Доклад: Кислотность и основность по Бренстеду-Лоури

Реферат

Кислотность и основность по Бренстеду-Лоури

По Бренстеду-Лоури, кислоты представляют собой вещества, способные отдавать протон, а основания — вещества, присоединяющие протон. Такой подход известен как бренстедовская кислотность и основность органических соединений или протонная теория кислот и оснований (протолитическая теория): кислота протон + основание.

Процесс отрыва протона и его присоединение другим партнером по взаимодействию проиллюстрируем простейшим примером. Рассмотрим химизм процесса растворения серной кислоты в воде. Серная кислота отдает протон основанию, роль которого выполняет вода, при этом образуются новая кислота (ион гидроксония H3О+) и новое основание (бисульфат-анион ).

Последние еще называются соответственно сопряженной кислотой и сопряженным основанием. С переходом протона взаимодействующие соединения поменялись ролями — серная кислота превратилась в сопряженное основание , а вода (основание) — в сопряженную кислоту H3O+ :

При смешении серной и уксусной кислот последняя играет роль основания. Образующаяся протонированная уксусная кислота и бисульфат-анион соответственно являются сопряженными кислотой и основанием: то есть, по Бренстеду-Лоури, кислотно-основное взаимодействие рассматривается как процесс передачи протона. Приведенные примеры показывают, что не может быть абсолютного деления веществ на кислоты и основания. Такое деление носит относительный характер. Вещества, потенциально способные быть кислотами, становятся таковыми только в присутствии основания, и наоборот.

Несмотря на относительный характер, деление веществ на кислоты и основания существует, и в основу такого деления положены кислотно-основные взаимодействия в воде. То есть вода принята за своеобразный стандарт для оценки кислотно-основных свойств веществ — стандарт нейтральной среды. Если в аналогичных условиях рассматриваемое вещество способно отдавать водород в виде протона легче, чем вода, то его следует отнести к группе кислот. Если вещество по способности присоединять (связывать) протон превосходит воду — это основание (основность выше, чем у воды).

Отнесение веществ к кислотам или основаниям не мешает рассматривать их кислотно-основные свойства во всем диапазоне кислотно-основных взаимодействий, то есть кислоту в роли основания и наоборот.

5 стр., 2092 слов

Кислоты и основания в органической химии

... КОНЦЕПЦИЯ ЖЕСТКИХ И МЯГКИХ КИСЛОТ И ОСНОВАНИЙ (принцип ЖМКО, принцип Пирсона) Как уже отмечалось, кислотно-основные ... кислоты, а как продукты нейтрализации протона основаниями. Например, серная кислота — продукт нейтрализации кислоты Н + основанием HSO- 4 , соляная кислота — продукт нейтрализации Н+ основанием Сl- . При взаимодействии кислот и оснований Льюиса образуются донорно-акцепторные (кислотно ...

Почему все-таки воде досталась роль своеобразного стандарта в делении веществ на кислоты и основания? Вода — одно из самых распространенных на Земле соединений. Ее кислотно-основные свойства определяют естественный фон (атмосфера, почва, моря и океаны).

Вода хорошо растворяет многие полярные и диссоциирующие на ионы вещества. По физическим характеристикам вода хорошо сольватирует как недиссоциированные молекулы, так и свободные ионы. Кроме того, молекулы воды способны к автопротолизу — передаче протона между молекулами одного и того же вещества.

Кислотность соединений количественно оценивается долей ионизированной формы вещества в растворе (воде) или константой равновесия (К ) реакции переноса протона от кислоты к воде как основанию. Так, для уксусной кислоты (вода взята в значительном избытке, и ее концентрация практически не меняется) константа кислотности Ка (где а — начальная буква от англ. acid — кислота) выводится из выражения

Чем больше Ка (соответственно чем выше доля ионизированной формы вещества), тем сильнее кислота. Для уксусной кислоты Ка равна 1,75 » 10- 5. Такими очень малыми величинами неудобно пользоваться, поэтому используют отрицательный логарифм — lg Ка = pКа . Для уксусной кислоты значение рКа = 4,75. Надо иметь в виду, что, чем меньше величина рКа , тем сильнее кислота.

При растворении в воде оснований вода выполняет роль кислоты. В результате переноса протона от воды к основанию образуются сопряженная кислота HB+ и сопряженное основание OH- :

B + H2O HB+ + HO-.

Константа основности Кb (b — начальная буква от англ. basic — основной) основания В в воде определяется выражением

В рассмотренных примерах кислотно-основных взаимодействий образуются сопряженные кислотно-основные пары. Между силой кислоты и сопряженного с ней основания существует следующая зависимость: чем слабее кислота, тем больше сила сопряженного с ней основания, и наоборот. Так, вода как слабая кислота и слабое основание, теряя или присоединяя протон, превращается в сопряженное сильное основание (ОН-) или сопряженную сильную кислоту (Н3О+).

Кислотно-основные равновесия смещены в направлении образования более слабой кислоты и более слабого основания. Поэтому в схеме автопротолиза воды равновесие практически полностью смещено в сторону неионизированной формы. Если расположить кислоты в порядке уменьшения их силы, то сила соответствующих (сопряженных) оснований будет изменяться в обратном порядке:

  • сила кислот: H2SO4 >
  • H3O+>
  • >
  • H2O,

сила оснований: < H2O < NH3 < OH-.

Основность соединений оценивают по величине рКа сопряженных с ними кислот. Чем больше величина рКа сопряженной кислоты, тем больше основность соединения. Для этих же целей можно воспользоваться известной зависимостью: произведение константы кислотности кислоты и константы основности сопряженного с ней основания в любом растворителе равно константе автопротолиза этого растворителя: рКа + рКb = рКавто , тогда рКb = рКавто — рКа . Подставляя известные значения рКНОН = 14, рКа уксусной кислоты равно 4,75, определяем рКb — основность сопряженного основания (ацетат-иона CH3COO-): 14 — 4,75 = 9,25. В табл. 1 приведены рКа для различных типов бренстедовских кислот.

43 стр., 21274 слов

Научная работа: Создание научных основ обеззараживания и очистки ...

... основ очистки воды на основе нанотехнологии с использованием электроактивационного метода и разработанные рекомендации по оптимизации технологических процессов очистки, путем установления физико-технических параметров метода и свойств питьевой воды. В результате ...

Для удобства оценки кислотности растворов или смесей введено выражение рН (водородный показатель, рН = — lg [H+ ]).

Для нейтральной среды (дистиллированная вода) значение рН равно 7. Увеличение значения рН с 7 до 14 характеризует увеличение основности среды. Область рН от 7 до 1 характерна для кислотной среды, и чем меньше значение рН, тем выше кислотность. Количественно кислотность и основность определяются методами аналитической химии. Значение рН можно определить экспресс-методами с помощью специальных индикаторов.

Согласно Бренстеду-Лоури, для того чтобы быть кислотой, соединение должно иметь водород. За редким исключением почти все органические соединения отвечают этому условию. Поэтому все они являются потенциальными бренстедовскими кислотами. А вот сила этих кислот определяется конкретной структурой соединений. Степень кислотности определяется главным образом характером атома, с которым связан водород. Элемент и связанный с ним атом водорода называют кислотным центром. Кислотность соединения будет определяться как характером связи в кислотном центре (элемент-водород) (статический фактор), так и способностью атома удерживать электронную пару после ухода иона водорода (динамический фактор).

Способность удерживать электронную пару зависит от различных факторов, в том числе от электроотрицательности атомов и их размера. Таким образом, в периодах таблицы Менделеева кислотность возрастает с увеличением электроотрицательности.

Кислотность: H — CH3 < H — NH2 < H — OH < H — F,

H — SH < H — Cl.

В группах кислотность возрастает с увеличением размеров атома.

Кислотность: H — F < H — Cl < H — Br < H — J,

H — OH < H — SH < H — SeH.

Проанализировав количественные характеристики (рКа) указанных кислот (табл. 1), убеждаемся в достоверности приведенных рядов. Рост электроотрицательности атома в кислотном центре или его поляризуемости (с увеличением размеров атома) способствует делокализализации отрицательного заряда, образующегося после отрыва водорода в виде протона, что приводит к повышению кислотности.

Наибольшую кислотность иодистоводородной кислоты в ряду галогеноводородных кислот можно связать с высокой поляризуемостью иодид-аниона по сравнению с другими галогенид-ионами, хотя электроотрицательность изменяется в обратном порядке. По природе кислотного центра большинство бренстедовских кислот может быть представлено четырьмя типами: ОН-кислоты (карбоновые кислоты, фенолы, спирты), SH-кислоты (тиолы), NH-кислоты (амины, амиды, имиды), CH-кислоты (углеводороды и их производные).

В соответствии с приведенной выше оценкой роли природы атома в кислотном центре можно было бы ожидать, что кислотность будет снижаться при переходе от SH- к OH-, NH- и CH-кислотам. Если примыкающие к кислотным центрам радикалы одинаковы или близки по природе (например, алкильные группы), то такая закономерность действительно соблюдается. Если с кислотными центрами связаны разные по природе заместители, то однозначную оценку кислотности соединений разных типов сделать трудно. Влияние примыкающего к кислотному центру радикала может стать более существенным, чем природа центрального атома в кислотном центре. Например, нитрометан (СН-кислота) по кислотности находится на уровне тиолов (SH-кислоты) и превосходит ряд ОН- и NH-кислот. Относительную кислотность соединений, в том числе относящихся к кислотам различного типа, можно определить пользуясь известным правилом: более сильные кислоты вытесняют более слабые из их солей. Так, для определения относительной кислотности воды, аммиака и ацетилена (соответственно ОН-, NH- и CH- кислоты) можно использовать тот факт, что ацетилен разрушает амид натрия с образованием ацетиленида, а последний разлагается водой. Таким образом, ацетилен по кислотности находится между водой и аммиаком: H2O > HC¦CH > NH3 , что согласуется с данными табл. 1. Общим подходом к оценке тех или иных свойств органических веществ является бутлеровский тезис: структура определяет свойства. Структура предопределяет взаимное влияние атомов в молекулах, что в конечном итоге реализуется в конкретных свойствах. Рассмотрим несколько примеров, как структура (природа радикала у кислотного центра) влияет на кислотность органических соединений. Известно, что в ряду ОН-кислот кислотные свойства убывают в следующем порядке: карбоновые кислоты > фенолы > спирты. В этом ряду радикалами у кислотных центров соответственно являются ацил с ярко выраженным акцепторным характером, арил, относящийся к акцепторным заместителям, но уступающий ацилам, и алкил, характеризующийся хотя и слабым, но электронодонорным эффектом. Указанные радикалы до разрыва связи О-Н будут различным образом влиять на ее поляризацию: чем выше акцепторность радикала, тем выше полярность связи (статический фактор).

13 стр., 6390 слов

Производство молочной кислоты

... в присутствии молочной кислоты можно вести при более низкой температуре. Умеренно кислый вкус молочной кислоты при относительно высокой кислотности делает ее употребление, наряду с уксусом, предпочтительным в производстве таких продуктов, ...

Однако более существенное влияние заместителей будет проявляться после разрыва О-Н-связи: чем выше степень делокализации заряда аниона, тем выше его устойчивость (динамический фактор).

А чем стабильнее частица (в нашем случае кислородцентрированный анион), тем ниже энергетические барьеры на пути ее образования. В рассматриваемых примерах устойчивость анионов будет уменьшаться в следующем порядке: ацилат-анион > феноксид-анион > алкоксид-анион: В первом случае делокализация заряда достигается за счет его распределения между двумя эквивалентными атомами кислорода. В феноксид-анионе делокализация заряда достигается за счет сопряжения электронных пар атома кислорода с p-системой ароматического ядра, в результате чего часть электронной плотности с атома кислорода переносится на ароматическое ядро (отрицательный заряд на атоме кислорода снижается).

Высокая степень локализации заряда на атоме кислорода в алкоксид-анионе делает его наименее стабильным и соответственно наиболее трудно образующимся.

Легко понять, что введение в радикал у кислотного центра электроноакцепторных заместителей будет способствовать повышению кислотности всех типов кислот. Особенно резкое повышение кислотности СН-кислот наступает в случае, если введение такого заместителя придает соединению возможность существовать в нескольких таутомерных формах. Сравните кислотность двух СН-кислот: хлороформа и нитрометана (см. табл. 1).

Из таблицы видно, что кислотность последнего почти на пять порядков выше. Столь значительная разница в кислотности двух указанных соединений обусловлена тем, что нитрометан может существовать в двух таутомерных формах с общим мезомерным анионом. Аналогичный подход можно использовать для объяснения подвижности a-водородных атомов в карбонильных соединениях. Кратко остановимся на влиянии электронных факторов на основность органических соединений. В качестве оснований могут выступать анионы или нейтральные молекулы, содержащие атомы с неподеленными электронными парами. В роли последних чаще всего выступают азот- и кислородсодержащие соединения. Сила оснований будет определяться концентрацией электронной плотности на основных центрах (центрах протонирования).

15 стр., 7463 слов

Комплексные соединения в аналитической химии

... зарядом внутренней сферы комплексные соединения подразделяются на анионные, катионные и нейтральные комплексы. Заряд внутренней сферы компенсируется ионами внешней сферы комплексного соединения. Внешняя сфера комплексного соединения — это положительно или отрицательно заряженные ионы, нейтрализующие заряд комплексного ...

Влияние электронных факторов на основность органических соединений будет прямо противоположным тому, что выше было рассмотрено для кислот: электронодонорные заместители у основных центров будут усиливать основность, акцепторные — ее понижать. Кроме оснований, понимаемых в рамках широкой трактовки этого термина, существует более узкая трактовка — органические основания. Это органические соединения, используемые на практике в качестве акцепторов протонов. К ним относятся нейтральные основания (третичные амины, амидины) и анионные основания (алкоголяты и амиды щелочных металлов, металлоорганические соединения).

В препаративных синтезах эту роль чаще всего выполняют третичные амины — триэтиламин, диметиланилин, пиридин. Используя рассмотренные выше подходы в оценке кислотно-основных свойств органических соединений, можно на качественном уровне дать характеристику любому органическому соединению.