Техника — составная часть
Машина — (механизм, устройство, конструкция) — техническое устройство, выполняющее механические движения для преобразования энергии, матери
Машина предназначена для
Машина — это, прежде всего, механическое устройство, но не механизм.
Основной характеристикой
Несмотря на то, что в Российской Федерации принята Международная система единиц (СИ) и единицей измерения мощности является ватт, лошадиная сила продолжает использоваться и в настоящее время.
3
Цель работы
1.Выяснить и разобраться, как работают различные тепловые двигатели.
2.Подробно разобраться, как
4
Что такое тепловой двигатель.
1.1 Тепловые двигатели.
Тепловой двигатель – устройство, преобразующее внутреннюю энергию топлива в механическую энергию.
К тепловым двигателям относятся:
Тепловые двигатели — паровые турбины — устанавливаются на тепловых электростанциях, где они приводят в движение
Назначение и устройство буровых машин и механизмов
... двигателей и регулирующих их работу устройств, преобразующих тепловую или электрическую энергию в механическую, управляющих преобразованной механической энергией и передающих ее к исполнительными механизмами буровой установки ... твердого покрытия, и бездорожью. 3.1. Назначение и устройство буровых машин и механизмов. В комплект буровой установки входят: вышка для подвешивания талевой системы и ...
Тепловые двигатели (в том числе и реактивный) – необходимый атрибут современной цивилизации. С их помощью вырабатывается около 80% электроэнергии. Без тепловых двигателей невозможно представить современный
Сжигание топлива
Ежегодно температура атмосферы Земли повышается на 0,05ºС. Этот эффект может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана.
Продукты сгорания топлива существенно загрязняют окружающую среду.
Углеводороды, вступая в реакцию с озоном, находящимся в атмосфере, образуют химические соединения, неблагоприятно воздействующие на жизнедеятельность растений, животных и человека.
Потребление кислорода при горении топлива уменьшает его содержание в атмосфере.
В поршневых тепловых двигателях горячий газ расширяется в цилиндре, перемещая поршень, и тем самым совершает механическую работу. Для превращения прямолинейного возвратно-поступательного движения поршня во вращательное движение вала обычно используется кривошипно-шатунный механизм. В двигателях внешнего сгорания (например, в паровых машинах) рабочее тело нагревают за счет сжигания топлива вне двигателя и подают в цилиндр газ (пар) под высокими температурой и давлением. Газ, расширяясь и перемещая поршень, охлаждается, а давление его падает до близкого к атмосферному. Этот отработанный газ удаляется из цилиндра, а затем в него подается новая порция газа — либо после возврата поршня в исходное положение (в двигателях одинарного действия — с односторонним впуском), либо с обратной стороны поршня (в двигателях двойного действия).
В последнем случае поршень возвращается в исходное положение под действием расширяющейся новой порции газа, а в двигателях одинарного действия поршень возвращается в исходное положение маховиком, установленным на валу кривошипа. В двигателях двойного действия на каждый оборот вала приходится два рабочих хода, а в двигателях одинарного действия — только один; поэтому первые двигатели в два раза мощнее при одинаковых габаритах и скоростях. В двигателях внутреннего сгорания горячий газ, который перемещает поршень, получают за счет сжигания смеси топлива и воздуха непосредственно в цилиндре. Для подвода свежих порций рабочего тела и выпуска отработанного газа в двигателях применяется система клапанов. Подвод и выпуск газа производятся при строго определенных положениях поршня, что обеспечивается специальным механизмом, который управляет работой впускных и выпускных клапанов.
Для охраны окружающей среды широко использует очистные сооружения, препятствующие выбросу в атмосферу вредных веществ, резко ограничивают использование соединений тяжелых металлов, добавляемых в топливо, разрабатывают двигатели, использующие водород в качестве горючего (выхлопные газы состоят из безвредных паров воды), создают электромобили и автомобили, использующие солнечную энергию.
1.2 Паровая турбина.
Первая паровая турбина, нашедшая практическое применение, была изготовлена Г. Лавалем в 1889 году. Паровая турбина – тепловой двигатель ротационного типа, преобразующий потенциальную энергию пара сначала в кинетическую энергию и далее в механическую работу. Паровые турбины применяются преимущественно на электростанциях и на транспортных силовых установках – судовых и локомотивных, а также используются для приведения в движение мощных воздуходувок и других агрегатов.
Турбина состоит из стального цилиндра, внутри которого находится вал с укрепленными на нем рабочими колесами. На рабочих колесах находятся особые изогнутые лопатки . Между рабочими колесами помещаются сопла или направляющие лопатки . Пар, вырываясь из промежутков между направляющими лопатками, попадает на лопатки рабочего колеса. Рабочее колесо при этом вращается, производя работу. Причиной вращения колеса в паровой турбине является реакция струи пара. Внутри турбины пар расширяется и охлаждается. Входя в турбину по узкому паропроводу, он выходит из нее по очень широкой трубе.
После турбины или поршневой машины пар поступает в конденсатор, играющий роль холодильника. В конденсаторе пары должны превратиться в воду. Но пар конденсируется в воду только в том случае, если отводится выделяющаяся при конденсации теплота испарения. Это делают при помощи холодной воды. Например, конденсатор может быть устроен в виде барабана, внутри которого расположены трубы с проточной холодной водой.
В зависимости от степени расширения пара в рабочих лопатках различают активные и реактивные турбины. Пар в активной турбине расширяется только в соплах, и его давление при прохождении каждого венца с рабочими лопатками не изменяется. Поэтому активная турбина называется также турбиной равного давления. В соплах реактивных турбин в отличие от активных происходит лишь частичное расширение пара; дальнейшее расширение происходит в рабочих лопатках. Поэтому иногда реактивная турбина называется турбиной избыточного давления.
Отметим, что турбина может вращаться только в одном направлении и скорость вращения ее не может меняться в широких пределах. Это затрудняет применение паровых турбин на транспорте, но очень удобно для вращения электрических генераторов.
Весьма важной для электрических станций является возможность строить турбины на громадные мощности (до 1 000 000 кВт и более), значительно превышающие максимальные мощности других типов тепловых двигателей. Это обусловлено равномерностью вращения вала турбины. При работе
турбины отсутствуют толчки, которые получаются в поршневых машинах при движении поршня взад и вперед.
1.3 Двигатели внутреннего сгорания.
Бензиновый двигатель внутреннего сгорания. Самый распространенный тип современного теплового двигателя — двигатель внутреннего сгорания. Двигатели внутреннего сгорания устанавливаются на автомобилях, самолетах, танках, тракторах, моторных лодках и т. д. Двигатели внутреннего сгорания могут работать на жидком топливе (бензин, керосин и т. п.) или на горючем газе, сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева (газогенераторные двигатели).
Рассмотрим устройство четырехтактного бензинового двигателя автомобильного типа (см. рисунок 6).
Устройство двигателей, устанавливаемых на тракторах, танках и самолетах, в общих чертах сходно с устройством автомобильного двигателя.
Основной частью двигателя внутреннего сгорания является один или несколько цилиндров, внутри которых производится сжигание топлива. Отсюда и название двигателя.
Внутри цилиндра передвигается поршень. Поршень представляет собой полый, с одной стороны закрытый цилиндр 1, опоясанный пружинящими кольцами 2, вложенными в канавки на поршне (поршневые кольца).
Назначение поршневых колец — не пропускать газы, образующиеся при сгорании топлива, в промежуток между поршнем и стенками цилиндра (показаны штриховой линией).
Поршень снабжен металлическим стержнем 3 («пальцем»), служащим для соединения поршня с шатуном 4. Шатун в свою очередь служит для передачи движения от поршня коленчатому валу 5.
Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из каналов — впускной подается горючая смесь, через другой — выпускной выбрасываются продукты сгорания. Клапаны имеют вид тарелок, прижимаемых к отверстиям пружинами. Клапаны открываются при помощи кулачков, помещенных на кулачковом валу; при вращении вала кулачки поднимают клапаны посредством стальных стержней (толкателей).
Кроме клапанов, в верхней части цилиндра помещается так называемая свеча. Это — приспособление для зажигания смеси посредством электрической искры, получаемой от установленных на двигателе электрических приборов (магнето или бобины).
Работа двигателя состоит из четырех тактов:
I такт — всасывание. Открывается впускной клапан 1, и поршень 2, двигаясь вниз, засасывает в цилиндр горючую смесь из карбюратора.
II такт — сжатие. Впускной клапан закрывается, и поршень, двигаясь вверх, сжимает горючую смесь. Смесь при сжатии нагревается.
III такт — сгорание. Когда поршень достигает верхнего положения (при быстром ходе двигателя несколько раньше), смесь поджигается электрической искрой, даваемой свечой. Сила давления газов — раскаленных продуктов сгорания горючей смеси — толкает поршень вниз. Движение поршня передается коленчатому валу, и этим производится полезная работа. Производя работу и расширяясь, продукты сгорания охлаждаются и давление их падает. К концу рабочего хода давление в цилиндре падает почти до атмосферного.