В процессе выполнения тягового расчета трактора определяем основные параметры: масса трактора, мощность двигателя, расчетные скорости движения и тяговые показатели на передачах основного ряда и показатели топливной экономичности трактора, которые обеспечивают ему необходимые тяговые свойства в условиях эксплуатации.
1.1. Определение номинальной эксплуатационной массы трактора
Номинальную эксплуатационную массу трактора определяем из условия реализации заданного тягового класса при допустимом буксовании для гусеничных тракторов — 3 — 5%.
(1.1)
где РН — номинальное тяговое усилие трактора, заданное классом тяги, Н;
g — ускорение свободного падения, равное 9.81 м/с2 ;
— коэффициент нагрузки ведущих колес;
f — коэффициент сопротивления качению [1, Приложение А, с. 49];
— допустимая величина коэффициента использования сцепной массы при допустимом буксовании и номинальной нагрузке на крюке [1, Приложение А, с. 49].
Тогда
1.2 Определение номинальной мощности двигателя
Номинальная мощность двигателя определяется из условия реализации номинального тягового усилия на крюке , при равномерном движении на горизонтальном участке стерневого поля с заданной скоростью движения на первой передаче основного ряда.
(1.2)
где VТ1 — скорость трактора, соответствующая номинальному тяговому усилию, 7 км/ч;
ZЭ — коэффициент эксплуатационной нагрузки двигателя, равный 0,9;
— КПД трансмиссии.
Механический КПД определяется на первой передаче основного ряда по заданной кинематической схеме прототипа трансмиссии с учетом типа движителя, потерь, возникающих при передаче нагрузки и потерь холостого хода.
Система смазки двигателя д
... из картера на прогретом двигателе. Перед заливкой масла необходимо очистить ротор центрифуги. Обслуживание системы смазки двигателя Д-240 также заключается в регулярном наблюдении за давлением масла. Давление масла при номинальной частоте вращения ...
Для гусеничных тракторов КПД трансмиссии определяется по формуле
(1.3)
где — КПД цилиндрической и конической пар шестерен;
— число пар цилиндрических и конических шестерен трансмиссии, передающих крутящий момент, ;
Значения n1 , n2 определим по кинематической схеме прототипа трансмиссии на одной из передач основного ряда. При разветвлении мощности на два потока две пары аналогичных шестерён считают за одну пару.
— коэффициент, учитывающий потери на холостое прокручивание трансмиссии;
Значение коэффициентов принимаем . Для колесных тракторов с двумя ведущими колесами .
Подставляя в формулу (1.2) известные, рассчитанные и принятые значения параметров, определяем необходимую номинальную мощность двигателя.
1.3 Расчет значений показателей двигателя по внешней регуляторной характеристике
1.3.1 Максимальная частота вращения коленвала на холостом ходу определяется как .
1.3.2 Частота вращения, соответствующая максимуму крутящего момента двигателя, определяется как .
1.3.3 Текущие значения мощности на перегрузочной ветви регуляторной характеристики определяются по формуле
(1.4)
где — номинальная эффективная мощность и частота вращения;
— эффективная мощность и частота вращения в искомой точке перегрузочной ветви характеристики;
— коэффициенты для дизелей с непосредственным впрыском топлива.
1.3.4 Крутящий момент двигателя определяем по формуле
(1.5)
1.3.5 Текущее значение часового расхода топлива на перегрузочной корректорной ветви регуляторной характеристики определяется по формуле
(1.6)
1.3.6 Удельный расход топлива подсчитывается по формуле
(1.7),
1.3.7 На регуляторной ветви характеристики, при уменьшении нагрузки двигателя, частота коленвала двигателя повышается от номинальной до максимальной холостого хода . При этом мощность и крутящий момент уменьшаются до нуля при по линейному закону. Часовой расход топлива при всём этом уменьшается также по линейному закону от номинального значения до расхода на холостом ходу . Часовой расход топлива на холостом ходу определяется как , . По часовому расходу топлива и мощности двигателя подсчитывается удельный расход топлива на регуляторной ветви характеристики в искомых точках по формуле (1.7).
Таблица 1.1
Внешняя регуляторная характеристика дизеля
Параметр, ед. изм. |
1.025n H |
1.05n H |
1.075n H |
||||||||
0.4 |
0.6 |
0.7 |
0.8 |
0.9 |
|||||||
800 |
1200 |
1400 |
1600 |
1800 |
2000 |
2050 |
2100 |
2150 |
2200 |
||
49 |
69 |
77 |
85 |
91 |
96 |
72 |
48 |
24 |
0 |
||
585 |
549 |
525 |
507 |
483 |
458 |
335 |
218 |
107 |
0 |
||
14.2 |
19.3 |
21.4 |
23.6 |
25.2 |
26.6 |
21.6 |
16.6 |
11.6 |
6.6 |
||
290 |
280 |
278 |
278 |
277 |
277 |
300 |
346 |
483 |
? |
||
1.4 Построение внешней регуляторной характеристики дизеля и её анализ
Регуляторную характеристику строим в трёх видах:
1.4.1 В функции от частоты вращения коленчатого вала, которая используется для анализа работы двигателя на режимах перегрузки (рисунок 1.);
1.4.2 В функции от эффективной мощности , которая является основной и используется для анализа экономичности двигателя на регуляторной ветви характеристики (рисунок 3.);
1.4.3 В функции от крутящего момента двигателя для удобства анализа регуляторной ветви и тяговых качеств трактора (рисунок 4.).
При анализе регуляторной характеристики дизеля определяем и сравниваем с прототипом по типажу:
- а) Удельный расход топлива на номинальном режиме и сравнить его с прототипом;
- Номинальный удельный расход топлива равен 277 (г/кВтч) что больше удельного расхода топлива прототипа .
б) Коэффициент запаса крутящего момента двигателя:
;
К з = 0,28 что больше прототипа Кз = 0,15.
в) Коэффициент приспособляемости двигателя по крутящему моменту:
;
- что больше прототипа .
г) Коэффициент приспособляемости двигателя по частоте вращения.
;
- что меньше прототипа .
1.5 Построение кривой буксования
Для построения кривой буксования колесных и гусеничных тракторов на стерне нормальной плотности и влажности можно использовать среднестатистические данные буксования в зависимости от относительной величины силы на крюке, т.е. от коэффициента использования сцепной силы тяжести трактора.
где С, d — коэффициенты; S — показатель степени;
- С=0.0333d=1.377S=2
- коэффициент использования сцепного веса
где Р КР — тяговое усилие на крюке, равное 30000 Н.
Значение коэффициента буксования заносим в таблицу 1.2.
Таблица 1.2
Исходные данные для построения кривой буксования
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.55 |
0.6 |
0.65 |
0.7 |
0.75 |
0.8 |
0.81 |
0.83 |
0.84 |
0.841 |
||
% |
0 |
0.3 |
0.7 |
1.1 |
1.7 |
2.5 |
3.1 |
4 |
5 |
7 |
11 |
22 |
28 |
54 |
98 |
100 |
|
Н |
0 |
6082 |
12164 |
18247 |
24329 |
30411 |
33452 |
36493 |
39534 |
42575 |
45616 |
48658 |
49266 |
50482 |
51090 |
51151 |
|
По данным табл. 1.2 строим кривую буксования в зависимости от силы тяги на крюке Р КР (рис. 5).
1.6 Определение диапазона номинальных основных скоростей трактора
Диапазон номинальных основных скоростей определяется в зависимости от силы тяги на крюке Р КР по формуле:
(1.10)
где — тяговый диапазон трактора;
- номинальная сила тяги на крюке, кН;
- номинальное тяговое усилие для тракторов предыдущего
класса, кН;
- = 1,2 — коэффициент расширения тяговой зоны, перекрытия смежных тяговых зон.
Структура ряда передаточных чисел трансмиссии для основных рабочих передач изменяется в геометрической прогрессии и основана на стремлении обеспечить изменение крутящего момента двигателя в одинаковых пределах на всех передачах.
При 6 ступенях коробки передач знаменатель геометрической прогрессии определяется по формуле
(1.11)
1.7 Определение теоретических скоростей трактора, касательных сил тяги и тяговых усилий на крюке на всех передачах основного ряда
Теоретические значения указанных показателей трактора определяются при условии работы двигателя на номинальном режиме:
а) теоретические скорости движения трактора на всех передачах основного ряда: , , , , , .
б) касательные силы тяги на всех передачах основного ряда:
в) тяговые усилия на крюке на всех передачах основного ряда: , , , , , .
1.8 Определение радиуса ведущих колес
Расчет радиуса ведущих колес гусеничного трактора определяется по формуле
(1.12)
1.9 Определение передаточных чисел трансмиссии основного ряда
Передаточное число трансмиссии на первой передаче основного ряда определяется согласно заданной теоретической скорости трактора , по формуле
(1.13)
Передаточные числа трансмиссии на остальных передачах основного ряда определяются через знаменатель геометрической прогрессии
1.10 Расчет и построение теоретической тяговой характеристики трактора
Исходными данными для тягового расчета трактора являются текущие значения крутящего момента , частоты вращения и часового расхода топлива при работе дизеля по внешней регуляторной характеристике от режима максимума крутящего момента до холостого хода (табл. 1.1).
Касательную силу тяги на колесе определяем по крутящему моменту двигателя и передаточному числу трансмиссии по формуле:
(1.13),
сила сопротивления качению:
(1.14),
тяговое усилие на крюке:
(1.15),
Текущие значения коэффициента буксования снимаем с кривой буксования (рис. 5).
Текущие значения теоретической скорости по передачам подсчитываем по формуле:
(1.16),
Действительная скорость трактора определяем по формуле:
(1.17),
Мощность на крюке подсчитываем как
(1.18),
Удельный крюковой расход топлива подсчитываем по формуле:
(1.19),
Тяговый КПД трактора определяем как
(1.20),
По приведенному алгоритму производим расчет показателей трактора по всем передачам основного ряда.
Таблица 1.3
Показатели двигателя по внешней регуляторной характеристике
800 |
1200 |
1400 |
1600 |
1800 |
2000 |
2050 |
2100 |
2150 |
2200 |
||
49 |
69 |
77 |
85 |
91 |
96 |
72 |
48 |
24 |
0 |
||
585 |
549 |
525 |
507 |
483 |
458 |
335 |
218 |
107 |
0 |
||
14.2 |
19.3 |
21.4 |
23.6 |
25.2 |
26.6 |
21.6 |
16.6 |
11.6 |
6.6 |
||
Таблица 1.4
Показатели трактора по тяговой характеристике на первой передаче,
51631 |
48453 |
46335 |
44747 |
42628 |
40422 |
29566 |
19240 |
9443 |
||
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
||
45549 |
42371 |
40253 |
38665 |
36546 |
34340 |
23484 |
13158 |
3361 |
||
7 |
6.6 |
5.7 |
4.7 |
4 |
3.3 |
1.7 |
0.9 |
0.15 |
||
2.8 |
4.2 |
4.9 |
5.6 |
6.3 |
7.0 |
7.2 |
7.3 |
7.5 |
||
2.7 |
3.9 |
4.6 |
5.3 |
6.0 |
6.8 |
7.1 |
7.2 |
7.5 |
||
34.2 |
45.9 |
51.4 |
56.9 |
60.9 |
64.9 |
46.3 |
26.3 |
7 |
||
г/кВт·ч |
415 |
420 |
416 |
415 |
414 |
410 |
466 |
631 |
1657 |
|
0.7 |
0.66 |
0.67 |
0.67 |
0.67 |
0.68 |
0.64 |
0.55 |
0.29 |
||
Таблица 1.5
Показатели трактора на второй передаче,
47844 |
44899 |
42937 |
41464 |
39502 |
37457 |
27398 |
17829 |
8751 |
||
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
||
41762 |
38817 |
36855 |
35382 |
33420 |
31375 |
21316 |
11747 |
2669 |
||
6.5 |
4.8 |
4.1 |
3.9 |
3.1 |
2.8 |
1.4 |
0.6 |
0.1 |
||
3.0 |
4.5 |
5.3 |
6.0 |
6.8 |
7.5 |
7.7 |
7.9 |
8.1 |
||
2.8 |
4.3 |
5.1 |
5.8 |
6.6 |
7.3 |
7.6 |
7.8 |
8.1 |
||
32.5 |
46.4 |
52.2 |
57 |
61.3 |
63.6 |
45 |
25.4 |
6 |
||
г/кВт·ч |
437 |
416 |
410 |
414 |
411 |
418 |
480 |
653 |
1933 |
|
0.66 |
0.67 |
0.68 |
0.67 |
0.67 |
0.66 |
0.62 |
0.53 |
0.25 |
||
Таблица 1.6
Показатели трактора на третьей передаче,
44309 |
41582 |
39765 |
38401 |
36583 |
34690 |
25374 |
16512 |
8104 |
||
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
||
38227 |
35500 |
33683 |
32319 |
30501 |
28608 |
19292 |
10430 |
2022 |
||
4.7 |
3.9 |
3.2 |
2.9 |
2.7 |
2.3 |
1.4 |
0.8 |
0.07 |
||
3.3 |
4.9 |
5.7 |
6.5 |
7.3 |
8.2 |
8.4 |
8.6 |
8.8 |
||
3.1 |
4.7 |
5.5 |
6.3 |
7.1 |
8.0 |
8.3 |
8.5 |
8.8 |
||
32.9 |
46.3 |
51.5 |
56.5 |
60.1 |
63.6 |
44.5 |
24.6 |
4.9 |
||
г/кВт·ч |
431 |
417 |
415 |
418 |
419 |
418 |
485 |
675 |
2367 |
|
0.67 |
0.67 |
0.67 |
0.66 |
0.66 |
0.66 |
0.62 |
0.51 |
0.2 |
||
Таблица 1.7
Показатели трактора на четвертой передаче,
41027 |
38502 |
36819 |
35557 |
33873 |
32120 |
23494 |
15289 |
7504 |
||
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
||
34945 |
32420 |
30737 |
29475 |
27791 |
26038 |
17412 |
9207 |
1422 |
||
3.9 |
2.9 |
2.6 |
2.3 |
2 |
1.8 |
1.85 |
1.5 |
0.05 |
||
3.5 |
5.3 |
6.2 |
7.0 |
7.9 |
8.8 |
9.0 |
9.2 |
9.5 |
||
3.4 |
5.1 |
6.0 |
6.8 |
7.7 |
8.6 |
8.8 |
9.1 |
9.5 |
||
33 |
45.9 |
51.2 |
55.7 |
59.4 |
62.2 |
42.6 |
23.3 |
3.7 |
||
г/кВт·ч |
430 |
420 |
418 |
424 |
424 |
428 |
507 |
712 |
3135 |
|
0.67 |
0.66 |
0.66 |
0.65 |
0.65 |
0.65 |
0.59 |
0.48 |
0.15 |
||
Таблица 1.8
Показатели трактора на пятой передаче,
37997 |
35659 |
34100 |
32931 |
31372 |
29748 |
21759 |
14160 |
6950 |
||
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
||
31915 |
29577 |
28018 |
26849 |
25290 |
23666 |
15677 |
8078 |
868 |
||
2.8 |
2.3 |
2 |
1.9 |
1.8 |
1.7 |
0.9 |
0.4 |
0.02 |
||
3.8 |
5.7 |
6.7 |
7.6 |
8.6 |
9.5 |
9.7 |
10.0 |
10.2 |
||
3.7 |
5.6 |
6.6 |
7.4 |
8.4 |
9.3 |
9.6 |
10.0 |
10.2 |
||
32.8 |
46 |
51.4 |
55.2 |
59 |
61.1 |
41.8 |
22.4 |
2.4 |
||
г/кВт·ч |
433 |
419 |
416 |
427 |
427 |
435 |
516 |
741 |
4833 |
|
0.67 |
0.67 |
0.67 |
0.65 |
0.65 |
0.64 |
0.58 |
0.47 |
0.1 |
||
Таблица 1.9
Показатели трактора на шестой передаче,
35094 |
32934 |
31494 |
30415 |
28975 |
27475 |
20096 |
13078 |
6419 |
||
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
6082 |
||
29012 |
26852 |
25412 |
24333 |
22893 |
21393 |
14014 |
6996 |
337 |
||
2.3 |
2 |
1.9 |
1.7 |
1.5 |
1.3 |
0.9 |
0.35 |
0.01 |
||
4.1 |
6.2 |
7.2 |
8.2 |
9.3 |
10.3 |
10.6 |
10.8 |
11.1 |
||
4.0 |
6.1 |
7.1 |
8.1 |
9.2 |
10.2 |
10.5 |
10.8 |
11.1 |
||
32.2 |
45.5 |
50.1 |
54.7 |
58.5 |
60.6 |
40.9 |
21 |
1 |
||
г/кВт·ч |
441 |
424 |
427 |
431 |
431 |
438 |
528 |
790 |
11600 |
|
0.66 |
0.66 |
0.65 |
0.64 |
0.64 |
0.63 |
0.57 |
0.44 |
0.04 |
||
По данным таблиц 1.4, 1.5, 1.6, 1.7. 1.8 и 1.9 строим тяговую характеристику трактора (рис. 6).
1.11 Анализ тяговой характеристики трактора
Определив по тяговой характеристике величину буксования при номинальной силе тяги, можно сделать вывод о том, что полученное теоретическое буксование не выходит за рамки допустимого и равно 0,65 следовательно, эксплуатационная масса определена верно.
Анализируя тяговую характеристику, можно сделать вывод о том, что трактор целесообразно загружать по передачам в следующих диапазонах:
Первая передачаP KP = 31375 — 34340 Н;
Вторая передачаP KP = 28608 — 31375 Н;
Третья передачаP KP = 26038 — 28608 Н;
Четвёртая передачаP KP = 23666 — 26038 Н;
Пятая передачаP KP = 21393 — 23666 Н;
Шестая передачаP KP = 0 — 21393 Н;
Номинальной силе тяги на крюке по передачам основного ряда соответствует такие значения удельного и часового расхода топлива:
Первая передача(P KP = 34340 Н):gKP = 410 г/кВт·ч;GT = 6,6 кг/ч;
Вторая передача(P KP = 31375 Н):gKP = 418 г/кВт·ч;GT = 6,6 кг/ч;
Третья передача(P KP = 28608 Н):gKP = 418 г/кВт·ч;GT = 6,6 кг/ч;
Четвёртая передача(P KP = 26038 Н):gKP = 428 г/кВт·ч;GT = 6,6 кг/ч;
Пятая передача(P KP = 23666 Н):gKP = 435 г/кВт·ч;GT = 6,6 кг/ч;
Шестая передача(P KP = 21393 Н):gKP = 438 г/кВт·ч.GT = 6,6 кг/ч.
1.12 Расчет и построение потенциальной тяговой характеристики трактора
Потенциальная тяговая характеристика трактора показывает возможную, идеальную зависимость при автоматическом бесступенчатом регулировании скорости трактора, обеспечивающем загрузку двигателя постоянно на номинальную мощность при изменении тягового усилия на крюке.
Расчет потенциальной тяговой характеристики производим в следующей последовательности:
- номинальную мощность двигателя определяем по формуле (1.2);
- мощность (кВт), теряемая в трансмиссии:
(1.23),
- максимальное тяговое усилие на крюке по сцеплению движителей с почвой:
(1.24),
- текущее значение относительной величины тягового усилия на крюке принимаем с шагом
(1.25),
- текущее значение тягового усилия на крюке (Н)
(1.26),
- коэффициент буксования снимаем с кривой буксования (рис. 5);
- текущее значение касательной силы тяги (Н)
(1.27),
- текущее значение теоретической скорости трактора (км/ч)
(1.28),
- текущее значение действительной скорости определяем по формуле (1.19);
- мощность (кВт), подводимая к ведущим колесам:
(1.29),
- мощность (кВт), теряемая при буксовании:
(1.30),
- мощность (кВт), теряемая при качении:
(1.31),
- мощность на крюке определяем по формуле (1.20);
- тяговый КПД трактора рассчитываем по формуле (1.22);
- необходимое передаточное число трансмиссии определяем по формуле:
(1.32),
По приведенному алгоритму результаты расчетов заносим в таблицы 1.9.
Таблица 1.9
Параметры потенциальной тяговой характеристики трактора
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.83 |
0.841 |
||
0 |
6082 |
12164 |
18247 |
24329 |
30411 |
36493 |
42575 |
48658 |
50482 |
51151 |
||
6082 |
12164 |
18247 |
24329 |
30411 |
36493 |
42575 |
48658 |
54740 |
56564 |
57233 |
||
0 |
0.3 |
0.7 |
1.1 |
1.7 |
2.5 |
4 |
7 |
22 |
54 |
100 |
||
46.6 |
23.3 |
15.5 |
11.6 |
9.3 |
7.8 |
6.6 |
5.8 |
5.2 |
5.0 |
4.9 |
||
46.6 |
23.2 |
15.4 |
11.5 |
9.1 |
7.6 |
6.3 |
5.4 |
4.0 |
2.3 |
0 |
||
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
17.3 |
||
0 |
0.2 |
0.5 |
0.9 |
1.3 |
2 |
3.1 |
5.5 |
17.3 |
42.5 |
78.7 |
||
78.7 |
39.2 |
26 |
19.4 |
15.4 |
12.8 |
10.6 |
9.1 |
6.7 |
3.9 |
0 |
||
0 |
39.2 |
52 |
58.3 |
61.5 |
64.2 |
63.9 |
63.9 |
54.1 |
32.2 |
0 |
||
0 |
0.41 |
0.54 |
0.61 |
0.64 |
0.67 |
0.66 |
0.66 |
0.56 |
0.33 |
0 |
||
6.1 |
12.3 |
18.5 |
24.6 |
30.8 |
36.9 |
43.1 |
49.2 |
55.4 |
57.2 |
57.9 |
||
По данным табл. 1.9 строим потенциальную тяговую характеристику трактора (рис. 7).
1.13 Анализ потенциальной тяговой характеристики трактора
Трактор с бесступенчатой трансмиссией обладает значительным преимуществом перед трактором со ступенчатой трансмиссией. Дело в том, что бесступенчатая трансмиссия позволяет изменять передаточное число трансмиссии в зависимости от нагрузки на крюке. Это позволяет сделать номинальную загрузку двигателя постоянной независимо от нагрузки на крюке, при всём этом достигается получение максимальной крюковой мощности при минимальном удельном крюковом расходе топлива.
Рациональный диапазон загрузки трактора тяговым усилием ограничивается значением тягового КПД в граничных точках. Анализируя потенциальную тяговую характеристику, можно заключить, что рациональной будет нагрузка на крюке:
, при которой .
При работе трактора с бесступенчатой трансмиссией происходит постоянная регулировка передаточного отношения трансмиссии для выведения двигателя на номинальную нагрузку, так как в реальных условиях нагрузка на крюке колеблется. У трактора с бесступенчатой трансмиссией крюковая мощность в пределах рационального диапазона загрузки трактора крюковым усилием колеблется незначительно и определяется по формуле (1.20), из которой видно, что при постоянстве крюковой мощности увеличение нагрузки на крюке приводит к снижению скорости движения трактора V T и V, и наоборот, снижение нагрузки на крюке влечёт за собой увеличение теоретической и действительной скоростей движения трактора.
Тяговый КПД определим по выражению:
- где — КПД трансмиссии;
- КПД по сцеплению колес с почвой;
- КПД трактора по сопротивлению качения пути.
Анализируя выражение, можно заметить, что снижение каждого из сомножителей в отдельности приведёт к снижению тягового КПД.
С уменьшением Р KP тяговый КПД падает, вследствие падения до нуля и ; при увеличении , тяговый КПД падает, вследствие падения (Рисунок 7).
2. ТЯГОВЫЙ РАСЧЕТ АВТОМОБИЛЯ
Цель тягового расчета — определение по исходным данным необходимой массы автомобиля, мощности двигателя, передаточных чисел трансмиссии и динамического фактора, обеспечивающих получение динамических показателей автомобиля, удовлетворяющих эксплуатационным качествам.
2.1 Определение массы автомобиля
Собственная масса автомобиля (кг) определяем как:
(2.1)
где — номинальная грузоподъемность, кг;
- коэффициент грузоподъемности (для грузовых автомобилей ).
Полная масса груженого автомобиля (кг) вычисляется по формуле:
(2.2)
где Г- коэффициент грузоподъемности;
75 — масса водителя, кг.
2.2 Определение мощности двигателя
Необходимую мощность двигателя (кВт) определяем из условия возможности движения автомобиля с заданной максимальной скоростью по заданной дороге при полном использовании грузоподъемности автомобиля:
(2.3)
где — коэффициент суммарного сопротивления горизонтального участка пути, соответствующий движению на прямой передаче, ;
- максимальная скорость движения на прямой передаче, км/ч;
- коэффициент обтекаемости, (для грузовых автомобилей );
- площадь лобовой поверхности, м (принимаем по прототипу).
Площадь лобовой поверхности грузовых автомобилей можем определить по формуле:
(2.4)
где В — ширина колеи задних колес, м;
- Н — габаритная высота, м;
- КПД трансмиссии (для грузовых 4К2 ).
2.3 Расчет и построение внешней скоростной характеристики двигателя
Внешняя скоростная характеристика представляет зависимость эффективной мощности и крутящего момента от частоты вращения вала двигателя при полном газе.
Расчет текущей мощности по внешней скоростной характеристике производится по формуле (1.4), а крутящего момента — по формуле (1.5).
Таблица 2.1
Внешняя скоростная характеристика двигателя
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.9 |
1.0 |
1.1 |
||
0.09 |
0.16 |
0.25 |
0.36 |
0.49 |
0.81 |
1 |
1.21 |
||
0.027 |
0.064 |
0.125 |
0.216 |
0.343 |
0.729 |
1 |
1.331 |
||
0.36 |
0.49 |
0.63 |
0.75 |
0.84 |
0.97 |
1 |
0 |
||
27 |
37 |
47 |
56 |
63 |
73 |
75 |
0 |
||
1200 |
1600 |
2000 |
2400 |
2800 |
3600 |
4000 |
4400 |
||
215 |
221 |
224 |
223 |
215 |
194 |
179 |
0 |
||
Ограничительную ветвь карбюраторного двигателя строим соединением прямыми линиями номинальных значений мощности и крутящего момента с нулевыми значениями при максимальной частоте вращения.
2.4 Определение радиуса ведущих колес
Радиус ведущих колес определяем по профилю шины, которую выбираем в соответствии с нагрузкой, приходящейся на одно колесо при движении автомобиля с полной нагрузкой. Нагрузка на одно ведущее колесо определим по формуле:
(2.5),
где — коэффициент нагрузки задних колес в статическом состоянии автомобиля ,
- коэффициент увеличения нагрузки на заднюю ось при движении автомобиля ,
- число шин на ведущей оси.
По нагрузке на колеса выбираем шину по ГОСТ 5513-75 и выбираем радиус ведущих колес .
2.5 Определение передаточных чисел трансмиссии
Передаточное число главной передачи определяем из условия движения автомобиля на высшей (прямой) передаче с максимальной заданной скоростью :
(2.6)
где — передаточное число главной передачи.
Передаточное число на первой передаче определяется из условия преодоления в наибольшей меретяжелой дороги, реализации максимального динамического фактора (), а также из условия реализации возможностей сцепления ведущих колес.
Первое условие записываем уравнением
(2.7)
где — сила сопротивления воздуха (Н) (на первой передаче ею можно пренебречь).
(2.8),
где — передаточное число коробки передач на первой передаче;
- передаточное число трансмиссии на первой передаче;
- номинальный крутящий момент двигателя, Н·м,
Динамический фактор по двигателю не должен превышать динамический фактор по сцеплению колес с почвой
(2.9)
где — коэффициент сцепления, ,
Приравнивая выражения (2.8) и (2.9), определим необходимое передаточное число трансмиссии на первой передаче
(2.10)
Значения передаточных чисел трансмиссии на промежуточных передачах определяем из условия получения наибольшей интенсивности поэтапного разгона при переходе с передачи на передачу. При этом мощность двигателя на всех передачах должна быть одинаковой и по возможности наибольшей.
(2.11)
где z — число передач коробки,
q — знаменатель геометрической прогрессии.
Знаменатель геометрической прогрессии определяется по формуле
(2.12)
Передаточные числа трансмиссии по передачам определяются по формуле:
и т.д. (2.13)
; ; .
2.6 Расчет динамического фактора автомобиля
Текущее значение динамического фактора по передачам порожнего автомобиля в зависимости от крутящего момента двигателя рассчитываем по формуле:
(2.14),
При расчетах крутящий момент двигателя и частота вращения принимаем по данным табл. 2.1.
Таблица 2.2
Расчет динамического фактора. Передача первая
1200 |
1600 |
2000 |
2400 |
2800 |
3600 |
4000 |
4400 |
||
215 |
221 |
224 |
223 |
215 |
194 |
179 |
0 |
||
4.37 |
4.49 |
4.55 |
4.53 |
4.37 |
3.94 |
3.64 |
0 |
||
1.8 |
2.4 |
3.0 |
3.6 |
4.2 |
5.4 |
6.0 |
6.6 |
||
3.24 |
5.76 |
9 |
12.96 |
17.64 |
29.16 |
36 |
43.56 |
||
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
||
4.37 |
4.49 |
4.55 |
4.53 |
4.37 |
3.94 |
3.64 |
0 |
||
Таблица 2.3
Расчет динамического фактора. Передача вторая
1200 |
1600 |
2000 |
2400 |
2800 |
3600 |
4000 |
4400 |
||
215 |
221 |
224 |
223 |
215 |
194 |
179 |
0 |
||
1.82 |
1.87 |
1.90 |
1.89 |
1.82 |
1.64 |
1.52 |
0 |
||
4.3 |
5.7 |
7.2 |
8.6 |
10.0 |
12.9 |
14.3 |
15.8 |
||
18.49 |
32.49 |
51.84 |
73.96 |
100 |
166.4 |
204.5 |
249.6 |
||
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
||
1.82 |
1.87 |
1.90 |
1.89 |
1.82 |
1.64 |
1.52 |
0 |
||
Таблица 2.4
Расчет динамического фактора. Передача третья
1200 |
1600 |
2000 |
2400 |
2800 |
3600 |
4000 |
4400 |
||
215 |
221 |
224 |
223 |
215 |
194 |
179 |
0 |
||
0.76 |
0.78 |
0.79 |
0.79 |
0.76 |
0.68 |
0.63 |
0 |
||
10.3 |
13.8 |
17.2 |
20.7 |
24.1 |
31.0 |
34.4 |
37.9 |
||
106.1 |
190.4 |
295.8 |
428.5 |
580.8 |
961 |
1183.4 |
1436.4 |
||
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
||
0.76 |
0.78 |
0.79 |
0.79 |
0.76 |
0.68 |
0.63 |
0 |
||
Таблица 2.5
Расчет динамического фактора. Передача четвертая
1200 |
1600 |
2000 |
2400 |
2800 |
3600 |
4000 |
4400 |
||
215 |
221 |
224 |
223 |
215 |
194 |
179 |
0 |
||
0.31 |
0.32 |
0.33 |
0.32 |
0.31 |
0.28 |
0.26 |
0 |
||
25.0 |
33.3 |
41.6 |
50.0 |
58.3 |
74.9 |
83.3 |
91.6 |
||
625 |
1108.9 |
1730.6 |
2500 |
3398.9 |
5610 |
6938.9 |
8390.6 |
||
0.0137 |
0.0244 |
0.0381 |
0.055 |
0.0748 |
0.1234 |
0.1526 |
0.1846 |
||
0.30 |
0.29 |
0.29 |
0.26 |
0.23 |
0.16 |
0.11 |
0 |
||
2.7 Построение динамической характеристики автомобиля
По данным табл. 2.2 — 2.5 строим динамическую характеристику порожнего автомобиля (рис. 9).
После чего преобразовываем ее в универсальную, позволяющую находить динамический фактор и производить другие эксплуатационные расчеты для автомобиля и автопоезда любой массы.
Построенная характеристика дополняется шкалой Г грузоподъёмности, на которой откладываются значения коэффициента грузоподъёмности, определяемого по формуле
(2.15),
где m а — действительная масса автомобиля, кг.
2.8 Анализ динамической характеристики автомобиля
Определяем соответствие результатов расчетов проектному заданию:
а) D max на первой передаче полностью груженого автомобиля равно 1.44 Dmax по заданию равно 0.54;
— б) максимальная скорость движения полностью груженого автомобиля по грунтовой дороге равна 91.6 км/ч, что больше 85 км/ч (по заданию).
ЛИТЕРАТУРА
[Электронный ресурс]//URL: https://inzhpro.ru/referat/moschnost-i-tyagovyie-pokazateli-traktorov/
1. Методические указания к курсовой работе по тракторам и автомобилям. — Омск: ОмГАУ, 2006г.2. Скотников В.А, Мащерский А.А и др. Основы теории и расчёта трактора и автомобиля. — М.: Агропромиздат,1986.3. Справочные материалы по тракторам и автомобилям. — Омск: ОмСХИ, 1989.