Минеральные наполнители придают пластмассе водостойкость, химическую стойкость, повышенные электроизоляционные свойства, устойчивость к тропическому климату.
Пластмассы с порошковыми
Пластмассы с волокнистыми наполнителями. К этой группе пластмасс относятся волокниты, асбоволокниты, стекловолокниты.
Волокниты применяют для деталей общего технического назначения с повышенной устойчивостью к ударным нагрузкам, работающим на изгиб и кручение.
Асбоволокниты обладают повышенной теплостойкостью (свыше 200ºС) и ударопрочностью, устойчивостью к кислым средам и высокими фрикционными свойствами. Асбоволокниты используются в качестве материала тормозных устройств (колодки, накладки, диски подъемных кранов, вагонов, автомобилей и др.); из материала фаолита (разновидность асбоволокнитов) получают кислотоупорные аппараты, ванны, трубы.
Стекловолокниты получают продавливанием расплавленной стекломассы через фильеры. В качестве наполнителя применяют непрерывное стекловолокно или короткое волокно. Обладают хорошими прочностными характеристиками. Используются для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпуса приборов).
Слоистые пластмассы являются силовыми конструкционными и поделочными материалами. Листовые наполнители, уложенные слоями, придают пластику анизотропность. Материалы выпускаются в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали.
Гетинакс по назначению подразделяют на электротехнический и декоративный, который может иметь различные цвета и текстуру, имитирующую древесные породы. Пластик можно применять при температуре 120 — 140ºС. Он устойчив к действию химикатов, растворителей, пищевых продуктов; используется для внутренней облицовки пассажирских кабин самолетов, железнодорожных вагонов, кают судов, в строительстве.
Текстолит. Среди слоистых пластиков обладает наибольшей способностью поглощать вибрационные нагрузки, хорошо сопротивляться раскалыванию. Текстолит применяют для зубчатых колес. Текстолитовые вкладыши подшипников служат в 10 – 15 раз дольше бронзовых. Однако рабочая температура текстолитовых подшипников невысока (80 — 90ºС).
Курсовая работа системы автоматизации производства и ремонта вагонов
... автоматов, становятся неэффективными. Поэтому вопросы автоматизации производства и ремонта вагонов рассматриваются на принципиальных схемах автоматов, автоматических управляющих систем с использованием типовых модулей, применяемых на предприятиях по производству и ремонту вагонов и компьютерных технологиях обучения. При изложении ...
Они применяются в прокатных станах, центробежных насосах, турбинах и др.
Древеснослоистые пластики (ДСП) состоят из тонких листов древесного шпона, пропитанных феноло- и крезольно-формальдегидными смолами и спрессованных в виде листов и плит. Древеснослоистые пластики имеют высокие физико-механические свойства, низкий коэффициент трения и с успехом заменяют текстолит, а также цветные металлы и сплавы. Недостатком ДСП является чувствительность к влаге. Из ДСП изготавливают шкивы, втулки, ползуны лесопильных рам, корпусы насосов, подшипники, детали автомобилей, железнодорожных вагонов, лодок и детали текстильных машин.
Асботекстолит является конструкционным, фрикционным термоизоляционным материалом. Обладает высокой теплостойкостью (300ºС) и механической прочностью. Из асботекстолита делают лопатки ротационных бензонасосов, фрикционные диски и тормозные колодки. Асботекстолит выдерживает кратковременно высокие температуры и поэтому применяется в качестве теплозащитного теплоизоляционного материала.
1.3. Газонаполненные пластмассы.
Газонаполненные пластмассы представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз. Такие пластмассы имеют чрезвычайно малую массу и высокие теплозвукоизоляционные характеристики. В зависимости от физической структуры газонаполненные пластмассы делят на две группы:
1. Пенопласты – материалы с ячеистой структурой, в которых газообразные наполнители
2. Поропласты – губчатые
Пенопласты получили наиболее широкое применение. Замкнуто–ячеистая структура обеспечивает хорошую плавучесть и высокие теплоизоляционные свойства. Механическая плотность пенопластов невысока и зависит от плотности материала. Пенопласты применяют для теплоизоляции кабин, контейнеров, приборов, рефрижераторов, труб и т. д. Широкое применение пенопласты получили в строительстве и при производстве труднозатопляемых изделий. Используются в авиастроении, судостроении, на железнодорожном транспорте и т. д.
Сотопласты изготовляют из тонких листовых материалов. Материалом для сотопластов служат ткани (стеклянные, кремнеземные, угольные).
Сотопласты имеют достаточно высокие теплоизоляционные свойства. Они служат легкими заполнителями многослойных панелей, применяемых в авиа- и судостроении для несущих конструкций; при создании наружной теплозащиты и теплоизоляции космических кораблей; в антенных обтекателях самолетов и др.
Пластмассы представляют собой материалы на основе природных или синтетических полимеров, способные приобретать заданную форму при нагревании и под давлением и устойчиво сохранять ее после охлаждения.
Органические искусственные вещества — полимеры — построены, как известно, из макромолекул многочисленных малых основных молекул (мономеров).
Процесс их образования зависит от разных факторов — отсюда широкие возможности
Структурные формулы некоторых
Название полимера |
Структура полимера |
Мочевиноформальдегидная смола |
|
Полиамидная смола |
|
Полиакрилат |
|
Полиметилметакрилат |
Полимеризация — это химическая реакция образования высокомолекулярных продуктов вследствие сцепления простых ненасыщенных органических мономеров, протекающая без отщепления каких либо частей молекул. Пример: n·этилен à полиэтилен.
Полиприсоединение — это объединение различных
Поликонденсация — реакция образования
Пример: x·формальдегид + y·мочевина ( (NH2 ) 2 CO) à мочевиноформальдегидная смола + z·вода.
Физические и химические свойства полимеров обусловлены как особенностями химического состава и
Рассмотрим первый аспект проблемы — химический состав и молекулярное строение полимеров.
В соответствие с местом в периодической системе углерод четырехвалентен. Главной его особенностью является способность образовывать вещества, в которых атомы углерода связаны между собой. При этом могут возникать как цепочные (в виде простых или разветвленных цепей), так и циклические соединения:
В зависимости от числа атомов и их взаимного расположения изменяются и свойства вещества. Например, чем больше атомов входит в соединение, тем менее оно летучее.
Свойства соединений углерода в большой степени зависят от характера связей между его отдельными атомами. Способность атомов углерода образовывать цепочки, кольца или сложные решетки, в которые вклинены другие элементы, обуславливает существование
Благодаря изменению структур молекул и их разнообразным комбинациям
Помимо полимера в состав пластмасс часто входят различные добавки: наполнители, пластификаторы, стабилизаторы, красители и другие компоненты.
Наполнители — это вещества, служащие для придания пластмассе необходимых эксплуатационных свойств (например, высокой прочности, термостойкости и др.), облегчения переработки, снижения стоимости. В качестве наполнителей применяют опилки, сажу, графит, стеклянные, асбестовые, химические волокна. В слоистых пластиках (пластмассы, упрочненные параллельно расположенными слоями наполнителя) роль наполнителя выполняют бумага, ткани; в пенопластах газы, например азот. Применение наполнителей снижает стоимость пластмассы. Ведь, как правило, наполнители — это отходы различных производств, они значительно дешевле самого полимера.
Пластификаторы вводят в состав пластмассы с целью повышения пластичности или эластичности полимера и готовой пластмассы. В качестве пластификаторов используют, главным образом, нелетучие, химически инертные вещества, например дибутилфталат (C 6 H4 (COOC4 H9 ) 2 ), нефтяные масла. Молекулы пластификатора, например глицерина ослабляют связи между макромолекулами полимера. Это облегчает процесс формования пластмассы, позволяет проводить его при меньшей температуре.
Стабилизаторы — вещества, тормозящие старение пластмассы, происходящее, как правило, в результате деструкции. Деструкция полимеров — процесс разрушения их молекул под действием тепла, кислорода, света и др. В результате деструкции изменяются многие свойства полимеров и часто они становятся непригодными для использования. Стабилизаторы защищают полимеры от окисления (ароматические амины, фенолы), действия атмосферы, озона (воски), предохраняют полимеры от воздействия света (сажа) и ультрафиолетового света, защищают от разрушения под действием ионизирующих излучений (ароматические углеводороды, амины).
Нередко одно и то же вещество в пластмассе может выполнять одновременно несколько функций. Так фосфаты удается использовать и как антипирены (вещества понижающие горючесть материалов органического происхождения), и как пластификаторы. Наполнитель может «работать» и как антиокислитель, и как пигмент, а также способствовать непроницаемости материала.
Пластмассы различаются по своим эксплуатационным свойствам (например, пластмассы с высоким электрическим сопротивлением, атмосферо-, термо-, или огнестойкие), по природе наполнителя (например, стеклопластики, графитопласты, газонаполненные пластмассы), по способу расположения наполнителя в материале (слоистые пластики, волокниты — пластмассы, состоящие из рубленого волокна, пропитанного термореактивной синтетической смолой), а также по типу полимера (например, аминопласты, белковые пластики).
В зависимости от характера превращений, происходящих с полимером при формовании, пластмассы подразделяются на реактопласты и термопласты. Реактопласты или термореактивные пластмассы, подобно обожженной глине, не способны вернуть вновь пластичное состояние. Это связано с тем, что их переработка в изделие сопровождается химическим взаимодействием между макромолекулами и
Термопласты при нагревании вновь приобретают пластичность, их можно формовать многократно. Их легче превращать в готовые изделия, можно рационально обрабатывать и перерабатывать методами литья под давлением, вакуумной формовки или простой формовки. К термопластам относятся полиэтилен, поливинилхлорид, полистирол и АБС-полимеры.
Пространство между термопластами и