) — бесцветный ядовитый газ без вкуса и запаха. Химическая формула — CO. Концентрация угарного газа в воздухе 12,5—74 % не взрывоопасна.
Регистрационные номера:
- ICSC 0023
- RTECS FG3500000
- ООН 1016
- EC 006-001-00-2
Классификация ООН
- Класс опасности ООН 2,3
- Вторичная опасность по классификации ООН 2,1
1. Строение молекулы
Молекула CO имеет тройную связь, как и молекула азота N 2 . Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.
В рамках метода валентных связей строение молекулы CO можно описать формулой :C=O:.
Согласно методу молекулярных орбиталей электронная конфигурация невозбуждённой молекулы CO σ² O σ²z π4 x, y σ²C . Тройная связь образована σ —связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум σ —связям. Электроны на несвязывающих σC —орбитали и σO —орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.
Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (d C≡O =0,1128 нм или 1,13Å).
Молекула слабо поляризована, электрический момент её диполя μ = 0,04×10 −29 Кл·м (направление дипольного момента O− →C+ ).
Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.
2. Свойства
Монооксид углерода представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.
Стандартная энергия Гиббса образования ΔG | −137,14 кДж/моль (г) (при 298 К) |
Стандартная энтропия образования S | 197,54 Дж/моль·K (г) (при 298 К) |
Стандартная мольная теплоёмкость C p | 29,11 Дж/моль·K (г) (при 298 К) |
Энтальпия плавления ΔH пл | 0,838 кДж/моль |
Энтальпия кипения ΔH кип | 6,04 кДж/моль |
Критическая температура t крит | −140,23 °C |
Критическое давление P крит | 3,499 МПа |
Критическая плотность ρ крит | 0,301 г/см³ |
Основными типами химических реакций, в которых участвует монооксид углерода, являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.
При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO 2 ↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).
Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO 4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2 Cr2 O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4 . В общем, по своим восстановительным свойствам СО похож на молекулярный водород.
Ниже 830 °C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции:
H 2 O + CO ↔ CO2 + H2 + 42 кДж
до 830 °C смещено вправо, выше 830 °C влево.
Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.
Монооксид углерода горит синим пламенем (температура начала реакции 700 °C) на воздухе:
CO + 1 /2 O2 → CO2 ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K
Температура горения CO может достигать 2100 °C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)
Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.
Монооксид углерода реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:
CO + Cl 2 → COCl2
Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество).
По аналогичным реакцииям могут быть получены COF 2 (карбонилфторид) и COBr2 (карбонилбромид).
Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж).
Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).
Реакцией CO с F 2 , кроме карбонилфторида можно получить перекисное соединение (FCO)2 O2 . Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO2 , O2 и COF2 ), в кислой среде реагирует с иодидом калия по уравнению:
(FCO) 2 O2 + 2KI → 2KF + I2 + 2CO2 ↑
Монооксид углерода реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:
CO + S → COS ΔG° 298 = −229 кДж, ΔS°298 = −134 Дж/K
Получены также аналогичные селеноксид COSe и теллуроксид COTe.
Восстанавливает SO 2 :
SO 2 + 2CO → 2CO2 + S
C переходными металлами образует очень летучие, горючие и ядовитые соединения — Карбонилы, такие как Cr(CO) 6 , Ni(CO)4 , Mn2 CO10 , Co2 (CO)9 и др.
Как указано выше, монооксид углерода незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако с расплавами щелочей вступает в реакцию:
CO + KOH → HCOOK
Интересна реакция монооксида углерода с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:
2K + 2CO → K + O− —C2 —O− K+
Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (оксид тория ThO 2 ) по уравнению:
CO + NH 3 → H2 O + HCN
3. Физиологическое действие, токсичность
TLV (предельная пороговая концентрация, США): 25 ppm; 29 мг/м³ (как TWA — среднесменная концентрация, США) (ACGIH 1994—1995).
MAC (максимальная допустимая концентрация, США): 30 ppm; 33 мг/м³; Беременность: B (вредный эффект вероятен даже на уровне MAK) (1993).
ПДК р.з. по Гигиеническим нормативам ГН 2.2.5.1313—03 составляет 20 мг/м³ (около 0,0017%).
В выхлопе бензинового автомобиля допускается до 1,5-3 %.
Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаки отравления: головная боль и головокружение; отмечается шум в ушах, одышка, сердцебиение, мерцание перед глазами, покраснение лица, общая слабость, тошнота, иногда рвота; в тяжёлых случаях судороги, потеря сознания, кома [1] .
Токсическое действие монооксида углерода основано на том, что он связывается с гемоглобином крови прочнее и в 200—300 раз быстрее [1] , чем кислород (при этом образуется карбоксигемоглобин), таким образом, блокируя процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа[1] .
Опытами на молодых крысах выяснено, что 0,02 % (возможно — 0,02 г/м³, то есть ПДК?) концентрация CO в воздухе замедляет их рост и снижает активность по сравнению с контрольной группой. Интересно то, что крысы, живущие в атмосфере с повышенным содержанием CO, предпочитали воде и раствору глюкозы спиртовой раствор в качестве питья (в отличие от контрольной группы, особи в которой предпочитали воду).
4. Помощь при отравлении монооксидом углерода[1]
Соединение окиси углерода с гемоглобином обратимо.
- Пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом.
- Искусственная вентиляция лёгких.
- Лобелин или кофеин под кожу.
- Карбоксилаза внутривенно.
- Ацизол внутримышечно.
5. Защита от монооксида углерода
CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO 2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух.
Обычный способ защиты — использование изолирующего дыхательного аппарата.
6. История открытия
Монооксид углерода был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем. То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крукшэнк. Монооксид углерода вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.
7. Получение
7.1. Промышленный способ
1. Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:
2C + O 2 → 2CO↑ (тепловой эффект этой реакции 220 кДж),
2. или при восстановлении диоксида углерода раскалённым углём:
CO 2 + C ↔ 2CO↑ (ΔH=172 кДж, ΔS=176 Дж/К).
Эта реакция часто происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли).
Образующийся при этом монооксид углерода, вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ». Картина протекающих в печи реакций приведена на схеме.
равновесие Будуара
3. Смеси монооксида углерода с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ, водяной газ, смешанный газ, синтез-газ).
7.2. Лабораторный способ
1. Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты, либо пропуская муравьиную кислоту над оксидом фосфора P2 O5 . Схема реакции:
HCOOH → (t, H2 SO4 ) H2 O + CO↑
Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:
HCOOH + ClSO 3 H → H2 SO4 + HCl + CO↑.
2. Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:
H 2 C2 O4 →(t, H2 SO4 ) CO↑ + CO2 ↑ + H2 O.
Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду.
3. Нагревание смеси гексацианоферрата (II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:
K 4 [Fe(CN)6 ] + 6H2 SO4 + 6H2 O →(t) 2K2 SO4 + FeSO4 + 3(NH4 )2 SO4 + 6CO↑.
8. Определение монооксида углерода
Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги).
Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:
PdCl 2 + H2 O + CO → CO2 + 2HCl + Pd↓
Эта реакция очень чувствительная. Стандартный раствор 1 грамма хлорида палладия на литр воды.
Количественное определение монооксида углерода основано на иодометрической реакции:
5CO + I 2 O5 → 5CO2 + I2
9. Применение
- Моноксид углерода применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести, не изменяя вкуса (en:Clear smoke или en:Tasteless smoke технология).
Допустимая концентрация CO равна 200 мг/кг мяса.
- Инсульт (ОНМК) — новые методы лечения.
- Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления.
- Газовая камера
- Газенваген
10. Монооксид углерода в атмосфере Земли
Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Монооксид углерода образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение монооксида углерода за счёт обычных в почвах фенольных соединений, содержащих группы OCH 3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.
Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв монооксид углерода выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.
В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).
Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO 2 ).
В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % монооксида углерода. В настоящее время в коммунальной сфере этот газ вытеснен гораздо менее токсичным природным газом (низшие представители гомологического ряда алканов — пропан и др.)
Поступление CO от природных и антропогенных источников примерно одинаково.
Монооксид углерода в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года. Основной канал потери CO — окисление гидроксилом до диоксида углерода.
Литература
[Электронный ресурс]//URL: https://inzhpro.ru/referat/ugarnyiy-gazhimiya/
- Ахметов Н. С. Общая и неорганическая химия. 5-е изд., испр. — М.: Высш. шк.; 2003 ISBN 5-06-003363-5
- Некрасов Б. В. Основы общей химии. Т. I, изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. Стр. 495—497, 511—513
- Химия: Справ. из./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Перс. с нем. 2-е изд., стереотип. — М.:Химия, 2000 ISBN 5-7245-0360-3 (рус.)
Данный реферат составлен на основе .