанесены миллиметровые деления. На длине рамки нониуса в 9 мм нанесено 10 равных делений. При таком делении нониуса измерения производятся с точностью до 0,1 мм.
Рис. 14
4.3 Инструменты, с помощью которых можно измерить градусную меру угла
В третью группу измерительных приборов отнесем те инструменты, с помощью которых можно измерить градусную меру угла – угломеры.
В некоторых современных учебниках геометрии упоминается о таком приборе, как малка (рис. 15).
Рассмотрим этот инструмент подробнее.
Малки применяются при измерении и переносе углов с одной детали на другую, а также для проверки углов на изготовленных предметах. Малки бывают различных Простая малка состоит из двух подвижных линеек, соединенных с одного конца шарнирным винтом. Такая малка служит для одновременного измерения, переноса и проверки только одного угла.
Рис. 15
Линейки малки устанавливаются под углом, заданным на рабочем чертеже детали, и закрепляются винтом. После этого малка накладывается на проверяемую деталь. В столярном производстве простые малки употребляются при изготовлении деревянных деталей с заданным углом и при разметке материала. Универсальная малка служит для одновременного переноса и проверки двух или трех углов.
Также при изучении темы «Измерение углов» учащиеся и учитель используют такой инструмент как транспортир (рис. 5).
Соответственно различают классный и ученический транспортиры.
Классный транспортир используется для измерения на классной доске углов до 180 градусов. Ценой деления такого транспортира является 1 градус. Ученический транспортир как и классный.
Для на местности углов в 45, 90, 135 градусов и других служат экеры (рис. 16).
Они бывают различной крестообразные, в виде прямоугольного треугольника, квадратной доски, цилиндрические и другие. Экеры применяются в практике не только для углов, но и для проведения параллельных и взаимно перпендикулярных линий, для проведения высот в треугольниках, при съемке планов земельных участков и др.
Рис. 16
Еще одним инструментом, упоминавшимся в школьных учебниках является астролябия (рис. 17).
Она состоит из лимба с
градусным делением.
В центре лимба прикреплена подвижная алидада
с диоптрами на концах для визирования. Лимб
с алидадой надевается на штырь штатива. Для
ориентирования снабжается компасом
или буссолью. При помощи астролябии измеряются
и в горизонтальной плоскости,
проводятся параллельные и перпендикулярные линии. Усовершенствованные на конце алидады имеют верньер (круговой нониус) для отсчета долей градуса.
Учащимся могут быть предложены задачи:
малкой измерить и перенести данный угол на деталь.
с помощью классного транспортира измерить изображенные на доске углы различной величины.
экером построить угол на местности в 45°, 90°, 135° и 180o.
Рис. 17
4.4 для измерения площадей
В четвертую группу приборов можно отнести приборы, предназначенные для измерения площадей. Заметим, что непосредственное измерение площадей неудобно, поэтому для их нахождения удобно пользоваться известными математическими теоремами и формулами. Также можно использовать такой прибор как палетка (рис. 18).
Это прозрачная пластинка с нанесенной на нее сеткой линий, предназначенная для вычисления площадей на планах и картах, для отсчета координат и т.д.
Ученикам могут быть предложены разные виды задач на:
- измерение с помощью палетки площадей плоских фигур, изображенных на бумаге;
- измерение площади поверхности многогранника и др.
Рис. 18
Мы рассмотрели измерительные с которыми полезно знакомить в школе. Изучение некоторых из них является обязательным. Это такие инструменты как линейка, угольник, транспортир, циркуль. Без умения использовать их невозможно изучение геометрии, так как измерения являются одной из основных линий геометрии. И именно при изучении этой линии у школьников появляется возможность познакомится с разнообразными методами геометрии, например, метод площадей, знание которого важно при изучении других геометрических фактов. Вычислительные и измерительные задания формируют у учащихся навыки, необходимые в их будущей трудовой деятельности. Рассмотрение таких измерительных как астролябия, малка, штангенциркуль и др. дает возможность активизировать работу учащихся по формированию вычислительных навыков, навыков измерений и работы с единицами измерений [29].
§ 5. Различные направления использования измерений геометрических величин при обучении геометрии
Роль измерений в жизни человека невозможно преувеличить. Рассмотрим, какова же роль измерений в курсе геометрии.
Немало слов было сказано о прикладном значении геометрии и роли измерений в ней, как самостоятельного раздела для изучения. Также измерения могут быть использованы и как средство обучения.
5.1 Типология задач на измерения
Измерения могут быть использованы как при изучении нового материала, решении задач, доказательстве теорем, так и при закреплении материала. Но прежде чем перейти к рассмотрению способов применения измерений в том или ином случае, рассмотрим виды заданий на измерения:
- задания на непосредственные измерения;
- задания на косвенные измерения;
- задания на косвенные и непосредственные измерения;
- задания на измерения с помощью информационных технологий.
В результате проведенного сравнительного анализа школьных учебников по геометрии мы можем сделать вывод: в школьном курсе геометрии основное внимание уделяется вычислению геометрических величин: длин отрезков, градусной и радианной мер углов, площадей, объемов и т.п., – то есть опосредованному измерению. Но нельзя проигнорировать непосредственные измерения. Ведь геометрия возникла в глубокой древности в связи с необходимостью измерять, расстояния, площади земельных участков, возводить т.п. И в настоящее время любой человек в своей жизни сталкивается с необходимостью что-либо измерять.
5.1.1 Задачи на непосредственные измерения
Рассмотрим задачи на непосредственные измерения. К таким задачам относятся задачи, при решении которых используются только измерительные линейка, транспортир и др.
Найти длину отрезков АВ, CD, EF, GH (рис. 19).
Рис. 19
При этом учащиеся проявляют свои знания, умения пользоваться измерительными
Найти периметр многоугольника АВCDEF (рис. 20).
Рис. 20
Найти градусные меры углов, указанных на рисунке 21.
Рис. 21
При решении подобных задач ученикам могут быть заданы вопросы:
Что нам нужно измерить? (длину отрезка, градусную меру угла)
Что мы знаем о длине отрезка, о градусной мере угла? (длина отрезка, градусная мера угла выражается некоторым положительным числом)
Каким измерительным удобно пользоваться? (линейкой, транспортиром)
Также к задачам этого типа можно отнести и измерение площади плоской фигуры с помощью палетки. Важно отметить, что при непосредственных измерениях мы сталкиваемся с понятием погрешности измерения. Поэтому ученики должны понимать, что результаты, полученные при их измерениях неточны. Следующим типом задач, могут быть задачи, в которых использование измерительных недостаточно. Кроме них необходимо использование дополнительных средств.
Например, найти длину окружности (рис. 22).
Рис. 22 расстояния на местности
При решении подобной задачи возможно использование подручных средств, например, нити. С помощью нити и линейки можно измерить длину окружности.
Также могут быть решены задачи такого типа как измерение.
Например, измерить длину коридора в школе. Это можно сделать с помощью рулетки, мерной ленты, шагами или на глаз.
Измерения расстояний на местности могут быть выполнены непосредственно различными В тех случаях, когда достаточны менее точные результаты измерения, могут быть применены измерения расстояний шагами. Рассмотрим, примеры таких измерений. Для шагомерного определения расстояний каждый ученик должен знать среднюю длину своего шага. Длина шага находится путем двух, трехкратного измерения шагами одного и того же расстояния, измеренного рулеткой. Делением расстояния, измеренного рулеткой, на среднее арифметическое числа шагов находится средняя длина шага. Чтобы найти длину шага точнее, можно измерить несколько расстояний. Для удобства может быть заполнена таблица:
Таблица 1
Расстояние, измеренное рулеткой, м | Число сделанных шагов | Длина шага, м | |
Расстояние 1 | |||
Приведем пример заполнения такой таблицы (таблица 2).
Среднее арифметическое числа шагов:
Таким образом, длина шага:
Таблица 2
Расстояние, измеренное рулеткой, м | Число сделанных шагов | Длина шага, м | |
Расстояние 1 | 6 | 10 | 0,62 |
9 | |||
10 |
Развитие глазомера учащихся также имеет большое практическое значение. Привитие навыков в определении расстояний на глаз в различных условиях должно осуществляться в школе систематически. Только постоянной тренировкой в развитии глазомера можно добиться более или менее удовлетворительных результатов.
Начинать упражнения следует с определения на глаз малых расстояний, а по мере совершенствования глазомера переходить к определению больших расстояний. Определяемые на глаз расстояния необходимо проверять путем непосредственного измерения мерной лентой с целью убеждения в качестве глазомера.
В процессе непосредственных измерений, учащиеся поймут, как вычисляются те или иные геометрические величины, с помощью формул, а также смогут оценить все достоинства непосредственных и косвенных измерений. В школьном курсе геометрии большое внимание уделяется задачам на косвенное измерение величин. Косвенные измерения могут быть осуществлены на основании геометрических свойств фигур. Использование учащимися знаний, приобретенных на уроках геометрии, имеет большое образовательное и практическое значение. Учащиеся на личном опыте проведения измерительных работ убеждаются в ценности математических знаний, что несомненно способствует повышению у них интереса к изучению геометрии, а также математики, в целом.
5.1.2 Задачи на косвенные измерения
Рассмотрим, задачи на косвенные измерения, то есть в которых необходимо использовать теорему для нахождения геометрической величины.
Пример 1. Найти площадь прямоугольного треугольника, есди известны катеты а и b.
Для этого учащимся необходимо вспомнить определение прямоугольного треугольника и формулу, по которой удобно вычислить площадь рассматриваемого треугольника.
Итак, прямоугольным треугольником называется треугольник, у которого один из углов прямой. Площадь прямоугольного треугольника можно найти по формуле: , где а и b – катеты прямоугольного треугольника (рис. 23).
Таким образом, по известным катетам ученики могут найти площадь треугольника, не прибегая к использованию измерительных
Рис. 23
5.1.3 Задачи, в которых до методов косвенного измерения, применяются непосредственные измерения
Можно также выделить класс задач, в которых до методов косвенного измерения, применяются непосредственные измерения.
Пример 2. Найти площадь круга.
Для этого, ученикам необходимо применить формулу: . При этом, ученики путем непосредственного измерения могут найти радиус круга, а затем и площадь. Рассмотрим способ нахождения радиуса:
произвольную хорду окружности (рис. 24).
Рис. 24
серединный перпендикуляр m к отрезку АВ.
Прямая m пересекает окружность в двух точках С и D. Середина этого отрезка О – центр окружности (рис. 25).
Рис. 25
Таким образом, ученикам необходимо измерить радиус ОА, а после найти по уже указанной формуле площадь круга.
Также к задачам на косвенные измерения можно отнести некоторые задачи на измерения на местности: например, измерение недоступного расстояния между доступными точками; измерение расстояния между недоступными точками; измерение расстояния до доступной точки.
Пример 3. Измерить ширину озера.
Рис. 26 задачи были использованы признаки равенства треугольников.
треугольник ABC. На продолжениях АС и ВС откладываем А’С и В’С . Соединив точки А’ и В’, получим ∆А’В’С = ∆АВС по двум сторонам и углу между ними (рис. 26).
Из равенства треугольников следует, что АВ = А’В’. Измерив непосредственно А’В’, определим и равное ему недоступное расстояние АВ.
Заметим, что при решении данной
При измерениях на местности часто используют и другие известные теоремы, свойства и признаки:
- свойства равнобедренного треугольника;
- свойства прямоугольного треугольника;
- подобие треугольников;
- теорема Фалеса;
- теоремы синусов и косинусов и др.
5.1.4 Задачи на измерение геометрических величин средствами информационных технологий
Также при обучении измерениям в курсе геометрии могут быть использованы измерения с помощью информационных технологий. Одной из программ для наглядного математических процессов является программа «Живая геометрия» [33].
Она является наиболее простым и легко доступным средством математических процессов и явлений.
С помощью этой программы возможно измерение величин: длины отрезка; расстояния между двумя точками; периметра; длины окружности; углов; площади; длины дуги; радиуса. Использование данной программы возможно при решении различного рода задач.
Пример 4. Необходимо найти гипотенузу прямоугольного треугольника (рис. 27).
Рис. 27
Ученики могут самостоятельно прямоугольный треугольник с использованием данной программы, и измерить необходимые длины. Посмотреть, как изменяется длина гипотенузы в зависимости от изменения длины катетов. Также учащиеся могут проверить результат, путем вычислений. Это можно сделать самостоятельно: по теореме Пифагора: или с использованием программы (рис. 28):
Рис. 28
Так же как и в случае непосредственных измерений мы работаем с приближенными значениями. Применение рассматриваемой программы не только показывает ученикам возможности ее использования и вызывает интерес у учащихся к предмету, в целом, к изучаемой теме, в частности. Также позволяет увидеть и «открыть» некоторые геометрические теоремы.
Таким образом, мы рассмотрели виды заданий на измерения. Теперь перейдем к рассмотрению различных направлений использования измерений в курсе геометрии.
5.2 Использование измерений геометрических величин на разных этапах урока геометрии
Как уже было сказано выше, измерения можно использовать на самых различных этапах обучения:
- при изучении нового материала;
- при закреплении полученных знаний;
- при решении задач, выводе формул или установлении каких-либо математических фактов;
- для установления межпредметных связей;
- для опровержения утверждений и др.
Использование измерений при изучении нового материала.
Например, при изучении площадей треугольника по формуле
Ученикам могут быть розданы различные вырезанные из бумаги треугольники с отмеченными на них высотами (рис. 29).
Рис. 29
Учащиеся измеряют длины сторон а и b и длины высот, проведенных к стороне a, а также угол g. И вычисляют площадь треугольника по уже известной формуле.
Для удобства заносят результаты измерений в таблицу:
Таблица 3
Длина стороны а | Длина стороны b | Длина высоты hа | sin g | Площадь треугольника | |
1. | |||||
2. |
После нескольких таких измерений, учащиеся могут догадаться, что . Таким образом, сформулировать гипотезу. Ученики при этом пользовались непосредственными и косвенными измерениями.
При изучении, например, теоремы о площади треугольника, вычисляемой по формуле: , могут быть использованы измерения с помощью информационных технологий (рис. 30).
Рис. 30
Ученикам можно показать, что пока длина высоты и стороны, к которой проведена эта высота, не изменятся, площадь треугольника также не изменится (рис. 31).
Рис. 31
Таким образом, учащиеся могут сделать вывод о том, что площадь треугольника зависит от стороны треугольника и высоты, проведенной к этой стороне. После некоторых исследований, учащиеся также смогут сделать вывод, что площадь треугольника вычисляется по формуле: .
Таким образом, измерения могут быть средством обнаружения каких-то математических фактов.
Помимо этого, измерения могут быть использованы для проверки достоверности или опровержения какого-то высказывания.
Например, в треугольнике сумма двух его сторон меньше третьей стороны.
Итак, учащиеся могут проверить правильность этого высказывания путем измерения сторон произвольного треугольника. Затем сделать вывод о недостоверности этого высказывания.
Или учитель предлагает ученикам выяснить верно, ли высказывание о том, что в любом треугольнике сумма двух его сторон больше третьей его стороны. Учащиеся, начертив каждый свой треугольник в тетради, убеждаются в том, что неравенство выполняется. После чего уже ищут доказательство этого утверждения.
Рассмотрим другой пример: пусть ученикам уже известно, что внешний угол треугольника больше каждого внутреннего угла этого треугольника, не смежного с ним. Для уточнения знаний о соотношении между величиной любого внешнего угла и величиной суммы внутренних углов треугольника, не смежных с ним, учащимся может быть предложено начертить произвольный треугольник АВС, построить три внешних угла и обозначить внутренние и внешние углы цифрами.
Затем убедиться в том, что внешний угол треугольника действительно равен сумме внутренних углов этого треугольника, несмежного с ним. После этого доказать соответствующую теорему.
Измерения могут быть использованы и для решения каких-либо задач.
Рассмотрим задачу:
По данным катетам a и b прямоугольного треугольника найдите высоту, проведенную к гипотенузе: а = 5см, b = 12см.
Эту задачу можно решить с применением косвенных измерений площади треугольника, то есть, используя известную формулу: , и вычислив при этом гипотенузу прямоугольного треугольника. Также можно треугольник, и измерить необходимый отрезок. Таким образом, также пользуясь измерениями.
При этом все задачи, решаемые с использованием измерений можно разделить на две группы: задачи на местности, то есть для которых не составлена математическая модель для их решения и задачи, которые являются математической моделью некоторой реальной ситуации.
Итак, направления применения измерений в курсе геометрии, рассмотренные нами:
- использование измерений для обнаружения математических фактов;
- измерения для доказательства теорем или опровержения утверждений;
- использование измерений при решении задач;
- для установления межпредметных связей и др.
Таким образом, мы можем сделать вывод не только о практической значимости измерений, но и ценности их во всей геометрии.
Глава 2. Измерения геометрических величин в курсе геометрии 7 – 9 классов
§1. Примеры использования измерений в обучении геометрии
Мы рассмотрели различные направления использования измерений в курсе геометрии. Теперь приведем примеры использования измерений при изучении различных тем курса, при достижении различных дидактических целей.
Использование измерений при введении новой темы
Ученикам предлагается для изучения новая теорема или какой-либо математический факт. Важно, чтобы школьник усвоил и формулировку и все пункты доказательства, чтобы он был убежден в справедливости доказываемого утверждения, также важно, чтобы ученик понимал, для чего служит эта теорема. Использование измерений помогает добиться этого понимания. Также ученик в результате ряда измерений может самостоятельно прийти к формулировке гипотезы. При введении новой темы могут быть применены как непосредственные так и косвенные измерения. Они могут служить средством обнаружения математических фактов, средством для доказательства теоремы или опровержения утверждений.
Рассмотрим способ применения измерений при введении теоремы о сумме углов треугольника. Важно, чтобы ученики