Современные композиционные материалы и технологии

Реферат

Композиционные материалы — материалы будущего

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов.

Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много раз превышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами.

У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью.

Композиционный, Комбинируя, Структура композиционных материалов

По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты. Волокнистые композиты армированы волокнами или нитевидными кристаллами — кирпичи с соломой и папье-маше можно отнести как раз к этому классу композитов. Уже небольшое содержание наполнителя в композитах такого типа приводит к появлению качественно новых механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон. Кроме того, армирование волокнами придает материалу анизотропию свойств (различие свойств в разных направлениях), а за счет добавки волокон проводников можно придать материалу электропроводность вдоль заданной оси.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в особо прочном стекле, армированном несколькими слоями полимерных пленок.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов — нового класса композиционных материалов — еще меньше и составляют 10-100 нм.

5 стр., 2147 слов

Местные дорожно-строительные материалы

... свойств к этим грунтам требуется добавление глинистых и суглинистых грунтов. Лучшие для дорожного строительства супесчаные грунты. При ... используют органические и неорганические (минеральные) вяжущие материалы (битумы, дегти, эмульсии, различные цементы, известь и т. д.). Каменные материалы, ... собой смесь песчаных, пылеватых и глинистых частиц. Свойства грунтов зависят также от содержания в ...

Применение композиционных материалов

Композитные материалы находят все более широкое применение в авиационной промышленности. Усталость и обусловленные ею разрушения являются одними из важных факторов, ограничивающих ресурс и период эксплуатации авиационной техники. Современные композиционные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ использования.

Преимущества использования:

  • снижение себестоимости производства летательного аппарата;
  • увеличение прочностных и механических характеристик;
  • увеличение срока эксплуатации летательного аппарата;
  • уменьшение массы летательного аппарата;
  • увеличение полезной нагрузки и тяговооруженности;

снижение затрат на эксплуатацию летательного аппарата (например: снижение топливных издержек)

Примеры использования:

  • обтекатели;
  • хвостовое оперение;
  • крылья;
  • двери;
  • фюзеляжи;

перекрытия

капот двигателя,

хвостовой стабилизатор,

все виды закрылков и т. д.

Композиционные материалы в авиастроении

Для улучшения лётно-тактических характеристик боевых самолетов и вертолетов выполняются дорогостоящие программы, предусматривающие снижение веса конструкции летательных аппаратом за счет применения новых, более перспективных материалов, к числу которых относятся так называемые композиционные материалы.

Ведущее место в мире по разработке композиционных материалов и их использованию в конструкциях летательных аппаратов (особенно военного назначения) принадлежит США, где темпы работ и этой области непрерывно растут. Координацию проводимых исследований (применительно к авиационным конструкциям) осуществляет лаборатория материалов ВВС США и НАСА. Лаборатория материалов занимается оценкой эффективности применения композиционных материалов к конструкции военных самолетов. В настоящее время по контрактам с ВВС и программам, финансируемым крупными авиастроительными фирмами, производится и испытывается большое количество элементов конструкции самолетов и вертолетов из композиционных материалов.

Наибольшее распространение в авиа- и ракетостроении за рубежом получили композиционные материалы на основе высокопрочных волокон. Композиционный материал ведет себя как единое структурное целое и обладает свойствами, которых не имеют составляющие его компоненты. Особенностью композиционных материалов является анизотропность их свойств (то есть зависимость, физических, в том числе механических, свойств материалов от направления), которая определяется ориентацией армирующих волокон. Заданную прочность материала получают, ориентируя волокна наполнителя в направлении действия основных усилии. Иностранные специалисты считают, что это открывает новые возможности при конструировании силовых элементов самолетов и вертолетов.

По мнению специалистов, с точки зрения характеристик удельной прочности и удельной жесткости наиболее перспективны композиционные материалы, в которых в качестве упрочняющей арматуры используются волокна бора, карбида бора и углерода. К таким материалам относятся бороэпоксидные материалы (боропластики, углепластики, бороалюминий).

12 стр., 5877 слов

Проверочный расчёт местной прочности конструкции корпуса судна

... для каждого главного изгиба, Находим вспомогательные функции академика Бубнова 6. Расчет местной прочности днищевого стрингера Расчет изгибающих моментов В среднем сечении тунельного киля на ... где максимальное значение перерезывающих сил = 1828 кН = 0,1172 м? Прочность выполняется 7. Расчет местной прочности флора Рассматриваемый средний флор имеет симметрию относительно ДП, следовательно расчеты ...

Бороэпоксидные композиционные материалы. За рубежом наибольшее распространение получили материалы (боропластики) с армирующим наполнителем из волокон бора (бороволокон) и эпоксидными матрицами. По данным иностранной печати, применение боропластиков позволяет уменьшил вес конструкции на 20-40%, увеличить ее жесткость и повысить эксплуатационную надежность изделия. Композиционные материалы на основе бороволокна имеют высокие показатели по прочности, жесткости и сопротивлению усталости. Например, в иностранной печати отмечалось, что отношение удельной прочности боропластиков к удельной прочности алюминиевого сплава при растяжении составляет 1,3-1,9, сжатии -1,5, сдвиге-1,2, смятии-2,2, а усталостная характеристика возрастает в 3,8 раза. Кроме того, боропластики сохраняют свои качества в диапазоне температур от -60 до + 177°С. Сочетание этих свойств и предопределило перспективность широкою использования боропластиков в авиационной и ракетно-космической технике.

Как следует из сообщении зарубежной печати, масштабы применения боропластиков в самолетостроении США уже в настоящее время весьма значительны. Например, на один истребитель F-I5 расходуется около 750 кг боропластиков. Эти материалы используются для усиления элементов силового набора накладками из боропластика, что обеспечивает снижение веса элементов конструкции и повышение их несущей способности, а также для изготовления обшивок.

Благодаря применению боропластиков значительно упрощается технология производства, и, кроме того, возможно сокращение общего количества узлов и деталей в некоторых элементах конструкции самолета. Например, по заявлению специалистов фирмы «Макдоннелл Дуглас», при изготовлении из боропластиков руля направления самолета F-4 «Фантом» число деталей сократилось с 240 до 84.

Композиционные материалы с углеродными волокнами. Иностранные специалисты считают, что в условиях высоких температур, возникающих при сверхзвуковом полете, наиболее эффективны композиционные материалы на основе матриц, армированных волокнами графита (углерода).

Использование этих материалов в конструкциях современных и перспективных сверхзвуковых самолетов выгодно с точки зрения экономии веса конструкции, особенно для узлов, вес которых в большей степени определяется требованиями жесткости, чем прочности. Наибольшее распространение за рубежом получили материалы с углеродными волокнами на основе эпоксидных матриц (углепластики) и материалы на основе углеродных графитизированных матриц, армированных волокнами углерода («углерод-углерод»).

Углепластики. Углепластики имеют малый удельный вес — 1,5 г/см3 (алюминиевые сплавы 2,8 г/см3, титановые 4,5 г/см3); высокие жесткость, вибропрочность и показатели усталостной прочности. Всё это делает их одними из самых перспективных материалов для производства авиационной и космической техники. При всех основных видах действующих нагрузок удельная прочность углепластиков оказывается выше прочности алюминиевого сплава. Прочность и жесткость углепластиков примерно в шесть раз выше, чем у основных сортов стали, используемых в конструкциях самолетов.

3 стр., 1239 слов

Назначения и особенности конструкции гондол и пилонов самолета

... -samoleta/ Конструкция и прочность самолетов, В.Н.Зайцев , Г.Н. Ночевкин – Киев 1974 г. Конструкция и прочность летательных аппаратов гражданской авиации , К.Д. Миртова, Ж.С. Черненко – Москва 1991г. Конструкция самолетов, Г.И.Житомирский ... та во время пробега и разбега самолета. Вместе с тем, эта схема приводит к некоторому увеличению веса конструкции фюзеляжа и веса крыла, которое в ...

В настоящее время применение углепластиков в авиастроении значительно возросло. Различные элементы конструкций из этого материала проходят испытания на самолетах F-5E, A-4D и F-111. Фирма «Боинг» по контракту с ВВС США исследует возможности использования этих материалов в конструкции крыла перспективного высотного беспилотного разведывательного самолета. Подобные работы ведутся и в других странах. Например, английская Фирма «Бритиш эркрафт» по контракту, заключенному с министерством обороны Великобритании, создает из углепластиков элементы планеров некоторых самолетов.

Композиционные материалы «углерод-углерод» обладают малым удельным весом (1,4 г/см3), высокими теплозащитными свойствами, способностью сохранять прочностные характеристики при температурах свыше 2500С Благодаря этим и другим качествам они считаются весьма перспективными для изготовления тех деталей и узлов самолетов, которые работают в условиях высоких температур, а также для теплозащитных экранов летательных аппаратов, прежде всего космических кораблей. По сообщениям зарубежной печати, в настоящее время из этого материала для самолетов разработаны детали колесных тормозов, вес их составляет около 30%. веса стальных тормозов. По мнению специалистов американской фирмы «Данлон», ресурс тормозных устройств из этих материалов — 3000 посадок, что в пять-шесть раз превышает срок эксплуатации обычных тормозов.

Бороалюминиевый композиционный материал (бороалюминий).

В качестве армирующего наполнителя этого композиционного материала используются волокна бора (иногда с покрытием из карбида кремния), а в качестве матрицы — алюминиевые сплавы. Бороалюминий в 3,5 раза легче алюминия и в 2 раза прочнее его, что позволяет получить значительную весовую экономию. Кроме того, при высоких температурах (до 430°С) бороалюминиевый композиционный материал имеет в 2 раза большие значения удельной прочности и жесткости по сравнению с титаном, что дает возможность его применения для самолетов со скоростями полета М=3, в конструкциях которых в настоящее время используется титан. Зарубежные специалисты считают бороалюминий также одним из перспективных композиционных материалов, применение которого может дать до 50%. экономии веса конструкции летательных аппаратов.

По сообщениям иностранной печати, работы по исследованию характеристик бороалюминия и внедрению его в авиастроение выполняются несколькими американскими фирмами. Например, фирма «Дженерал дайнэмикс» из этого материала изготовляет элементы конструкции хвостовой части самолета F-111, а фирма «Локхид»- экспериментальный кессон центроплана самолета С-130 «Геркулес». Специалисты фирмы «Боинг» изучают возможность применения бороалюминиевого материала в стрингерах сверхтяжелых самолетов.

В настоящее время бороалюминиевый композиционный материал находит все большее применение в конструкциях авиационных двигателей. По данным зарубежной печати, фирма «Пратт-Уитни» использует его при производстве лопаток вентилятора первой и третьей ступеней ТРДД JT8-D, TF-30, F-100, а Фирма «Дженерал электрик» — лопаток вентилятора двигателя J-79, что, по мнению специалистов фирмы, позволит получить около 40%. экономии веса этих элементов.

14 стр., 6511 слов

Производство строительных материалов, изделий и конструкций в ...

... Современные требования к качеству строительства промышленных и гражданских зданий и сооружений предопределяют применение новых и эффективных строительных материалов, соответствующих мировым стандартам. В последние годы в Казахстане наметилась положительная тенденция наращивания ...

В США существует 79 программ, в рамках которых ведутся работы по исследованию и практическому использованию композиционных материалов в авиастроении.

Анализируя подученные при выполнении экспериментальных работ результаты, иностранные специалисты считают, что композиты могут быть использованы при конструировании большинства узлов и деталей боевого самолета. На рис. 1 показана схема планера боевого самолета с указанием тех элементов, в конструкциях которых, по взглядам иностранных специалистов, возможно применение композиционных материалов.

На создаваемом фирмой «Рокуэлл интернэшнл» стратегическом бомбардировщике В-1 внутренние и внешние лонжероны, расположенные в хвостовой части фюзеляжа, делаются с применением накладок из бороэпоксидного композиционного материала. Эти лонжероны состоят из сплошных боропластиковых накладок, соединенных с деталями из металлов. Металлические элементы (сталь, титан) обеспечивают прочность, а накладки из боропластика увеличивают жесткость лонжеронов. Отмечается, что лонжероны такой конструкции не только обладают улучшенными механическими свойствами, но и на 28-44%. легче цельнометаллических.

Предусматривая дальнейшее внедрение композиционных материалов в конструкцию бомбардировщика В-1, лаборатория материалов ВВС США заключила контракты с фирмой «Рокуэлл интернэшнл» на разработку киля из графитоэпоксидного и бороэпоксидного материалов, а с фирмой «Грумман» — на создание стабилизатора самолета из этих материалов.

В соответствии с программой, осуществляемой фирмой «Дженерал дайнамикс» (по контракту с ВВС США), на изготовленной из высокопрочной стали нижней поверхности шарнирной опоры крыла истребителя-бомбардировщикa F-111A, устанавливаются усиливающие накладки из эпоксидного боропластика. Американские специалисты считают, что применение этих накладок более чем вдвое увеличивает усталостную прочность шарнирного соединения узла поворота крыла. На двух самолетах F-111A испытываются экспериментальные стабилизаторы из бороэпоксидного композиционного материала, которые, по данным иностранной печати, на 27%. легче обычных.

В самолете F-l4 Томкэт применение композиционных материалов в силовой конструкции было предусмотрено в самом начале его проектирования. Из композиционного материала на основе бороволокна изготовляются четыре панели обшивки стабилизатора.

По данным иностранной печати, результаты проведенных испытании показали, что усталостные характеристики стабилизатора с обшивкой из боропластика в 2,5 раза выше заданных техническими требованиями, а но стоимости он в настоящее время эквивалентен цельнометаллическому. Общий вес стабилизатора с обшивкой из боропластика 350 кг; экономия в весе по сравнению со стабилизатором с титановой обшивкой 82 кг (или 10%.).

Но в сравнении со стабилизатором аналогичной конструкции из алюминиевых сплавов выигрыш в весе получается еще больше — 117 кг (27%.).

В конструкции самолета F-15 «Игл» (фирма «Макдоннелл Дуглас»), исходя из соображений обеспечения требуемой центровки с целью экономии веса хвостовой части самолета, обшивка горизонтальных управляемых стабилизаторов и вертикального хвостового оперения выполнена из боропластика. По сообщениям зарубежной печати, завершены усталостные испытании планера самолета F-15 с панелями обшивки из композиционных материалов. Продолжительность испытаний 10 тыс. ч, что в четыре раза превышает его нормальный ресурс. Затем были проведены статические испытания горизонтального управляемого стабилизатора при нагрузке в два раза больше расчетной разрушающей; стабилизатор выдержал и эти испытания По сравнению с конструкцией горизонтального стабилизатора, выполненной из титана, экономия веса при использовании боропластиковых обшивок составила 22%.

6 стр., 2867 слов

Самолеты с изменяемой геометрией и стреловидностью крыльев

... следствие -- даже разрушение конструкции. Случалось, прочное, но чересчур " гибкое" стреловидное крыло так скручивалось при отклонении элеронов, что действовали они "наоборот", накреняли самолет вопреки действиям пилота в ... Летал на " Турболете " Ю. Гарнаев. Похожий экспериментальный аппарат создала и английская фирма "Роллс-Ройс". В отличие от нашего "Турболета ", у которого двигатель располагался ...

Как отмечается в зарубежной печати, самолет F-15 является первым военным самолетом ВВС США, на котором установлена тормозная система фирмы «Гудьир», детали которой изготовлены с использованием композиционного материала на основе углеродных волокон. Это обеспечило, по мнению американских специалистов, экономию веса (около 32 кг на каждый тормоз) и более плавное и в то же время более эффективное торможение, а также увеличило надежность действия тормозной системы.

Фирма «Макдоннелл Дуглас» уже третий год ведет исследования по специальной программе, предусматривающей применение композиционных материалов для различных элементов крыла самолета F-15, что, по расчетам специалистов фирмы, позволит уменьшить вес крыла на 130-180 кг В ходе прочностных испытаний крыло самолета из композиционных материалов разрушилось при нагрузке, составляющей 110%. расчетной разрушающей. Летные испытания этого крыла планируется начать в 1976 году (в случае успешного завершения статических испытаний).

Иностранная печать сообщает, что высокая стоимость технической оснастки, необходимой дли изготовления деталей из таких материалов, не позволила в должном объеме использовать перспективные композиционные материалы. Однако применение композиционных материалов в конструкциях новых боевых самолетов США все возрастает. Опыт применения графитоэпоксидных композитных материалов, полученный Фирмой «Дженерал дайнемикс» при разработке самолета F-111, учтен и при создании самолета F-16. Благодаря изготовлению обшивки киля, стабилизатора и руля направления из углепластика фирме удались снизить вес хвостовой части фюзеляжа самолета F16 примерно на 30%. В настоящее врем» фирма по контракту с ВВС разрабатывает переднюю часть фюзеляжа этого самолета из графитоэпоксидных материалов.

Во время модернизации тяжелого военно-транспортного самолета С-5А при создании некоторых узлов и деталей планера самолета (например, секции предкрылков) применяли композиционные материалы. Новая секция имеет повышенную прочность и жесткость, она значительно легче металлической.

Предпринимаются попытки использовать композиционные материалы в вертолётостроении. В частности, с целью исследования возможности изготовления некоторых основных элементов конструкции вертолетов из таких материалов американские и западногерманские фирмы проводят ряд опытно-конструкторских работ. По данным иностранной печати, американская Фирма «Сикорский» участвует в программе, предусматривающей повышение усталостной долговечности и улучшение динамических характеристик вертолета СН-54В за счет упрочнения композиционными материалами его хвостовой балки. Сообщается, что в результате упрочнения стрингеров бороэпоксидным материалом ресурс планера вертолета повысился в несколько раз, а вес снизился на 30%.

8 стр., 3872 слов

Подпорные стенки. Материалы, конструкции и технология их возведения

... (вертикальная часть конструкции, собственно стенка). Функции подпорных стенок Подпорные стенки могут играть функциональную ... материалах подпорных стенок. Исходя из цели исследования, были сформулированы обзор истории развития подпорных стенок; описание функций подпорных стен, их классификация; обзор методов проектирования подпорных стен и требований к материалам; подробный анализ данного материала; ...

В зарубежной печати сообщалось, что министерство обороны США заключило с фирмой «Хьюз» контракт стоимостью 1,2 млн, долларов на разработку из композиционных материалов лопасти несущего винта для вертолета «Хью Кобра». По заявлению специалистов фирмы, применение композиционных материалов в конструкции лопасти позволит уменьшить ее вес, сохранить прочностные характеристики, добиться относительной неуязвимости лопасти от пуль. Кроме того, такие лопасти будут иметь большой ресурс и малую стойкость, а их производство можно наладить на автоматизированной линии.

Широкое применение композиционных материалов в конструкции несущего винта запланировано также в рамках перспективной программы HLH, предусматривающей создание тяжелого транспортно-десантного вертолета максимальной грузоподъемностью около 30 т. Но данным иностранной печати, к настоящему времени фирма «Боинг» с которой министерство обороны США заключило контракт на выполнение работ по программе HLH, изготовила роторы с несущими винтами, в их конструкции использованы композиционные материалы.

На основе исследований, проводившихся крупнейшей американской вертолетостроительной фирмой «Сикорский» применительно к вертолету CH-53D, сделан вывод о том, что широкое внедрение композиционных материалов в конструкциях вертолетов станет целесообразным и 80-х годах. Специалисты фирмы считают, что максимальная эффективность достигается при включении композиционных материалов в конструкцию фюзеляжа вертолета; при этом в наиболее нагруженных элементах фюзеляжа следует применять материал на основе углерода. Проведенный анализ показал, что за счет использования композиционных материалов вес конструкции вертолета CH-53D может быть снижен на 18,5%.

Изучая опыт применения композиционных материалов в конструкциях самолетов, американские специалисты считают эти материалы с точки зрения веса и механических характеристик весьма перспективными для ракетно-космической техники. По сообщениям иностранной печати, в США при изготовлении головных частей ракет предполагается использовать композиционные материалы с углеволокнистой матрицей, обладающие высокой радиопрозрачностью. Сообщается также о проведении тепловых испытании сопла ракетного двигателя, выполненного целиком из композиционных материалов.

Из углепластиков в сочетании с алюминиевой сотовой конструкцией уже изготовляется ряд деталей искусственных спутников Земли, например каркасы антенн. Это обеспечило не только экономию веса по сравнению с алюминиевой конструкцией, но и стабильность размеров панелей, так как у углепластиков чрезвычайно низкий коэффициент теплового расширения (в 50 раз меньше, чем у металлов).

Композиционные материалы планируется широко использовать для изготовления некоторых элементов орбитальной ступени, разрабатываемой в США транспортно-космической системы «Шатл». В частности, для теплозащиты носка фюзеляжа, нижней поверхности носовой части фюзеляжа, передней кромки крыла будет применен композиционный материал «углерод-углерод». Фирмой «Боинг» разработана рама жидкостного реактивного двигателя основной двигательной установки орбитальной ступени, располагающаяся в хвостовой части фюзеляжа. Она сделана из бороэпоксидного композиционного материала в сочетании с элементами из титанового сплава. Эта конструкция, по данным фирмы, позволит по сравнению с обычной титановой достичь экономии в весе около 30%.

9 стр., 4163 слов

Разработка конструкции хвостовой части фюзеляжа пассажирского самолета

... обтекаемую форму, т. е. материал конструкции используется рационально. В результате этого балочная конструкция обладает малым весом. Живучесть конструкции балочного фюзеляжа не нарушается даже при ... достаточной, чтобы воспринять приходящиеся на него нагрузки, и вместе с тем не препятствовать свободному использованию внутреннего объема фюзеляжа. Усиленные шпангоуты Усиленные шпангоуты ...

Исследования, выполненные рядом американских самолетостроительных фирм под руководством лаборатории материалов ВВС США, показали, что применение композиционных материалов в конструкции военных самолетов и вертолетов 80-х годов позволит не только значительно снизить их вес и стоимость, но и повысить живучесть.

По прогнозам зарубежных специалистов, к началу 80-х годов доля композиционных материалов в планере самолета возрастет до 50%. Это должно обеспечить 20-30% экономию веса в равной мере как для дозвуковых, так и сверхзвуковых самолетов. Достигнутое при этом снижение веса конструкции позволит увеличить запас топлива или боевую нагрузку или уменьшить размеры самолета. Более того, считается, что высокие прочностные характеристики этих материалов могут привести к улучшению аэродинамических характеристик (путем уменьшения относительной толщины профиля и удлинения крыла), а в конечном итоге — к улучшению летных характеристик самолета.

Заключение

композиционный материал авиационный ракетный

Композиционные материалы постепенно занимают все большее место в нашей жизни. Области применения композиционных материалов многочисленны. Кроме авиационно-космической, ракетной и других специальных отраслей техники, они могут быть успешно применены в энергетическом турбостроении, в автомобильной и горнорудной, металлургической промышленности, в строительстве и т.д. Диапазон применения этих материалов увеличивается день ото дня и сулит еще много интересного. Можно с уверенностью сказать, что это материалы будущего.