Непрерывные спектры

Реферат

Совокупность монохроматических компонент в излучении называется спектром .

Спектры излучения

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры, Непрерывный спектр

непрерывный спектр.

Непрерывные спектры 1

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

дискретный спектр

1. линейчатый

Непрерывные спектры 2

2. полосатый

Непрерывные спектры 3

Линейчатые спектры, Линейчатый спектр

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

Линейчатые спектры 1

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

4 стр., 1613 слов

Спектры и спектральный анализ в физике

... друг друга, образуя непрерывный спектр. Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что ... смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию ...

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры, Полосатый спектр

полосатые спектры создаются

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Это будет спектр поглощения.

Спектры поглощения 1

Спектр поглощения

Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Различные виды электромагнитных излучений, их свойства и практические применения.

Различные виды электромагнитных излучений 1

Шкала электромагнитных волн. Границы между различными диапазонами условны, Низкочастотные колебения.

ν = 0 – 10 Гц

ν = 10 – 10 4 Гц

Радиоволны.

ν =10 4 – 1011 Гц

λ = 10 -3 – 103 м

Получают с помощью колебательных контуров.

Свойства.

Радиоволны различных частот и с различными длинами волн по разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение.

Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение.

ν =3·10 11 – 4·1014 Гц

λ = 8·10 -7 – 2·10-3 м

Излучаются атомами и молекулами вещества.

Инфракрасное излучение дают все тела при любой температуре. Человек излучает электромагнитные волны λ ≈ 9·10 -6 м.

Свойства.

  • Проходит через некоторые непрозрачные тела, а также сквозь снег, дождь, дымку.
  • Производит химическое действие на фотопластинки.
  • Поглощаясь веществом, нагревает его.
  • Вызывает внутренний фотоэффект у германия.
  • Невидимо.
  • Способно к явлениям интерференции и дифракции.
  • Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение.

Получают изображения предметов в темноте, приборах ночного видения, в тумане. Используют в криминалистике, в физиотерапии,. в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

9 стр., 4057 слов

Сыпучие материалы. Порошки. Свойства порошков. Устойчивость. ...

... фазы находятся в контакте друг с другом. Традиционно к порошкам относят большинство сыпучих материалов, однако в узком смысле термин «порошки» применяют к высокодисперсным системам с размером ... фазы и размеров частиц. Рассмотрим только те характеристики вещества, на которых основаны свойства порошков, влияющие на технологию их использования и переработки. Когезия определяет связь между ...

Видимое излучение.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

ν =4·10 14 – 8·1014 Гц

λ = 8·10 -7 – 4·10-7 м

Свойства.

Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Ультрафиолетовое излучение.

ν =8·10 14 – 3·1015 Гц

λ =·10 -8 – 4·10-7 м

Излучается всеми твердыми телами, у которых t > 1000°С, а также светящимися парами ртути.

Свойства.

  • Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка).

  • Невидимо.
  • Большая проникающая способность.
  • Убивает микроорганизмы.
  • В небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменение в развитии клеток и обмене веществ, действие на глаза.

Применение.

В медицине, в косметологии (солярий, загар), в промышленности.

Рентгеновские лучи.

ν =3·10 15 – 3·1019 Гц

λ =·10 -11 – 4·10-8 м

Излучаются при резком торможении электронов, движущихся с большим ускорением.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм).

Свойства.

  • Интерференция, дифракция рентгеновских лучей на кристаллической решетке.
  • Большая проникающая способность.
  • Облучение в больших дозах вызывает лучевую болезнь.

Применение.

В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма – излучение (γ – излучение).

ν =3·10 20 Гц

λ =3,3·10 -11 м

Свойства.

  • Имеет огромную проникающую способность.
  • Оказывает сильное биологическое воздействие.

Применение.

В медицине, в производстве (γ – дефектоскопия).