Строительная керамика — большая группа керамических изделий, применяющихся при строительстве жилых и промышленных зданий и сооружений. Изделия строительной керамики отличаются своей долговечностью, высокими художественными характеристиками, кислотостойкостью и полным отсутствием токсичности. В настоящее время предусматривается преимущественное развитие производства изделий, обеспечивающих снижение металлоёмкости, стоимости и трудоёмкости строительства, веса зданий, сооружений и повышение их теплозащиты, развитие мощности по производству строительных материалов с использованием золы и шлаков тепловых электростанций, металлургических и фосфорных шлаков, отходов горнодобывающих отраслей промышленности и углеобогатительных фабрик, техническое перевооружение производства кирпича на базе новейшей техники.
Вот уже несколько тысячелетий кирпич — самый распространенный строительный материал. Кирпич может быть, различным по составу сырьевой смеси, технологии производства и даже форме. Какие же существуют виды и свойства кирпича? Традиционно под кирпичом понимают брусок, изготовленный из глины. Стоящие века церкви, соборы, стены и башни кремлей и по сей день поражающие своей красотой и монументальностью, выполнены именно из керамического кирпича. Помимо неповторимого внешнего вида, прочности и долговечности, к достоинствам такого кирпича можно отнести огнестойкость, высокую звуконепроницаемость, способность сохранять тепло и уравновешивать колебания температур.
По назначению керамический кирпич подразделяется на строительный (рядовой), облицовочный (лицевой) и специальный. Строительный кирпич служит для возведения несущих стен и перегородок, которые впоследствии облицовываются, штукатурятся, окрашиваются. Важно, чтобы несущая способность кирпича была достаточной. Для лучшего сцепления с кладочным раствором боковые грани кирпича могут быть рифлеными. Облицовочный кирпич предназначен для отделки фасадов и интерьеров, в нем не допускаются трещины, отколы, известковые включения, пятна, выцветы и другие дефекты. Выбирая лицевой кирпич, надо особенно внимательно следить, чтобы близко к его поверхности или на ней не было известковых включений: при попадании влаги они разбухают и разрушают кирпич. Разновидности лицевого кирпича — фактурный (с неровным рельефом — «черепашка», «кора дуба» и пр. или правильным геометрическим рисунком на боковых гранях) и фасонный (полукруглый, угловой, скошенный, с выемками и других форм).
Производство лицевого керамического кирпича
... различным по составу сырьевой смеси, технологии производства и даже форме. По назначению керамический кирпич подразделяется на строительный (рядовой), облицовочный (лицевой) и специальный. Строительный керамический кирпич позволяет сэкономить при строительстве дефицитные металлы, ... Она позволяет создавать уникальные здания и сооружения, не имеющие аналогов в мировой истории архитектуры. Высокая ...
Последний позволяет изысканно оформлять окна, карнизы, создавать здания с закругленными углами, выполнять арки, своды, колонны. Кроме того, при использовании его исчезает необходимость подрезать обычный лицевой кирпич. Если для строительного кирпича цвет не принципиален, то для лицевого это один из главных параметров. Современный керамический кирпич может быть практически любым, от белого до черного, и даже неоднородного цвета (например «плавающего» от темного оттенка к светлому, от коричневого к синему, от желтого к синему и т. д.).
Цвет зависит, прежде всего, от технологии обжига, а также от состава, качества и цвета глины-сырца.
Для расширения цветовой гаммы производители смешивают глины нескольких видов, добавляют в сырьевую смесь красители. Почти любой оттенок можно получить с помощью ангоба и глазури. Ангоб — это тонкий декоративный слой из белой или цветной глины, который перед обжигом наносится на отформованное изделие. Глазурь — цветной стекловидный слой на поверхности кирпича, имеющий характерный блеск. Кроме того, благодаря двойному обжигу уменьшается водопоглощение кирпича, а значит, повышается его стойкость к воздействиям атмосферы. Среди новых разработок в области «декорирования» кирпича — металлополимерное покрытие, позволяющее создать на поверхности изделия неожиданные сочетания цветов, рисунки и надписи. К специальным относят кирпичи, способные «выживать» в экстремальных условиях. Так, кирпич огнеупорный применяется для устройства печей, каминов, дымовых труб. Он изготавливается из шамотной глины путем ее обжига при очень высокой температуре. Этот кирпич имеет высокую плотность и выдерживает частые колебания температур (верхний предел — свыше 1000 0 С); обычно бывает песочно-желтого цвета. Отдельного упоминания заслуживает клинкерный кирпич. Его получают в результате высокотемпературного обжига пластичных глин отборного качества до полного спекания, без включений и пустот. Благодаря особенностям сырья и специальным технологиям получается исключительно прочное, низкопористое, цвето-, износо-, морозостойкое и, как следствие, долговечное изделие.
Строительный керамический кирпич является самым распространённым местным стеновым материалом, позволяющим экономить дефицитные металлы, цемент, а также транспортные средства. В общем балансе производства и применения стеновых материалов керамический кирпич занимает более 30%.
В данный момент в производстве строительного керамического кирпича сосредоточено внимание на совершенствовании технологии, улучшении качества выпускаемой продукции и расширении ассортимента. При строительстве новых предприятий предусматривается установление автоматизированных и высокомеханизированных технологических линий на базе современного отечественного и импортного оборудования. Осваивается выпуск эффективной пустотелой продукции, которая должна постепенно заменять традиционный полнотелый кирпич. Это позволит не только экономить сырьё, но и уменьшать толщину и массу наружных стен без снижения их теплозащитных свойств, а также создавать облегчённые конструкции панелей для индустриализации строительства.
Расширение ассортимента и, в частности, производство эффективных изделий с увеличением размеров и уменьшением средней плотности до 1250-1350 кг/м 3 и менее за счёт рациональной формы и увеличения количества пустот снизит расход материалов на 1м2 наружных стен на 20-30%. На действующих заводах наряду с дальнейшей механизацией и автоматизацией производства кирпича будут всемерно улучшаться его качество и повышаться прочностные свойства, требующиеся для строительства зданий повышенной этажности и специальных сооружений. Применение в строительстве кирпича высоких марок в несущих конструкциях позволяет уменьшить его расход на 15-30%.
Искусственные каменные материалы для стен гражданских зданий
... чем обжиг кирпича. Пустотелая керамика применяется для кладки стен, заполнения каркасов многоэтажных зданий, перегородок. Пустотелые керамические камни ... качествами. 1. СПОСОБЫ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННЫХ КАМЕННЫХ МАТЕРИАЛОВ Сырьем для производства искусственных каменных материалов служат: глина, известь, цемент, ... активно применяется в наружной облицовке любых строительных объектов, а также в зонах с ...
Необходимо более широко развивать производство лицевого кирпича, позволяющего исключать оштукатуривание зданий и улучшать их архитектурный вид.
Улучшение качества продукции вызывает необходимость повышения культуры производства, более строгого соблюдения технологических параметров по всем пределам, улучшения обработки, рациональной шихтовки путём ввода различных добавок, в том числе отходов других отраслей промышленности.
1. Ассортимент и характеристика выпускаемой продукции
Кирпич применяется в строительстве для кладки наружных и внутренних стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков.
В России основные размеры лицевого кирпича составляют: 250 х 120 х 65 мм для одинарного кирпича, 250 х 120 х 88 мм для полуторного и 250 х 120 х 138 мм для двойного. На Западе стандарты другие, к тому же их намного больше. Среди самых ходовых — 200 х 100 х 50(65) мм, 240 х 115 х 52 (71) мм. Важный параметр для строительного и лицевого кирпича — наличие пустот. Бывают кирпичи полнотелые, пустотелые (эффективные) и пустотелые поризованные (сверхэффективные, «теплая керамика»).
У полнотелых, как следует из названия, отверстий нет. Их чаще всего применяют там, где нужно выдерживать распределенные нагрузки — фундамент, цоколь, но можно выложить ими и наружную стену.
Однако чтобы обеспечить нормативную теплопроводность, стены из них должны быть достаточно толстыми. Другое дело пустотелые кирпичи. У них имеются сквозные отверстия (различной формы), благодаря которым они теплее, а значит, стены можно делать тоньше. Кроме того, пустотелые кирпичи легче, поэтому от них меньше нагрузка на фундамент. Следует отметить, что лицевой кирпич почти всегда является пустотелым. Наконец, самый «теплый» кирпич — поризованный. В нем, как и в изделии предыдущего типа, имеются сквозные отверстия, однако структура самого материала принципиально иная. В глину добавляют особые органические или минеральные компоненты, которые выгорают при обжиге, образуя мельчайшие замкнутые поры.
В результате, сохранив все достоинства обычной керамики, поризованный кирпич существенно улучшил ее теплозащиту: если у пустотелого кирпича самый высокий коэффициент теплопроводности — как правило, 0,28 — 0,4 Вт/м 0 С, то у поризованного — 0,18 — 0,22 Вт/м 0 С. Причем на прочность поры совершенно не влияют. Более того, изделие становится легче, что позволяет увеличить его размеры (они могут достигать 510 х 250 х 219 мм).
Благодаря этому стены возводятся значительно быстрее, чем из обычного кирпича, и они становятся тоньше. Предел прочности кирпича при сжатии определяет его марку. Она обозначается буквой «М» и цифрой, показывающей, какую нагрузку может выдержать 1 см изделия. Чаще всего встречаются кирпичи марок М-75, М-100, М-125, М-150, М-175, М-200, М-250, М-300. Кирпичи марок 75 и 100 подходят для стен 2 — 3х этажного дома, марок 125 и выше — для стен многоэтажных зданий. Марки кирпича относятся ко всем типам изделий, так что пустотелый лицевой кирпич марки 100 будет столь же прочен, как и полнотелый строительный той же марки. Еще один нюанс: предел прочности кладки на сжатие зависит не только от марки кирпича, но и от марки раствора, условий его твердения, а также от качества кладки.
Бензин, его марки. Производство бензина
... при подборе аналогов необходимо ознакомиться с описанием каждой марки. Производство автомобильного бензина в мире равно примерно 900 млн т в ... оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия и др. В последние годы экологические свойства топлива ... условия детонации в городском цикле, а ОЧМ – в шоссейном. Связаны они просто: для бензинов А-80 ОЧМ должно ...
В условиях нашего изменчивого климата одна из важнейших характеристик для кирпича — морозостойкость. Она измеряется количеством циклов попеременного замораживания и оттаивания водонасыщенного изделия: чем больше циклов оно способно выдержать, не изменив своих потребительских свойств, тем дольше его срок эксплуатации. В технической документации морозостойкость обозначается буквой «F», а следующая за ней цифра говорит о количестве циклов, которые кирпич может выдержать. В Центральном регионе рекомендуется применять строительный кирпич с морозостойкостью не ниже 15 — 25 циклов, лицевой — не ниже 50 циклов /8/.
1-одинарный полнотелый. 2-одинарный пустотелый.
Рис. 1.1. Кирпич керамический
Масса изделий
Вид продукции Масса, кг. 1.Одинарный полнотелый кирпич 3.5 2.Одинарный пустотелый кирпич 2.7-2.8 Продукция должна выпускаться в соответствии с требованиями ГОСТа 530-95:
1. Допускается изготовление кирпича с закруглёнными углами, радиусом закругления до 15 мм.
2. Пустоты в кирпиче должны располагаться перпендикулярно или параллельно постели и могут быть сквозными или несквозными.
3. Размер цилиндрических сквозных пустот по наименьшему диаметру должен быть не более 16 мм, ширина щелевидных пустот не более 12 мм. Диаметр не сквозных пустот не регламентируется.
4. Толщина наружных стенок кирпича не менее 12 мм.
5. Отклонение от установленных размеров и показателей внешнего вида кирпича не должны превышать на одном изделии следующих значений:
- по длине 5 мм.
- по ширине 4 мм.
- по высоте 3 мм
6. Не прямолинейность рёбер и граней кирпича и камней, мм. (не более):
- по постели 3;
- по ложку 4.
7. Отбитости углов глубиной от 12 до 15 мм.
8. Трещины протяжённостью по постели полнотелого кирпича до 30 мм., пустотелых изделий не более чем до первого ряда пустот, штук:
- на ложковых гранях -1;
- на тычковых гранях -1.
9. Общее количество кирпича с отбитостями должно быть не более 5%.
10. Количество половняка в партии должно быть не более 5%. Половняком считают изделия, состоящие из парных половинок или имеющие трещины, протяженностью по постели полнотелого кирпича более 30 мм., пустотелых изделий — более, чем до первого ряда пустот (на кирпиче во всю толщину).
11. Водопоглащение кирпича, высушенного до постоянной массы, должно быть для полнотелого кирпича не менее 8%, для пустотелых изделия не менее 6%.
12. Кирпич в насыщенном водой состоянии должен выдерживать без каких либо признаков видимых повреждений (расслоение, шелушение, растрескивание) не менее 25 циклов попеременного замораживания и оттаивания.
Производство рядового шамота
... На шамот выбирают глины с высоким содержанием А120з, глины хорошо спекающиеся, желательно при невысоких температурах. Шамот применяют в качестве отощителя при производстве шамотных и многошамотных ... форма брикета обеспечивает равномерное прохождение дымовых газов по всему объему шахтной печи. К брикету предъявляют следующие требования: достаточная высокая механическая прочность, чтобы ...
13. Предел прочности при сжатии для всех видов кирпича, средний для 5 образцов:
- для марки 75:……………………………………………… 7,7 МПа;
- для марки 100:……………………………………………
10 МПа;
- для марки 150:……………………………………………. 15 МПа.
При изгибе:
- марки 75:……………………………………………………. 1,4 МПа;
- марки 100:…………………………………………………..
1,6 МПа;
- марки 150:………………………………………………….. 2,1 МПа.
14. Кирпич высшей категории качества должен удовлетворять требованиям:
- марка по прочности не менее 100;
- морозостойкость не менее (Мрз.) 25 циклов;
- общее количество кирпича с отбитостями, превышающими допускаемые не более 3% /7/.
Для производства выбираем полнотелый и пустотелый керамический кирпич по ГОСТ 530-95.
2. Выбор сырьевой базы и энергоносителей
В качестве сырья для производства керамического кирпича и керамических камней применяют:
- глинистые породы, встречающиеся в природе в плотном, рыхлом и пластическом состоянии, называемые в целом легкоплавкими глинами, а также трепельные и диатомитовые породы;
- органические и минеральные добавки, корректирующие свойства природного сырья (кварцевый песок, шлаки, шамот, опилки, уголь, зола и другие.);
- Светложгущиеся огнеупорные и тугоплавкие глины, стекло, мел, отходы фарфорового производства, огнеупорного кирпича для получения офактуренного лицевого кирпича, изготавливаемого из легкоплавких глин.
Основным сырьём для производства кирпича являются легкоплавкие глины — горные землистые породы, способные при затворении водой образовывать пластическое тесто, превращающееся после обжига при 800- 1000 0 С в камнеподобный материал.
Легкоплавкие глины относятся к остаточным и осадочным породам. Для производства кирпича наибольшее применение нашли элювиальные, ледниково-моренные, гумидные, аллювиальные, морские и некоторые другие глины и суглинки.
Для определения возможности использования глин и суглинков для производства стеновых материалов необходимо знать их зерновой, химический и минералогический состав, пластичность и технологические свойства.
Наиболее ценной для производства кирпича является глинистая фракция, содержание которой не должно быть менее 20%.
Очень важно для характеристики глины содержание в ней глинозёма Аl 2 O3 , повышающего технологические свойства сырья: в легкоплавких глинах оно колеблется в пределах от 10 до 15%.
Содержание кремнезёма SiO 2 колеблется в пределах от 60 до 75%. В глинах часть кремнезёма находится в связанном виде в глинообразующих минералах и в несвязанном виде как примесь, обладающая свойством отощающих материалов.
Технология производства водки. Оценка качества ликероводочных изделий
... кирпичом выложена цифра года строительства. Сейчас в этом корпусе размещается основное производство ликероводочных изделий. ... определяют успех. Для производства водки используются зерновые спирты собственного производства класса "Люкс", ... являются слагаемыми успешной работы. Высокая культура производства, отличное качество продукции, ... Глава I . Основное сырье. 1.1 Этиловый спирт, его свойства ...
Кальций содержится в глинах в виде карбонатов и сульфатов, а магний — в виде доломита. В некоторых сортах глин наличие кальция и магния в пересчете на их оксиды (CaO и MgO) достигает 25%, но, как правило, общее их содержание не превышает 5-10%. Обычно соединения кальция и магния отрицательно влияют на спекаемость и прочность керамических изделий. При наличии в глинистых породах свыше 20% карбонатных примесей они не могут использоваться без соответствующей обработки или обогащения. Оксиды железа, титана, марганца и других металлов содержатся в глинах в количестве до 10-12% и оказывают существенное влияние на целый ряд важнейших свойств керамических изделий. Наибольшее влияние оказывают оксиды железа, находящиеся в глине в виде оксида Fe 2 O3 и гидроокиси Fe(OH)3 и оксиды марганца MnO2. Они улучшают спекаемость изделий и придают им окраску.
Калий и натрий входят в глины в виде щелочных оксидов, содержание которых находится в пределах 3,5-5%.
Сера присутствует в глинах в различных соединениях, ее содержание не оказывает на качество стеновых керамических изделий.
Глинообразующие минералы, определяющие основные свойства глин, представляют собой в основном гидросиликаты глинозема, содержащие кремнезем и окислы железа, а также сульфаты, карбонаты и растворимые в воде соли различных металлов.
Химический, минералогический и гранулометрический состав глин, используемых для производства кирпича (см. табл.2.1.).
Требования к глинам, предназначенным для производства керамического кирпича и керамических камней /3/.
Норма
Химический состав глины, %:85, 7, 2
Гранулометрический состав, %:
частицы менее 1 мкм (не менее) 15
частицы менее 10 мкм (не менее) 30
Влажность карьерная, % (не более) 25
Засорённость:
Крупнозернистыми включениями более 5 мм, % (не более)
Карбонатными включениями, более 3 мм 5
Пластичность, не менее 6 Воздушная усадка < 7-8 % Огневая усадка < 1-2 % Водопоглощение > 6 % Огнеупорность < 1350 о С Для улучшения природных свойств глиняного сырья-уменьшения общей усадки, чувствительности к сушке и обжигу, улучшения формовочных свойств, широко применяют добавки.
Добавки, используемые при производстве кирпича и керамических камней, по назначению можно разделить на:
- отощающие — песок, шамот, дегидратированная глина, уносы керамзитового производства и другие минеральные невыгорающие добавки;
- отощающие и выгорающие полностью или частично — древесные опилки, лигнин, торф, лузга, многозольные угли, шлаки, золы ТЭЦ, отходы углеобогатительных фабрик и другие;
- выгорающие добавки в виде высококалорийного топлива — антрацит, кокс и другие, вводимые в шихту для улучшения обжига изделий;
- обогащающие и пластифицирующие добавки — высокопластичные жирные глины, бентонитовые глины, сульфитноспиртовая барда и другие /2,4/.
Технические требования, предъявляемые к добавкам /3/.
Показатели Норма 1. Зола Влажность, % (не более) 55 2.Песок (крупнозернистый) Влажность, %
Производство керамического кирпича (2)
... выпускаемой в данной курсовой работе представлены в таблице 1. керамический кирпич технология 2. Характеристика ... разное время. Пример: автоклавная обработка: изделие на месте в автоклаве, но ... глин и суглинков для производства стеновых материалов необходимо знать их зерновой, химический и минералогический состав, пластичность и технологические свойства. Наиболее ценной для производства кирпича ...
Фракция 5, 1,5-0,15 мм
2.1 Характеристика используемого сырья
В данном проекте для производства керамического кирпича в качестве основного компонента используем глину Малоступкинского месторождения.
Химический состав глины Малоступкинского месторождения
Оксид SiO 2 Al2 O3 TiO2 Fe2 O3 CaO MgO Na2 O SO3 П.П.П. Содержание % 75,1 21,9 6,44 7,07 5,42 5,42 _ 0,87 12,09 Свойства глины:
Гранулометрический состав, %:
- частицы менее 1 мкм — не менее 15 %;
- частицы менее 10 мкм — не менее 30 %.
Число пластичности: до 25.
Влажность 18 -22 %.
Коэффициент чувствительности к сушке 1,32 — 2,72;
- Воздушная усадка 6 — 10 %.
Карбонатные включения более 3 мм не допускаются
В качестве корректирующих добавок к сырью выбираем местные промышленные отходы (золы ТЭЦ) и песок.
Золы ТЭЦ представляют собой отходы от сжигания в пылевидном состоянии каменных углей. Добавка золы ТЭЦ делает кирпич менее чувствительным к сушке и повышает его прочность. Также золы ТЭЦ действуют как выгорающая добавка, т.к в золе остаётся не выгоревшее твёрдое топливо (каменный уголь), которое выгорает, и вследствие своего выгорания интенсифицирует процесс обжига, улучшает спекаемость массы и тем самым повышает прочность изделий /4/.
Химический состав золы ТЭЦ-2
Наименование Содержание оксидов, % Зола ТЭЦ-2 SiO 2 Al2 O3 CaO MgO SO3 Na2 O Fe2 O3 П.П.П. г. Иваново 46,08 12,03 11 1,51 1,3 0,24 17,36 10 — 25 100 Влажность золы, поставляемой на завод, составляет 40 %
Химический состав песка с Ивгоркарьера
Наименование Содержание оксидов, % SiO 2 Al2 O3 Fe2 O3 CaO MgO П.П.П. Песок 91,20 3,19 1,37 <1,29 <0,71 0,48 Физические показатели песка:
1. Объёмная насыпная масса 1,6 т/м3 ;
2. Модуль крупности 1,6 — 1,8
В данной работе для утилизации отходов собственного производства (4%) в качестве отощающей добавки используем шамот.
2.2 Характеристика топлива
Газообразное топливо отличается от жидкого и твердого рядом преимуществ, важнейшими из которых являются: легкое, удобное регулирование процесса горения и возможность полной механизации и автоматизации его, простота топливного хозяйства и оборудования; отсутствие золы при сжигании; лучшие санитарно-гигиенические условия труда, обслуживающего персонала.
В состав газообразного топлива входят горючая часть и балласт. Горючая часть представляет собой механическую смесь простейших горючих газов, таких как водород, метан, пропан, бутан и других газообразных углеводородов. Балластом являются негорючие газы, в том числе углекислый газ СО 2 , азот N2 и кислород О2 . При добыче газа в его составе имеются также водяные пары, смолистые вещества, минеральная пыль. Однако перед подачей газа потребителям его очищают, в результате чего содержание примесей сводится к минимуму.
Технология производства керамического кирпича
... печах скорость нагрева и плавления материалов должна быть максимальной. Совершенно другие требования предъявляются к обжигу изделий. При обжиге керамических огнеупорных изделий ... для получения полуфабриката сырца, экструзионное или полусухое прессование полуфабриката, сушка и обжиг. В зависимости ... Сырьем для производства обыкновенного глиняного кирпича является суглинок средней, пылевой коричневого ...
В данной работе используем топливо Угорского месторождения.
Состав влажного (рабочего) газа, об%
CН Сумма 95,8 0,13 0,07 0,07 0,02 1,7 1,2 1,0 100 Теплота сгорания газа: /5/.
3. Обоснование состава композиции
С целью получения необходимых технологических параметров продукции, составы шихт могут быть самые различные.
В производстве керамического кирпича используется глина Малоступкинского месторождения, она составляет основную часть шихты-84%. Поскольку эта глина имеет число пластичности 25 и является среднечувствительной к сушке, необходим ввод добавок. Для утилизации отходов собственного производства в качестве отощающей добавки вводится шамот — 4%. Для уменьшения числа пластичности глины вводится отощающая добавка (песок)- 4% и отощающая и выгорающая не полностью (зола)-8%.
Состав шихты:
Глина — 84% (об.),
Зола — 8% (об.),
Песок-4% (об.),
Шамот — 4% (об.).
Выбранный шихтовой состав позволяет выпускать керамический кирпич марки 100, но возможны партии, имеющие марки 75 или 150, который удовлетворяет ГОСТу 530-95 по всем требованиям.
4. Аналитический обзор научно-технической литературы и обоснование способа производства
Глины для производства кирпича добывают открытым способом в карьерах. Открытая разработка месторождений глин включает:
1. Подготовительные работы — удаление кустарников, пней, отвод вод, устройство дорожных покрытий;
2. Вскрышные работы — удаление растительного слоя и проведение выработок, обеспечивающих доступ к глинам;
3. Добычные работы — выемка глины из массива и погрузка ее на транспортные средства.
При проведении карьерных работ учитываются физико-механические свойства пород.
На большинстве глиняных карьеров применяется валовая добыча, при которой глину разрабатывают по всей мощности уступа, без выделения отдельных пластов сырья. В отдельных случаях используют селективную (послойную) добычу глин.
Выбор добычных механизмов зависит от принятого способа формования изделий, горногеологических условий залегания сырья, его физико-механических свойств и способа выемки. При вылеживании сырья добывать его можно любыми машинами, в том числе одноковшовыми экскаваторами и канатно-скреперными установками. Вылеживание сырья весьма целесообразно при любом методе разработки глин.
В данном проекте выбираем добычу сырья с помощью многоковшового экскаватора.
На глиняных карьерах широко применяют автомобильный, рельсовый и реже конвейерный транспорт. Автомобильный транспорт является наиболее простым, надежным и маневренным. При применении экскаваторов с невысокой производительностью весьма эффективны самосвалы грузоподъемностью до 10 т.
Совместно с экскаваторами высокой производительности целесообразно использовать большегрузные прицепы с тягачами. В отдельных случаях применяют конвейерный транспорт, создающий условия для непрерывной работы добычного оборудования. Однако при неблагоприятных атмосферных условиях намокшая глина прилипает к ленте конвейера, что затрудняет его работу. На ленточные конвейеры глина поступает через погрузочные бункера, емкость которых должна быть не менее 1, 5—2-кратной емкости ковша экскаватора.
Станция обжига известняка в вертикальных печах в производстве ...
... свидетельствует о большом значении этого продукта для всех областей человеческой деятельности. Станция обжига известняка является одной из первых стадий технологической схемы получения кальцинированной соды. Необходимая для ... NаНСО 3 = Nа2 СО3 + СО2 + Н2 О. (2.4) В зависимости от конструкции печи температура разложения NаНСОз составляет 160-180°С. Эта операция протекает в отделении ...
В данном проекте для доставки глины с карьера, будем применять автомобильный транспорт, а точнее самосвалы. Данный выбор связан с тем, что этот вид транспорта наиболее прост в обслуживании и легко доступен.
При использовании рыхлых глин с невысокой карьерной влажностью применяют глинохранилище простейшего типа, которые представляет собой емкость длиной 40 м и объемом от 100 м 3 до 10 тыс. м3 глины. После вылеживания сырье многоковшовыми экскаваторами подается в производство. Глинохранилища обеспечивают бесперебойное и ритмичное снабжение завода сырьем независимо от метеорологических условий. В тех случаях, когда глинистое сырье содержит много больших слипшихся или смерзшихся кусков, она разрыхляется глинорыхлителями /2/.
При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. При наличии рыхлых глин и глин средней плотности с влажностью не выше 23-25% применяют пластический способ переработки глин; для слишком плотных глин, плохо поддающихся увлажнению и обработке с низкой карьерной влажностью (менее 14-16%),-полусухой способ переработки.
Метод полусухого прессования предусматривает предварительное высушивание сырья, последующее измельчение его в порошок, прессование сырца в пресс-формах при удельных давлениях, в десятки раз превышающих давление прессования на ленточных прессах. Преимущества технологии полусухого прессования заключается в том, что спрессованный кирпич-сырец укладывается непосредственно на печные вагонетки и на них высушивается в туннельных сушилках, или же, минуя предварительную досушку, непосредственно поступает на обжиг. Комплексная механизация производства осуществляется проще, чем при методе пластического формования. Однако технология полусухого прессования требует более совершенной системы аспирации на трактах приготовления и транспортирование порошка, использования более высокопроизводительных прессов.
Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья.
При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 50 0 С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку.
Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига.
Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства. Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы /9/.
В данном проекте будем использовать схему производства изделий пластическим методом, поскольку используемая глина достаточно высокой влажности, среднепластичная.
Производство керамики должно быть обеспечено непрерывной подачей однородного глинистого материала, лишенного каменистых включений, имеющего разрушенную природную «структуру» для лучшего смачивания, сохраняющего достаточно постоянную влажность независимо от времени года и равномерно перемешенного с добавками. На керамических заводах сырьевые материалы подвергают грубому, среднему и мелкому дроблению, грубому и тонкому помолу. Обычно тонким помолом завершается механическое измельчение материалов, что обеспечивает более интенсивное их спекание, содействует снижению температуры обжига. Измельчение глинистых материалов проводят последовательно на вальцах грубого и тонкого измельчения. Каменистые включения не могут быть полностью выделены из глины общепринятыми механическими приемами — дезинтеграторными ребристыми вальцами. Опыт показывает, что при пользовании этими машинами в глине может остаться около половины (а иногда и более) камней. В дальнейшем эти камни будут в значительном своем количестве перемолоты гладкими вальцами или бегунами, что, однако, вызывает быстрый износ бандажей и частые ремонты. Бегуны мокрого помола используют при наличии в глинах трудноразмокаемых включений и для обработки плотных глин и глин, содержащих известковые включения. Предварительное (грубое) дробление непластичных твердых материалов в керамической технологии производят в щековых или конусных дробилках, работающих по принципу раздавливающего и разламывающего действия. Степень измельчения в щековой дробилке 3-10, а в конусной — 6-15. Среднее и мелкое дробление, грубый помол непластичных материалов выполняется с помощью бегунов, молотковых дробилок, валковых мельниц. Молотковая дробилка обеспечивает высокую степень измельчения (10-15), однако влажность дробимого материала не должна быть более 15%.
Подача и дозировка сырья на большинстве кирпичных заводов происходит при помощи ящичных питателей.
В настоящее время на многих керамических и кирпичных заводах широко применяется увлажнение глины паром. Этот способ состоит в том, что в массу подается острый пар, который при соприкосновении с холодной глиной конденсируется на ее поверхности. В результате пароувлажнения обрабатываемая масса нагревается до 45-60 о С. Пароувлажнение имеет существенные преимущества, так как улучшается способность массы к формованию, что обуславливает уменьшение брака при формовке и повышение производительности ленточных прессов на 10-12%, снижение расхода электроэнергии на 15-20%. В результате пароувлажнения улучшаются сушильные свойства массы, что позволяет сократить продолжительность сушки сырца на 40-50%. Иногда производят дополнительную обработку керамической массы, которая осуществляется в вальцах тонкого помола, дырчатых вальцах или в глинорастирателе. Чтобы достичь однородности массы на кирпичных заводах её вылёживают, за время вылеживания масса также усредняется /9/.
На кирпичных заводах нашли наибольшее применение ленточные безвакуумные прессы и вакуум-прессы.
Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы. При работе пресса наблюдают за влажностью и качеством бруса, качеством и регулярностью поступления массы, наличием смазки. Наибольшие зазоры между витками лопастного шнека и рубашкой допускаются 5 мм и между нагнетательным валком и витками лопастного вала — 10 мм. Необходимое разрежение в вакуум-камере создается вакуумным насосом. Глина поступает в глиномешалку и верхним шнеком продавливается через решетку в вакуум-камеру, где жгутики ее разрезаются ножами и масса обезвоздушивается. Затем масса захватывается нижним шнеком и продвигается им к головке пресса, где уплотняется и равномерно выходит из мундштука.
В процессе формования изделий контролируют разрежение в вакуум-камере пресса, состояние лопастей, шнека и мундштука, влажность и температуру бруса, размеры сырца и некоторые другие величины /2/.
В данном проекте выбираем вакуум-пресс, который обеспечивает наибольшую производительность, чем безвакуумные.
Непрерывно поступающий из пресса брус сырца разрезается отрезным устройством на куски требуемой длины (2,5 м).
Отрезанный кусок бруса отделяется ускорительным транспортёром и подаётся на разрезное устройство, где он принимается транспортёром специальной конструкции. После подачи бруса на разрезное устройство, транспортёр останавливается, и находящийся на нём брус, разрезается на отдельные кирпичи путём опускания и подъёма разрезного устройства, в котором поперёк направления подачи бруса натянуты разрезные элементы (струны).
После окончания операции разрезки транспортёр разрезного устройства начинает двигаться и кирпич сырец перегружается на следующий транспортёр раздвижного погрузочного устройства, причём, за счёт плавной регулировки скорости этого транспортёра кирпичи могут раздвигаться на требуемое расстояние. После передачи всех кирпичей на раздвижной транспортёр, он останавливается, и находящиеся на нем кирпичи толкателем сдвигаются в поперечном направлении на вагонетки, движущиеся прямо под транспортёром с такой же скоростью. Концы разрезанного бруса при этом остаются на раздвижном транспортере. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, отрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Таким образом кирпичи, группа за группой, поперечными рядами сажаются на вагонетку /6/.
Различают сушильные устройства для естественной и искусственной сушки сырца. В первом случае сырец высушивается атмосферным воздухом за счет солнечного тепла в летнее время, во втором — за счет тепла, получаемого от сгорания топлива. Задача организованного процесса сушки состоит в подводе энергии (тепловой или электрической) к высушиваемому изделию с наименьшими потерями и в наименьшие сроки, допустимые для целостности изделия. Большинство современных кирпичных заводов оборудовано устройствами для искусственной сушки кирпича-сырца, которые по режиму работы подразделяются на сушилки периодического (камерные) и непрерывного (туннельные) действия. Сушилки непрерывного действия (туннельные)являются наиболее современным сушильным агрегатом в кирпичной промышленности. В туннельной сушилке кирпич-сырец, находящийся на вагонетках, в течение цикла сушки перемещается через весь туннель от одного его конца к другому. Срок сушки кирпича-сырца, изготовленного из пароувлажненной массы, сокращается примерно на 30%. Расход тепла на сушку кирпича-сырца в туннельных сушилках ниже, чем в камерных. Существенным преимуществом туннельных сушилок перед камерными является то, что туннельные могут быть оснащены аппаратурой, обеспечивающей автоматическое регулирование процесса сушки. Продолжительность процесса сушки и качество высушенного кирпича-сырца в значительной степени зависят от плотности и системы садки сырца на сушильных вагонетках. Необходимо обеспечить равномерность омывания теплоносителем сырца и получение надлежащей температуры и относительной влажности теплоносителя в различных частях сушилки. Недостаток туннельных сушилок в том, что в них наблюдается расслоение теплоносителя и более интенсивная сушка сырца на верхних полках. Устранение расслоения и равномерная сушка сырца по высоте туннеля достигаются перемешиванием теплоносителя в туннеле путем устройства воздушных завес за счет дополнительной подачи воздуха сверху в отдельных местах туннеля струйками с большой скоростью.
Завершающей стадией технологии всех изделий строительной керамики является их обжиг. При обжиге изделия окончательно формируется структура материала, т.е. происходит спекание керамики, в результате чего сырец из конгломерата слабосвязанных частиц превращается в достаточно твердое и прочное тело.
Строительные материалы и изделия обжигают в промышленных печах. Промышленной печью называют установку технологического назначения, в которой посредством теплового воздействия при относительно высоких температурах изменяется агрегатное состояние обрабатываемого материала, его химический состав либо его кристаллическая структура.
Обжиг кирпича производят в печах периодического и непрерывного действия. В кирпичной промышленности из печей периодического действия применяют преимущественно камерные печи. Из печей непрерывного действия применяют главным образом кольцевые и туннельные.
Периодические печи используют для обжига кирпича на заводах малой мощности. Загрузка и разгрузка этих печей производится при сравнительно высоких температурах, что обуславливает тяжелые условия труда обслуживающего персонала. Камерные печи или горны отличаются значительной трудоемкостью обслуживания, большой неравномерностью температур по высоте печи.
Для обжига кирпича применяют кольцевые печи. Они отличаются высокой тепловой экономичностью, возможностью использования низкосортных видов топлива, перехода с одного вида топлива на другое без каких-либо значительных переделок, высокой удельной и общей производительностью.
Весьма существенным недостатком кольцевых печей является то, что в рабочей зоне садки и выгрузки (выставки) кирпича очень высокая температура: например, в рабочей зоне выгрузки температура в летние месяцы достигает 80 0 С и более. При этом садка и выгрузка кирпича производится вручную. На новых и реконструируемых кирпичных заводах строительство кольцевых печей не производится.
Туннельные печи имеют значительные преимущества перед печами периодического действия и кольцевыми печами. Садка кирпича-сырца на вагонетки туннельных печей и выгрузка обожженного кирпича с этих вагонеток производится вне печи, в нормальных температурных условиях, что значительно облегчает труд обслуживающего персонала и дает возможность механизировать трудоемкие процессы садки и выгрузки кирпича. В туннельных печах можно осуществить полную автоматизацию управления режимом обжига. К достоинствам туннельных печей относится и то, что у них температурный перепад в различных участках обжига незначителен.
Многорядовые (по высоте) туннельные печи, применительно к обжигу стеновой керамики, обладают крупным недостатком — большим перепадом температур по высоте, достигающим в зоне подогрева 420 0 С, который на участке максимальных температур уменьшается до 20-40 0 С. Борьба с этим перепадом осуществляется главным образом путем рециркуляционных потоков газов («завес»), нагнетаемых вентиляторами как в зоне подогрева, так и в зоне охлаждения на нескольких позициях по длине печного канала. Борьба эта не всегда успешна.
Второй недостаток — трудности настройки аэродинамического режима.
Лучшие условия эксплуатации туннельных печей достигается при наличии давления или разряжения в зоне обжига порядка 0,1-0,3мм вод.ст. и не выше 1 мм вод.ст. во избежание выбивания горячих газов и быстрого износа вагонеток.
Совершенствование конструкций туннельных печей с целью увеличения обжигаемой физической массы изделий (увеличение теплоемкости), совершенствование горелок для развития длины факела, а также полноты сжигания жидкого топлива, улучшение теплоизоляции пода — все это приводит к определенным успехам, но не исключает необходимости разработки и совершенствования конструкций печей для однорядного скоростного обжига.
В конструктивном отношении современные туннельные печи обладают некоторыми особенностями. Конструкция свода плоская, что упрощает постройку печи, позволяет расширить печной канал и обеспечить работу автомата — укладчика. Толщина кладки стен туннельных печей снижена до 0,5м., благодаря применению огнеупорных блоков 30-40% пористости, наружная поверхность стен покрыта дюралюминием с хорошей отражательной способностью. Поверх свода помещена теплоизоляция в виде вспученного вермикулита. Кладку пода (на вагонетках) осуществляют из крупных огнеупорных фасонных блоков, изготовленных из пористого (30-40%) корундомуллитового, кордиеритового или дистенового огнеупора, обеспечивающего огнеупорность, теплоизоляцию и постоянство объема.
Наблюдается тенденция увеличения ширины туннельной печи, что возможно при переходе на более совершенный способ сжигания топлива с получением длинного факела горения и равномерным развитием температурного поля /9/.
Для обжига и сушки кирпича также используют туннельные печи-сушила, которые совмещают в одном агрегате печь и сушило. Принцип работы изложен ниже.
В туннеле интенсивной сушки, работающему по принципу противотока, кирпичи движутся стоя в один слой, через участки с различными температурными режимами и интенсивной вентиляцией. Благодаря чему обеспечивается быстрая, равномерная сушка. Для высокочувствительных изделий может быть предусмотрено применение дополнительных зонных нагревателей. В зоне сушильного туннеля подмешивается горячий воздух из печного пространства.
После прохождения подсушки вагонетки с садкой перемещаются загрузочным механизмом, который находится на противоположном конце сушилки, в печь для обжига, расположенную над сушилкой. В печи интенсивного обжига кирпича обжиг производится пламенем, направленным равномерно сверху. По длинному узкому туннелю печи навстречу теплоносителю, непрерывно, вплотную одна к другой, передвигаются вагонетки с обжигаемым изделием через постоянные тепловые зоны подогрева, обжига и охлаждения. Сначала вагонетки с изделиями подогреваются продуктами горения, отходящих из зоны обжига, затем проходят через зону обжига, где подвергаются воздействию газов высокой температуры и, наконец остывают отдавая тепло стенкам туннеля или непосредственно охлаждаясь воздухом.
По всей длине печи между стенками и вагонетками имеется песочный затвор и лабиринт. Они служат для уменьшения газообмена между обжигательным каналом печи и подвагонеточным пространством. Печь работает на газообразном топливе и оборудована горелками. В зоне обжига установлено 5 групп горелок по 8 штук в каждой. Горячий воздух из печи отбирают в нескольких местах по длине зоны. Увеличение сечения отборных окон и канала, соединяющего печь с сушилкой, обеспечивает почти полный отбор тепла охлаждающихся изделий и вагонеток, и передачу его в сушилку.
С помощью автоматических контрольных устройств системы интенсивной сушки и обжига кирпича, а так же благодаря малой высоте садки, как в сушильном туннеле, так и в туннеле обжига могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами.
Наиболее важным преимуществом является значительное повышение культуры производства на кирпичных заводах, улучшение санитарно-гигиенических условии труда и возможность полной механизации трудоёмких ручных процессов.
В данной работе выбираем интенсивную технологию обжига, т.к. в этом устройстве происходит совмещение сушки и обжига, а также могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами. Эта технология состоит из единой линии от запасного пути после печи обжига до автомата укладчика.
Кирпич снимается с вагонеток, устанавливается на поддоны, упаковывается в транспортные пакеты и транспортируется с помощью автопогрузчика. На кирпичных заводах применяются автопогрузчики самых различных типов со щитовыми захватами и с зажимами. Вилочные зажимы работают от гидравлической системы либо приводятся в действие от веса поднимаемого пакета.
В данной работе выбираем автопогрузчик с вилочным зажимом, т.к он манёвренный и лёгок в эксплуатации.
После чего кирпич отправляется на склад готовой продукции, находящийся на открытых асфальтированных площадках, расположенных на территории предприятия. Склад готовой продукции оборудован мостовыми кранами для загрузки поддонов с кирпичом в автомобили.
5. Технологическая схема цеха формования, сушки, обжига
5.1 Описание технологической схемы
Тонко измельчённое сырьё от вальцов, ленточным конвейером подаётся в глиномешалку вакуумного пресса, предназначенного для вакуумирования и формования сырца. Далее в технологии производства кирпича, проектом, принята система интенсивной сушки и обжига кирпича, включающая в себя:
- универсальный автомат (погрузка и разгрузка вагонеток);
- система транспортировки вагонеток;
- система интенсивной сушки и обжига;
- установка съёма и пакетирования кирпича;
— Непрерывно поступающий из пресса брус сырца разрезается отрезным устройством на куски требуемой длины (2,5 м).
Отрезанный кусок бруса отделяется ускорительным транспортёром и подаётся на разрезное устройство, где он принимается транспортёром специальной конструкции. После подачи бруса на разрезное устройство, транспортёр останавливается, и находящийся на нём брус, разрезается на отдельные кирпичи путём опускания и подъёма разрезного устройства, в котором поперёк направления подачи бруса натянуты разрезные элементы (струны).
После окончания операции разрезки транспортёр разрезного устройства начинает двигаться и кирпич сырец перегружается на следующий транспортёр раздвижного погрузочного устройства, причём, за счёт плавной регулировки скорости этого транспортёра кирпичи могут раздвигаться на требуемое расстояние. После передачи всех кирпичей на раздвижной транспортёр, он останавливается, и находящиеся на нем кирпичи толкателем сдвигаются в поперечном направлении на вагонетки, движущиеся прямо под транспортёром с такой же скоростью. Концы разрезанного бруса при этом остаются на раздвижном транспорте. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, обрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Таким образом, кирпичи, группа за группой, поперечными рядами сажаются на вагонетку.
Загруженные вагонетки с помощью цепного толкателя загружаются в накопительный (буферный) туннель, для предварительного подогрева, пройдя который, вагонетки попадают на загрузочно-выгрузочный механизм, который загружает их в сушилку. В туннеле интенсивной сушки (t=60 0 C), работающему по принципу противотока, кирпичи движутся стоя в один слой, через участки с различными температурными режимами и интенсивной вентиляцией. Благодаря чему обеспечивается быстрая, равномерная сушка. Для высокочувствительных изделий может быть предусмотрено применение дополнительных зонных нагревателей. В настоящем проекте в зоне сушильного туннеля подмешивается горячий воздух из печного пространства. Отработанный теплоноситель после очистки поступает в атмосферу. Для нормального протекания процесса сушки сырца, т. е. для того, чтобы изделия высыхали с максимальной равномерностью и без деформаций при минимальном расходе топлива и в минимальный срок, необходимо создать условия для интенсивной влагоотдачи с единицы поверхности изделия.
После прохождения сушки кирпичи с сушильных вагонеток автоматом-садчиком переносятся на обжиговые. В печи интенсивного обжига кирпича обжиг производится пламенем. Обжиг проводят в печи при температуре 1000 о С. В качестве теплоносителя используются продукты сгорания газа. При обжиге за счет удаления влаги и сближения в результате этого частиц, вследствие фазовых и химических превращений, частичного получения жидкой фазы протекают структурообразующие процессы. Из печи забирается горячий воздух на сушку в сушило, а отработанные дымовые газы после очистки выбрасываются в атмосферу.
Пройдя обжиг, вагонетки попадают на начальное загрузочное устройство которое перемещает их на пути расположенные над буферным туннелем. Затем, кирпич снимается с вагонеток, устанавливается на поддоны и упаковывается в транспортные пакеты. После чего отправляется на склад готовой продукции, оборудованный мостовыми кранами для загрузки в автомобили /5/.
6. Теоретические основы технологического процесса
6.1 Формование кирпича
Формованием называется процесс придания массе заданных форм и размеров, т. е. получения заготовки (полуфабриката) издания. Структура заготовки в значительной мере определяет строение и свойства изделий после обжига. При формовании стремятся максимально увеличить содержание твердой фазы, чтобы снизить усадки в сушке и обжиге.
Пластичность глин предопределяет наличие специфических деформационных свойств — малой вязкости и достаточно высокого предела текучести.
Показателем формовочных свойств масс является соотношение между внешним и внутренним трением. Считают, что формование возможно, если внутреннее трение массы (когезия) больше, чем трение о формующий орган машины (аутогезия).
Для оценки формовочных свойств используют коэффициенты внутреннего трения и сцепления массы. Из уравнения Кулона-Мора следует, что сопротивлением массы σ ПР сдвигу определяется коэффициентом внутреннего трения f, сцеплением С и действующим сжимающим напряжением σ: