ТО и ремонт газобаллонного оборудования

Курсовая работа

Повышение надежности автомобилей и снижение затрат на их содержание составляют одну из сложных проблем в настоящее время. Решение этой проблемы, с одной стороны, обеспечивается автомобильной промышленностью за счет выпуска автомобилей новых конструкций, обладающих большей эксплуатационной надежностью и технологичностью (ремонтопригодностью), с другой стороны, — средствами технической эксплуатации в результате совершенствования методов технической эксплуатации автомобилей, повышения производительности труда (внедрения научных методов), снижения трудоемкости технического обслуживания и ремонта, увеличения межремонтных пробегов автомобилей и их агрегатов, что обеспечивается развитием материально-технической базы автомобильного транспорта, широкого применения средств механизации и автоматизации производственных процессов.

Одновременно большое влияние на совершенствование методов и средств технической эксплуатации оказывает развитие научных исследований в области технической эксплуатации автомобилей, режимов технического обслуживания, нормирования, надежности и долговечности автомобилей.

1. ОБЩИЕ СВЕДЕНИЯ ОБ АВТОМОБИЛЯХ РАБОТАЮЩИХ НА СЖИЖЕННОМ ГАЗЕ.

В последнее время все больше автовладельцев устанавливают на свои автомобили оборудование для работы двигателя на сжиженном газе. Ниже приводится информация о достоинствах и недостатках автомобиля, оснащен­ного газовой аппаратурой. Дальнейшие главы посвящены описанию общего устройства, принципу действия и пра­вилам эксплуатации газовой аппаратуры автомобилей, оснащенных как карбюраторами, так и различными систе­мами впрыска, управляемыми с помощью электроники.

Сжиженный нефтяной газ — это сжатый и сжижен­ный газ, который выходит из нефтяной скважины или появляется в процессе очистки нефти.

Газ сжижается при нормальной температуре при относительно низком давлении и широко использует­ся, благодаря высокой теплотворности. Его основными компонентами являются пропан и бутан.

В жидком состоянии легче воды, в газообразном со­стоянии в 1,5-2 раза тяжелее воздуха и при утечке в ат­мосферу, скапливаясь в низких местах, может стать при­чиной неожиданной аварии при воспламенении.

Достоинства автомобилей, работающих на сжиженном газе.

Обладает хорошей эффективностью сгорания, двигатель не шумит.

Сжиженный газ полностью превращается в газооб­разное состояние, хорошо смешивается с воздухом, смесь достаточно однородна и при составе смеси, близ­кому к теоретическому, полностью сгорает.

4 стр., 1885 слов

Реферат транспортировка сжиженных газов

... "Правилам устройства и безопасной эксплуатации сосудов, работающих под давлением. 1. Перевозка сжатых, сжиженных и растворенных под давлением газов производится согласно требованиям настоящих Правил, ... автомобилей; организация мер личной безопасности персонала, осуществляющего перевозку, и общественной безопасности; сдача грузов по прибытии на место назначения. Разработка маршрута транспортировки ...

Кроме того, скорость сгорания ниже, чем у бензина, обладает высоким октановым числом, не образует де­тонацию, двигатель мало шумит.

Хорошая экономичность.

Стоимость меньше по сравнению с бензином, мень­ше расходов на масло, увеличивается срок службы дви­гателя и расходы составляют в два с лишним раза мень­ше, чем на бензин.

Увеличивается срок службы масла.

Так как у сжиженного газа низкая температура кипе­ния, он полностью превращается в газообразное состо­яние внутри цилиндра и не сжижает масло, мало обра­зуется нагара.

И так как в газ не добавляют различные присадки, он не загрязняет масло нагаром и осадками, очень мало содержит серы (в десять раз меньше, чем в бензине) и почти не разрушает металл выхлопными газами.

Мало загрязняет атмосферу.

Выхлопной газ почти не имеет запаха, очень мало содержит вредного газа СО (в 20 раз меньше, чем в бен­зине), не дымит и мало загрязняет атмосферу.

Отсутствует явление «просачивания» и «газовой пробки».

В бензиновых двигателях могут возникать явления «просачивания» или «газовая пробка», а в двигателях на газе этого явления не возникает, так как топливо сме­шивается в газообразном состоянии.

Увеличивается срок службы двигателя.

Из-за отсутствия примесей в газе свечи зажигания не подвергаются нагарообразованию и срок службы их увеличивается до 60-80 тыс. км пробега.

Увеличение дальности поездки без заправки.

Водитель может находиться в пути от 800 до 1000 км без дополнительной заправки автомобиля (При нали­чии полных топливного бака и газового баллона).

Недостатки автомобилей работающих на сжиженном газе.

Наряду с выше перечисленными достоинствами, га­зовое оборудование обладает и недостатками:

Уменьшение емкости багажного отделения ав­томобиля за счет установки в нем газового баллона, несмотря на то, что в последнее время заводы-изгото­вители выпускают газовые баллоны различной формы.

Затрудненный запуск холодного двигателя на газе.

Увеличение времени на заправку газом.

По сравнению с заправкой автомобиля бензином, процедура заправки автомобиля газом происходит на несколько минут дольше. Особенно эта разница ощу­щается при очередях на заправочных станциях.

Автомобиль, оборудованный газовой аппаратурой, может работать как на бензине, так и на сжиженном газе. Выбор топлива, на котором Вы собираетесь эксп­луатировать автомобиль, осуществляется простым на­жатием клавиши переключателя блока управления, на­ходящегося в салоне автомобиля. В связи с большим разнообразием применяемых систем, рассмотрим об­щий (характерный для всех типов) принцип действия га­зовой аппаратуры.

Из газового баллона под давлением сжиженный газ через запорно-предохранительный блок поступает к электромагнитному газовому клапану, объединенному, как правило, с газовым фильтром в один блок. Здесь газ очищается от примесей, а затем (если электромагнит­ный газовый клапан открыт) поступает к газовому ре­дуктору-испарителю. В газовом редукторе-испарите­ле происходит снижение давления газа до атмосфер­ного и превращение газа в газообразную смесь. Затем газ под действием разряжения двигается и поступает через дозатор газовой смеси и смеситель карбюрато­ра/системы впрыска в цилиндры двигателя.

19 стр., 9187 слов

Система смазки двигателя автомобиля

... и в масляном радиаторе, который включается в работу при длительном движении автомобилей летом. В смазочной системе с открытой вентиляцией картера двигателя картерные газы, состоящие из горючей смеси и продуктов ...

Для запуска холодного двигателя в газовой аппара­туре используется электромагнитный пусковой клапан, задачей которого является впрыск дополнительной пор­ции газовой смеси в цилиндры двигателя (аналог уско­рительного насоса карбюратора).

При работе автомобиля на газе бензиновая топлив­ная система отключена, так как электромагнитный кла­пан в это время перекрывает подачу бензина в карбю­ратор/систему впрыска.

Управление электромагнитными клапанами, а сле­довательно и работой топливных систем (бензиновой/газовой) осуществляется с блока управления, который представляет собой коробку с кнопкой (кратковремен­ное включение электромагнитного пускового клапана га­зового редуктора) и переключателем режима работы двигателя (бензин -нейтраль -газ).

Если переключатель находится в положении «Бензин» — двигатель работает на бензине (электромагнитный газовый клапан закрыт).

Если переключатель находится в нейтральном положе­нии — двигатель или выключен, или дорабатывает/дожи­гает топливо (обязательно используется при переклю­чении с одного вида топлива на другое).

Если переклю­чатель вида топлива находится в положении «ГАЗ» -дви­гатель работает на сжиженном газе (электромагнитный бензиновый клапан закрыт).

Питание электрических элементов газовой аппара­туры осуществляется от бортовой сети и взято от цепи катушки зажигания. Затем через замок зажигания и до­полнительный предохранитель, напряжение подается на блок управления.

Общее устройство газобаллонной установки

По виду газообразного топлива газобаллонные установки для двигателей внутреннего сгорания подразделяются на три типа: для сжатого природного газа, жидкого метана и сжиженного пропан-бутанового газа. Газобаллонная установка, вне зависимости от вида применяемого газа, состоит из баллонов для хранения и транспортировки газа, испаряющего или подогревающего устройст­ва, газового редуктора, дозирующего устройства, смесителя, трубо­провода и контрольных приборов.

Приборы и аппараты, применяемые для любого вида газа, не имеют существенных отличий по принципу действия. Исключение составляют баллоны для хранения и транспортировки газа. Это объясняется тем, что сжатый природный газ хранится при высо­ком давлении (до 20 МПа) и требует толстостенных сосудов. Жид­кий метан содержится при температуре кипения (—161°С) в изо­термических сосудах, а сжиженный пропанобутановый газ имеет максимальное рабочее давление 1,6 МПа и для его хранения и транспортировки на автомобилях используют баллоны с толщиной стенок от 3,0 до 6,0 мм и вместимостью до 300 л.

Сжиженный пропанобутановый газ из всех газообразных топлив наиболее близко подходит к бензину по концентрации энергии в единице объема, по способу хранения и другим эксплуатационным качествам. Его наиболее широко применяют в качестве топлива для двигателей автомобилей.

Сжиженный газ в газобаллонных автомобилях содержится в баллоне 20 в жидком и парообразном состоянии. Газовый баллон кроме контрольно-предохранительной и наполнительной арматуры снабжен двумя расходными вентилями, позволяющими осуществ­лять питание двигателя паровой или жидкостной фазой газа.

Система питания обеспечивает нормальную работу двигателя при условии подачи газа к редуцирующему устройству в парооб­разном состоянии. Испарение сжиженного газа в системе питания происходит за счет тепловыделения из системы охлаждения дви­гателя.

При пуске и прогреве двигателя незначительный перепад тем­ператур между теплоносителем (жидкостью системы охлаждения)

5 стр., 2292 слов

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМ ПИТАНИЯ АВТОМОБИЛЬНЫХ ДВИГАТЕЛЕЙ

... углерода и состав рабочей смеси. При техническом обслуживании приборов системы питания необходимо соблюдать правила техники безопасности, производственной санитарии и противопожарной безопасности. Система питания автомобиля: 1 — топливный бак; 2 — датчик указателя уровня топлива; 3 ...

ТО и ремонт газобаллонного оборудования 1

Рис. 1. Схема системы питания газобаллонного автомобиля:

1 — проставка, 2 — фильтр-отстойник, 3 — топливный насос, 4 — карбюратор. 5 — смеситель газа, 6 — трубка, соединяющая редуктор с всасывающим трубопроводом, 7,9 — шланги для подвода и отвода жидкости системы охлаждения в испаритель, 8 — испаритель, 10 — трубка для отвода газа в систему холостого хода, 11 — шланг основной подачи газа, 12 — дозирующе-экономайзерное устройство, 13—редуктор газа, 14— газовый фильтр, 15—сетчатый фильтр, 16 — манометр первой ступени редуктора, 17 — указатель уровня сжиженного газа в баллоне, 18 — магистральный вентиль, 19 — топливный бак, 20 — баллон для сжиженного газа, 21 — расходный вентиль паровой фазы, 22 — расходный вентиль жидкой фазы

и газом не обеспечивает его испарение. В этом случае питание двигателя осуществляется паровой фазой газа через вентиль 21. После прогрева двигателя его питание осуществляется жидкой фазой газа через вентиль 22. Питание двигателя жидкой фазой позволяет исключить кипение жидкости и падение давления в газо­вом баллоне, а также сохранить стабильность показателей газа, так как в жидкой фазе все компоненты хорошо перемешаны и хи­мический состав топлива практически не меняется по мере опорож­нения баллона.

Из баллона газ подводится к магистральному вентилю 18, ко­торый служит для быстрого прекращения подачи газа к двигателю. Управляют вентилем из кабины водителя. После магистрального вентиля сжиженный газ попадает в испаритель 8, в котором через шланги 7 и 9 циркулирует горячая жидкость из системы охлажде­ния двигателя. Пройдя змеевик испарителя, сжиженный газ из жидкого состояния полностью переходит в парообразное и подвер­гается очистке. Для этой цели в системе установлены фильтр 14 с войлочными кольцами и сетчатый фильтр 15.

Очищенный газ подается в редуктор 13, где происходит двух­ступенчатое снижение давления до величины, близкой к атмосфер­ному давлению. Управление работой редуктора осуществляется разрежением из всасывающего трубопровода, которое передается в него по трубке 6. Из редуктора через дозирующе-экономайзерное устройство 12 и шланг 11 основной подачи газ направляется в сме­ситель 5 газа.

Кроме того, по трубке 10 газ, минуя дозирующе-экономайзерное устройство, из редуктора подается в систему холостого хода сме­сителя. В смесителе газ смешивается с воздухом, образуя горючую смесь, которая засасывается в цилиндры двигателя.

Газобаллонная установка автомобиля снабжена двумя конт­рольными приборами: дистанционным электрическим манометром 16, показывающим давление газа в первой ступени редуктора, и указателем 17 уровня сжиженного газа в баллоне.

Резервная система питания двигателя бензином состоит из топ­ливного бака 19, фильтра-отстойника 2, топливного насоса 3 и однокамерного карбюратора 4, установленного на проставке 1, расположенной под газовым смесителем.

Наличие на автомобиле резервной системы питания создает возможность при полном израсходовании газа или неисправности газовой аппаратуры работы двигателя на бензине. При переходе с газообразного топлива на бензин, или наоборот, не следует допус­кать работу двигателя на смеси двух топлив, так как это приводит к обратным вспышкам, опасным в пожарном отношении.

9 стр., 4273 слов

ЛЕКЦИЯ № 8 «Система питания газовых двигателей»

... них более сложная система питания и сложное обслуживание в эксплуатации, требующее высокой техники безопасности. Топливо для газовых двигателей Сжиженными Сжатыми называются газы, которые сохраняют ... на сжиженном газе, имеются газовая и бензиновая системы питания. Газовая система питания является основной и предназначена для выполнения транспортной работы. Она обеспечивает запас хода газобаллон­ных ...

При переводе питания двигателя с одного вида топлива на другой обязательно останавливают двигатель. При этом перекры­вают подачу и вырабатывают из системы один вид топлива, затем рычаг управления дроссельной заслонкой присоединяют к карбю­ратору (или, наоборот, к смесителю), открывают подачу другого вида топлива и пускают двигатель обычным способом.

2.РАСЧЕТ ПЕРИОДИЧНОСТИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА СИСТЕМЫ ПИТАНИЯ ГАЗОБАЛЛОННОГО АВТОМОБИЛЯ.

Для расчетов курсового проекта за единицу транспортного средства будем принимать следующие данные:

легковой автомобиль ВАЗ 2107, в котором используется газобаллонное оборудование:

  • среднесуточный пробег – 125 км;
  • категория условий эксплуатации – I.

Для расчёта производственной программы необходимо предварительно выбрать нормативные значения пробегов подвижного состава до КР и периодичности ТО-1 и ТО-2, которые установлены положением для определённых, наиболее типичных условий, а именно: I категории условий эксплуатации, базовых моделей автомобилей, умеренного климатического района с умеренной агрессивностью окружающей среды.

Нормативный пробег автомобиля малого класса (ВАЗ-2107) составляет:

  • до КР – L н ц =150.000 км;
  • до ТО-1 – L н 1 =5.000 км;
  • до ТО-2 – L н 2 =20.000км.

Однако для конкретного предприятия указанные выше условия могут отличаться, поэтому, в общем случае, расчетный ресурсный пробег ( L Р ) и периодичности TO-1 (L 1 ) и ТО-2 (L 2 ) определяются с помощью коэффициентов (табл. 1.3).

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  1

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  2

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  3

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  4

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  5

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  6

К 1

K 2 — коэффициент, учитывающий модификацию подвижного состава;

K 3 коэффициент, учитывающий климатический район;

17 стр., 8330 слов

Система питания двигателя ВАЗ –

... указателя уровня топлива на щитке приборов. Особенности устройства системы питания двигателя автомобиля ВАЗ – 2108 Подача топлива в ... горючей смеси определённого состава для каждого режима работы двигателя. Впускной трубопровод – служит для подачи приготовленной в ... топливный бак; 17 – хомут крепления топливного бака. СИСТЕМА ВЫПУСКА ОТРАБОТАВШИХ ГАЗОВ Рис. 2 1 – кронштейн крепления приёмной трубы; ...

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  7

 расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  8

Нормативный расчетный пробег до капитального ремонта  расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  9 определяется как нормативный ресурсный пробег  расчет периодичности технического обслуживания и ремонта системы питания газобаллонного автомобиля  10

Согласно нормативам периодичности ТО должны быть кратны между собой, а ресурсный пробег кратен периодичности ТО. При корректировке эта кратность может быть нарушена. Поэтому, для дальнейших расчетов, необходимо скорректировать нормативные ресурсный пробег и периодичности между собой и со среднесуточным пробегом. Допускаемое отклонение от нормативов периодичности ТО составляет ±10%.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ПИТАНИЯ ДВИГАТЕЛЕЙ С ГАЗОБАЛЛОННЫМИ УСТАНОВКАМИ

Основные неисправности газобаллонных установок их признаки и способы устранения

При работе двигателя на газе в системе питания могут возник­нуть неисправности, которые вызывают затрудненный пуск двига­теля, неустойчивую работу на холостом ходу, неудовлетворитель­ные переходы от холостого хода к нагрузочным режимам, сниже­ние мощности двигателя. Ниже рассмотрены признаки и способы устранения этих неисправностей.

Негерметичность соединений газовой установки может быть двух видов: внутренняя и внешняя. Под внутренней негерметичностью газового оборудования понимают неплотности, в результа­те которых происходит утечка газа в систему питания. Наиболее часто эта неисправность встречается в подвижных запорных сое­динениях (клапан — седло) у расходных и магистрального венти­лей, а также в клапанах первой и второй ступеней редуктора.

При внутренней негерметичности расходных и магистральных вентилей в трубопроводах и аппаратуре газовой установки авто­мобиля все время будет избыточное давление газа. При этом уве­личивается вероятность утечки газа в окружающее пространство и не допускается проводить ремонт газовой аппаратуры и пере­вод двигателя на работу с газа на бензин.

Утечки газа через клапан первой ступени редуктора опреде­ляются по показанию манометра редуктора. В этом случае при остановке двигателя повышается давление в камере первой сту­пени, что может повлечь за собой открытие клапана второй ступе­ни редуктора. При этом газ начнет выходить в подкапотное про­странство.

Нарушение герметичности клапана второй ступени, который выполняет роль запорного вентиля при неработающем двигателе и открытых магистральном и расходном вентилях, вызывает утечку газа из редуктора в смеситель и далее через воздушный фильтр в подкапотное пространство.

Причиной нарушения герметичности соединений типа клапан — седло является попадание механических примесей (окалина, стружка, кристаллы сернистых соединений и др.) на их запираю­щие поверхности, а также повреждение уплотнителя клапана. Внешняя негерметичность представляет собой неплотность га­зового оборудования, вызывающего утечку газа в окружающее пространство. Неплотность топливной аппаратуры, арматуры и топливопроводов ведет к утечкам газа в зонах технического обслу­живания и стоянки газобаллонных автомобилей и может создать опасную концентрацию газа, превышающую санитарные нормы и требования пожаро- и взрывобезопасности.

По характеру работы все соединения газовой установки авто­мобиля могут быть разделены на соединения, работающие под высоким (1,6 МПа) и низким (0,2 МПа) давлениях. Соединения, работающие под высоким давлением, в свою очередь, подразделя­ются на работающие под давлением жидкой или паровой фазы газа.

Учитывая, что истечение газа прямо пропорционально давле­нию и что масса жидкого газа приблизительно в 250 раз больше парообразного, наибольшую опасность с точки зрения утечек пред­ставляют соединения, работающие под высоким давлением жидкой фазы газа.

Способы устранения утечек газа зависят от конструкции соеди­нений и характера неисправностей. В ниппельном соединении утечку устраняют дополнительной затяжкой гайки. Если затяжкой гайки утечка не устраняется, то разбирают соединение, отрезают конец трубки вместе с ниппелем и собирают соединение с новым ниппелем. В соединениях, уплотняемых конической резьбой, сте­пень герметичности может повышаться покрытием резьбы свинцо­вым глетом или клеями АК-20, БФ-2.

Во фланцевых и резьбовых соединениях, где герметичность обеспечивается прокладками, при возникновении утечек дополни­тельно подтягивают соединение или заменяют прокладку. Заделки в шлангах высокого давления являются неразборным соединени­ем и при появлении утечки газа в них шланг полностью заменяют.

В оборудовании, работающем под высоким давлением паровой фазы газа, насчитывается несколько меньше соединений. Это — соединения по разъемам испарителя и фильтра, в штуцерах и в трубопроводах. Негерметичность этих соединений вызывает утечку газа в подкапотное пространство. Конструктивное исполнение, виды неплотностей и способы устранения аналогичны конструк­циям, неплотностям и способам устранения для соединений, рабо­тающих под давлением жидкой фазы газа.

Затрудненный пуск двигателя происходит при переобогащении или переобеднении горючей смеси. Причинами переобогащения горючей смеси являются негерметичность клапанов первой и вто­рой ступеней редуктора и неплотность обратного клапана смеси­теля. Переобеднение горючей смеси вызывается негерметичностью шланга подачи газа в систему холостого хода и засорением или сужением проходного сечения канала системы холостого хода.

При негерметичности разгрузочного устройства редуктора или трубки, соединяющей полость разгрузочного устройства с впуск­ным трубопроводом двигателя, прекращается подача газа из ре­дуктора в смеситель и пуск двигателя в этом случае становится невозможным.

Неустойчивая работа двигателя на холостом ходу может быть вызвана неправильной регулировкой подачи газа в систему холо­стого хода; поступлением газа через основную систему вследствие неплотности обратного клапана смесителя или клапана второй ступени редуктора; уменьшением подачи газа в систему холостого хода из-за негерметичности шланга системы или засорения его проходного сечения. Для устранения неустойчивой работы двига­теля регулируют систему холостого хода или устраняют неплот­ности.

Неудовлетворительные переходы от холостого хода к нагрузоч­ным режимам работы двигателя («провалы») появляются при резком открытии дроссельных заслонок смесителя в результате обеднения горючей смеси ввиду запаздывания включения основ­ной системы подачи газа. Включение основной системы обеспечи­вается поднятием обратного клапана смесителя под действием разрежения в диффузорах при частоте вращения коленчатого вала двигателя 1300—1400 об/мин.

Запаздывание открытия обратного клапана возникает при уменьшении общей подачи газа в систему холостого хода, что не позволяет развить требуемой частоты вращения коленчатого вала двигателя и создать необходимого разрежения в диффузорах. К появлению «провалов» приводит и прилипание обратного кла­пана к седлу, так как в этом случае требуется большое усилие для его открытия.

Неудовлетворительные переходы в работе двигателя появляются при скоплении маслянистого конденсата во второй ступени редуктора. В этих условиях для открытия клапана второй ступени редуктора требуется большее усилие и смесь на переходном режиме переобедняется.

Не только к «провалам», но и к остановке двигателя может привести негерметичность разгрузочного устройства, вследствие чего уменьшается или прекращается подача газа из редуктора смеситель.

Для устранения «провалов» в работе двигателя на переходны: режимах регулируют систему холостого хода, протирают обратный клапан, удаляя загрязнения, сливают конденсат из редукторе устраняют негерметичность разгрузочного устройства. Указанны работы выполняют при необходимости в полном объеме или от дельно каждую.

Снижение мощности двигателя происходит в основном вслед ствие обеднения горючей смеси. К причинам, которые могут вы звать снижение мощности, относятся сужение проходных каналов для газа, засорение газовых фильтров и газовых каналов испарителя, недостаточное открытие клапанов первой и второй ступеней редуктора и экономайзерного устройства, а также уменьшение проходного сечения газовой магистрали, расходных и магистрального вентилей.

Величину проходных сечений для газа в магистрали от балле на до второй ступени редуктора проверяют по манометру редуктора при работающем двигателе. Резкое увеличение частоты вращения коленчатого вала двигателя не должно вызывать падение давления в первой ступени редуктора более чем на 100—200 Па

При неработающем двигателе проверку можно провести сжатым воздухом. Для этого систему питания заполняют сжатый воздухом и открывают клапан второй ступени, нажимая рукой на шток редуктора. Падение давления на манометре редукторе должно быть в указанных выше пределах.

Основные работы, выполняемые при техническом обслуживании системы питания

Для газового оборудования газобаллонных автомобилей преду­смотрены ежедневное (ЕО), первое (ТО-1), второе (ТО-2) и се­зонное (СО) технические обслуживания. Выполнение работ по ТО-1 и ТО-2 газовой системы питания проводится в сроки, уста­новленные для ТО-1 и ТО-2 автомобиля. При этом проведение работ ТО-2 совмещают с очередным ТО-1, а сезонное обслужива­ние — с ТО-2.

Ежедневное техническое обслуживание выполняют перед выез­дом автомобиля на линию и после возвращения его в гараж. Перед выездом проводят контрольные работы. Внешним осмотром про­веряют техническое состояние газового баллона, деталей крепления газового оборудования, герметичность соединений всей газовой магистрали и показания контрольно-измерительных приборов (ма­нометр, показывающий давление газа в редукторе, указатель уров­ня газа в баллоне).

После возвращения автомобиля в гараж проводят уборочно-моечные работы системы питания, проверяют техническое состоя­ние газового редуктора и герметичность соединений газовой маги­страли высокого давления.

В газовом редукторе на слух или с помощью прибора ПГФ-2М1-ИЗГ определяют герметичность клапана второй ступени и сливают масляный конденсат. Ежедневный слив конденсата необ­ходим, так как скопление его на мембране второй ступени редукто­ра нарушает нормальную работу двигателя.

Герметичность системы проверяют в рабочем состоянии, т. е. при заполнении ее сжиженным газом. Места утечек опреде­ляют с помощью мыльного (пенного) раствора или прибором ПГФ-2М1-ИЗГ.

В зимнее время при заполнении системы охлаждения водой ее сливают из полости испарителя.

Первое техническое обслуживание газовой системы питания включает в себя контрольно-диагностические и крепежные работы, которые выполняют при ЕО, а также смазочно-очистительные рабо­ты, к которым относятся очистка фильтрующих элементов газовых фильтров и смазка резьбовых штоков магистрального наполнитель­ного и расходных вентилей.

После выполнения отмеченных выше работ при ТО-1 проверяют герметичность газовой системы при давлении 1,6 МПа воздухом или инертным газом и работу двигателя на газовом топливе. В этом случае замеряют, а при необходимости и регулируют содер­жание окиси углерода в отработавших газах, определяют надеж­ность пуска двигателя и устойчивость его работы на холостом ходу при различной частоте вращения коленчатого вала.

При втором техническом обслуживании проверяют состояние и крепление газового баллона к кронштейнам, кронштейнов к лонже­ронам рамы, карбюратора к впускному патрубку и впускного пат­рубка к смесителю. В объем контрольно-диагностических и регу­лировочных работ входят проверка и установка угла опережения зажигания при работе двигателя на газе, проверка и регулировка газового редуктора, смесителя газа и испарителя.

В редукторе проверяют регулировку первой и второй ступеней, работу дозирующе-экономайзерного устройства и герметичность разгрузочного устройства.

В смесителе проверяют состояние и действие приборов воздуш­ной и дроссельной заслонок, в испарителе — герметичность и за­соренность газовой и водяной полостей.

Сезонное обслуживание газового оборудования по периодичнос­ти разделяется на три вида. К первому относятся работы, которые подлежат выполнению через 6 мес, ко второму — работы, прово­димые один раз в год, к третьему — работы, выполняемые один раз в два года.

Через 6 мес проверяют срабатывание предохранительного кла­пана газового баллона, продувают газопроводы сжатым воздухом и проверяют работу ограничителя максимальной частоты вращения коленчатого вала двигателя.

К работам, проводимым один раз в год, относится ревизия га­зовой аппаратуры, магистрального вентиля, манометра и арматуры баллона. Для этого газовый редуктор, смеситель газа, испаритель, магистральный вентиль демонтируют с автомобиля, разбирают, очищают, промывают, регулируют и при необходимости заменяют негодные детали.

Перед проведением ревизии газовой арматуры баллон пол­ностью освобождают от газа. После этого снимают крышки наполнительного и расходных вентилей, вентиля максимального напол­нения (не вывертывая корпусов из газового баллона) и проверяют состояние их деталей. Предохранительный клапан также снимают с баллона, регулируют на стенде и пломбируют.

Работы, проводимые раз в год, выполняют при подготовке авто­мобиля к зимней эксплуатации.

К специальной операции, выполняемой один раз в два года, от­носится освидетельствование газового баллона. При освидетель­ствовании проводятся гидравлические испытания, во время кото­рых определяют прочность баллона. Во время пневматических ис­пытаний определяют герметичность соединений баллона с армату­рой. После испытаний газовый баллон окрашивают и наносят клей­мо со сроком следующего освидетельствования.

При техническом обслуживании системы питания газобаллон­ных автомобилей кроме работ по газовому оборудованию выполня­ют работы и по резервной (бензиновой) системе питания. Перио­дичность и характер этих работ принципиально не отличаются от работ, выполняемых по системе питания автомобилей с карбюра­торными двигателями, которые рассмотрены ранее.

Наличие у газобаллонных автомобилей газовой и бензиновой систем питания увеличивает трудоемкость работ по их техничес­кому обслуживанию и текущему ремонту.

Проверка и регулировка газовой аппаратуры

Газовую аппаратуру системы питания проверяют и регулируют на специальных стендах или с помощью универсальных приборов и различных приспособлений без снятия с автомобиля. Часть ре­гулировок выполняют во время работы двигателя на газе, другую часть — при неработающем двигателе с системой питания, запол­ненной воздухом или инертным газом под давлением 1,6 МПа.

В редукторе газа МКЗ-НАМИ при неработающем двигателе регулируют давление в первой ступени, ход клапана второй ступе­ни и проверяют герметичность разгрузочного и экономаизерного устройства.

 техническое обслуживание системы питания двигателей с газобаллонными установками 1

Рис. 2. Первая ступень редуктора в сбо­ре и ее детали в разобранном виде:1 — седло клапана,2 — фильтр,3 — регулировоч­ный винт;4,13 — контргайки,5 —рычажок,6 — шток,7 — клапан в сборе,8 — мембрана в сбо­ре,9 — прокладка,10 — ось рычажка, 11 — крышка, 12 — пружина,14 — седло пружины (ре­гулировочный болт)

Рис. 3. Детали второй ступени » редуктора:

1 — колпак, 2 —шайба, 3 — пружина, 4, 11 — контргайки, 5 — седло пружи­ны 6 — крышка, 7 — шплинт, 8 — мем­брана в сборе, 9 — ось рычажка, 10 — прокладка, 12 — рычажок, 13 — регу­лировочный винт, 14 — клапан, 15 — вставка клапана, 16 — седло клапана

Давление в первой ступени редуктора регулируют изменением положения регулировочного болта 14 (см. рис. 2) и контроли­руют по манометру редуктора. При завертывании регулировочного болта давление будет увеличиваться, при отвертывании — умень­шаться. Регулировку прекращают при установлении в первой сту­пени давления 0,15 — 0,20 МПа.

Отрегулированный редуктор проверяют на герметичность закры­тия клапана первой ступени. Для этого кратковременным нажати­ем на шток 11 (рис. 4) редуктора открывают клапан второй сту­пени и выпускают из полости первой ступени воздух, снижая дав­ление. При закрытии клапана второй ступени стрелка манометра должна указать заданное давление. Допускается медленное воз­растание давления, но не более чем на 0,02 МПа и в то же время не превышающее 0,2 МПа, после чего давление в камере должно сохраняться в интервале не менее 2 млн.

Клапан второй ступени редуктора регулируют на максимальное открытие, при котором не нарушается герметичность его в закры­том положении. Для регулировки снимают крышку 3 люка, ослаб­ляют контргайку 4 и отвертывают регулировочный винт 5 до нача­ла пропуска газа. Затем завертывают винт на ¼— ½оборота и за­тягивают контргайку. Регулировку клапана выполняют отверткой и специальным ключом (рис. 120).

После регулировки проверяют герметичность закрытия и ход клапана. Герметичность определяют на слух или по пузырькам воздуха, выходящим из шланга, один конец которого соединен со штуцером системы холостого хода на редукторе, а другой опущен в сосуд с водой на глубину не более 3 мм.

 техническое обслуживание системы питания двигателей с газобаллонными установками 2

Рис. 4. Приспособление для замера хода клапана второй ступени редуктора МКЗ-НАМИ:

1 — седло, 2 — клапан, 3 — крышка люка, 4, 8 — контргайки, 5 — регулировочный винт, 6 — рычаг. 7 — мембрана второй ступени, 9 — регулировочный стакан, /0 — пружина, 11 — шток, 12 — стопорный винт, 13 — линейка, 14 — движок линейки

Величину хода клапана определяют по перемещению штока редуктора. Для этой проверки выпускают воздух из редуктора и нажатием на шток до отказа замеряют его ход приспособлением с мерной линейкой (см. рис. 4).

Нормальная величина открытия клапана второй ступени обеспечивается при ходе штока 11 не ме­нее 8 мм.

 техническое обслуживание системы питания двигателей с газобаллонными установками 3

Рис. 5. Инструмент для-регу­лировки клапана второй ступе­ни редуктора:

1 — отвертка, 2 — специальный тор­цовый ключ

Герметичность разгрузочного и экономайзерного устройств про­веряют при отсутствии давления воздуха в системе питания. Для этого от всасывающего трубопровода снимают шланг, соединяю­щий его с редуктором, и через него отсасывают воздух в устрой­ствах до создания разрежения не менее 266 Па. Разгрузочное и экономайзерное устройства считаются герметичными, если величи­на разрежения в них сохраняется в интервале 5 мин.

Давление во второй ступени редук­тора регулируют регулировочным ста­каном 9 (см. рис. 4), а контроль давления ведут по водяному пьезомет­ру, который подсоединяют через трой­ник в систему холостого хода. При от­вертывании стакана давление в каме­ре второй ступени уменьшается, при ввертывании — увеличивается. Регули­ровку выполняют во время работы двигателя на холостом ходу с часто­той вращения коленчатого вала 500— 600 об/мин. Правильно отрегулирован­ный редуктор на этом режиме работы двигателя создает избыточное давле­ние ео второй ступени 70—80 Па.

В газовом смесителе СГ-250 систе­му холостого хода регулируют двумя винтами, регулирующими подачу газа, и упорным винтом, ограничивающим закрытие дроссельных заслонок. Вин­тами подачи газа регулируют две ка­меры одновременно: при отвертывании горючая смесь обогащается, а при за­вертывании — обедняется.

Предварительную регулировку про­водят на неработающем двигателе от­вертыванием верхнего винта подачи газа на три оборота, а нижнего — на пол-оборота. Затем на работающем и полностью прогретом двигателе вы­полняют окончательную регулировку. Для этого при открытой крышке пат­рубка ввода газа в смеситель верхним винтом устанавливают та­кую общую подачу газа в систему холостого хода, при которой частота вращения коленчатого вала двигателя составляет 1300— 1400 об/мин.

После этого крышку патрубка закрывают и упорным винтом устанавливают наименьшее открытие дроссельных заслонок, при котором двигатель будет работать устойчиво. Затем начинают обед­нять смесь, завертывая нижний винт подачи газа до тех пор, пока двигатель не начнет работать с явными перебоями, после чего вы­вертывают винт на 1/16 оборота.

Регулировку системы холостого хода в газовом смесителе СГ-250 можно совместить с контролем содержания окиси углерода в отработавших газах. Порядок замера окиси углерода в этом слу­чае будет соответствовать последовательности выполнения работ по определению токсичности отработавших газов.

Уменьшить содержание СО в отработавших газах при регу­лировке до допустимой величины можно ввертыванием упорного винта дроссельных заслонок и нижнего винта подачи газа в си­стему холостого хода.

Правильность регулировки системы холостого хода проверяют изменением режима работы двигателя. При резком открытии дрос­сельных заслонок двигатель должен плавно и быстро увеличивать частоту вращения коленчатого вала до максимальной. При резком закрытии дроссельных заслонок двигатель должен снижать часто­ту вращения коленчатого вала до 400—500 об/мин и работать устойчиво.

Электрические контрольно-измерительные приборы газового обо­рудования — указатель уровня газа в баллоне и манометр первой ступени редуктора проверяют как в комплекте (датчик и указа­тель), так и раздельно. Раздельную проверку датчика и указателя проводят для определения неисправности одной из сборочных еди­ниц (узлов).

Указанные проверки могут быть выполнены на приборах Э-204-531 и др., которые серийно выпускаются нашей промышленностью и служат для проверки автомобильных контрольно-измерительных приборов.

Установку угла опережения зажигания у двигателей, работаю­щих на газообразном топливе, проводят так же, как и у двигате­лей, работающих на бензине. Однако регулировка угла опережения зажигания у газовых двигателей газобаллонных автомобилей в свя­зи с высоким октановым числом топлива не может быть проведена по детонации при разгоне автомобиля, поэтому ее проводят при испытаниях автомобиля на стенде с беговыми барабанами по мак­симальной мощности двигателя.

Проверка герметичности системы питания

Одной из самых ответственных операций, выполняемых при техническом обслуживании газобаллонных автомобилей, является проверка внешней и внутренней герметичности системы питания. Наиболее распространенным методом проверки внешней герметич­ности системы, находящейся под избыточным давлением,

Таблица 1. Содержание соли в 1 л пенообразующего раствора в зависимости от температуры

Температура, °С

Количество соли г/л

NaCl

CaCl 2

0 ÷ — 5

— 5 ÷÷ — 10

— 10 ÷÷ — 15

— 15 ÷÷ — 20

— 20 ÷÷ — 25

— 25 ÷÷ — 30

— 30 ÷÷ — 35

83

160

222

290

100

170

220

263

303

329

366

является обмазывание соединений пенообразующим раство­ром (водный раствор хозяйственного мыла или лакричного кор­ня).

При отрицательных температурах добавляется соль — хло­ристый натрий NaCl или хлористый кальций СаС1 2 .

Количественное содержание хлористого натрия или кальция в водном растворе зависит от температуры окружающего воздуха, при которой проводят проверку герметичности (табл. 1).

Соединения или участки системы, подлежащие проверке, очища­ют от грязи и обмазывают с помощью кисти пенообразующим раст­вором. Проверяемые соединения осмат­ривают дважды — непосредственно при обмазывании данного соединения и после обмазывания. В местах распо­ложения мельчайших неплотностей по­являются мелкие пузырьки, скопления которых могут быть обнаружены лишь при повторном осмотре. Во время об­мазывания соединений и швов пенооб­разующим раствором особое внимание обращают на соединения, расположен­ные в труднодоступных для осмотра местах.

Для определения утечки газа из баллона iироко используют электри­ческие газоанализаторы типа ПГФ-2М1-ИЗГ. При пользовании газоанали­затором пробу воздуха отбирают из зоны соединения и ручным насосом по шлангу подают в измерительную камеру. После заса­сывания пробы нажимают кнопку включения питания измеритель­ного моста и снимают показания стрелочного прибора.

При работе с этим прибором следует учитывать, что он не поз­воляет точно указать место утечки, так как возможно подсасыва­ние газа из других, близко расположенных соединений. Во время проверки автомобиль располагают на открытом воздухе в защи­щенном от ветра месте.

При обслуживании газобаллонного автомобиля в производствен­ном помещении герметичность газовой системы проверяют сжатым негорючим и нетоксичным газом под давлением 1,6 МПа (воздух, азот или углекислый газ).

Сжатые газы используют из баллонов -высокого давления, а сжатый воздух можно подавать от компрес­сора, обеспечивающего необходимое давление. Проверку проводят при закрытых расходных вентилях газового баллона автомобиля и при отсутствии газа в системе.

При проверке герметичности системы питания от баллона вы­сокого давления (рис. 6) сжатый инертный газ из баллона 1 по­дается в редуктор 3, где давление его снижается до 1,6 МПа. Из .редуктора газ через штуцер 6 поступает в систему питания авто—мобиля. После заполнения системы газом вентиль 4 установки за­крывают и проверяют герметичность по бразцовому манометру 5.

Падение давления указывает на негерметичность газовой систе­мы автомобиля.

Места утечек определяют пенообразующим раствором. После устранения утечек проверку герметичности повторяют. Газовая система считается герметичной, если падение давления за 15 мин не превышает 0,01—0,15 МПа.

Внутреннюю герметичность проверяют у расходных и магист­рального вентилей. Пропуск газа в систему питания через эти вен-

 техническое обслуживание системы питания двигателей с газобаллонными установками 4

Рис. 6. Схема установки для проверки герметичности системы питания газо­баллонного автомобиля: 1 — баллон со сжатым инертным газом. 2 — вентиль баллона, 3 — редуктор, 4 — вентиль установки, 5 — образцовый манометр, 6 — штуцер, 7 — баллон для сжиженного газа

тили, когда они находятся в закрытом положении, контролируют по показанию манометра 16 редуктора (см. рис. 1).

Обнаружить утечки газа из расходных вентилей в магистраль можно и через специальный штуцер на баллоне автомобиля. Для этого отверты­вают заглушку штуцера и обмазывают его пенной эмульсией или берут пробу воздуха прибором ПГФ-2М1-ИЗГ.

4. РЕМОНТ СИСТЕМЫ ПИТАНИЯ ДВИГАТЕЛЕЙ С ГАЗОБАЛЛОННЫМИ УСТАНОВКАМИ

Ремонт—процесс восстановления и поддержания работоспо­собности автомобиля путем устранения отказов и неисправностей, возникающих в работе или выявленных при техническом обслу­живании. Ремонтные работы выполняют по потребности, т. е. после появления отказа или неисправности, или по плану — через опре­деленный пробег или время работы автомобиля (предупредитель­ный ремонт).

Предупредительный ремонт рекомендуется применять для авто­бусов, автомобилей-такси, автомобилей скорой медицинской помо­щи, пожарных и других автомобилей, к которым предъявляются повышенные требования безопасности движения и безотказности в работе.

Положением о техническом обслуживании и ремонте подвиж­ного состава автомобильного транспорта предусматриваются два вида ремонта: капитальный (КР), производимый на специализи­рованных ремонтных предприятиях, и текущий (ТР), выполняемый в автотранспортных предприятиях или станциях технического обслуживания.

Ремонт включает контрольно-диагностические, разборочные, сборочные, регулировочные, слесарные, медницкие, кузнечные, сва­рочные, жестяницкие, обойные, электротехнические, шиноремонт­ные, малярные и другие работы. Ремонт может выполняться по отдельным агрегатам и сборочным единицам (узлам), а также по автомобилю в целом.

Капитальный ремонт предназначен для восстановления работо­способности автомобилей и агрегатов и обеспечения пробега до следующего капитального ремонта (или списания) не менее 80% от нормы для новых автомобилей и агрегатов. Капитальный ремонт агрегата предусматривает его полную разборку, дефектовку (кон­троль и сортировку деталей по годности), восстановление и заме­ну изношенных деталей, сборку, регулировку, и испытание.

Списание или восстановление агрегата при достижении его базовой (корпусной) деталью предельного состояния осуществляется в соответствии с едиными техническим условиями на сдачу в капитальный ремонт и выдачу из капитального ремонта автомобилей, их агрегатов и сборочных единиц (узлов).

Агрегат направляют в капитальный ремонт, если базовые и ос­новные детали нуждаются в ремонте, требующем полной разборки агрегата; работоспособность агрегата не может

быть восстановлена или ее восстановление при текущем ремонте экономически нецелесообразно.

Полнокомплектный автомобиль за срок его службы подверга­ется, как правило, одному капитальному ремонту, не считая ка­питального ремонта агрегатов и сборочных единиц( узлов) до и после капитального ремонта автомобиля.

Текущий ремонт предназначен для устранения отказов и неис­правностей и способствует выполнению установленных норм пробе­га до капитального ремонта при минимальных простоях. Он дол­жен обеспечить безотказную работу отремонтированных агрегатов и сборочных единиц (узлов) в течение пробега, не меньшего, чем пробег до очередного ТО-2.

Текущий ремонт выполняют проведением разборочных, слесар­ных, сварочных и других работ с заменой: у агрегата — отдельных деталей (кроме базовых), достигших предельно допустимого изно­са, у автомобилей — отдельных агрегатов и сборочных единиц (узлов), требующих текущего или капиталь­ного ремонта.

Методы ремонта. Ремонт автомобилей может проводиться инди­видуальным или агрегатным методом. При индивидуальном мето­де снятые агрегаты после их ремонта устанавливают на тот же автомобиль, при этом время простоя автомобиля в ремонте увели­чивается на период времени, необходимого для ремонта его агре­гатов. Этот метод ремонта применяют при отсутствии оборотного фонда агрегатов, разнотипном составе парка, небольших размерах автотранспортного предприятия и отдаленности его от ремонтного предприятия.

Сущность агрегатного метода ремонта состоит в том, что неис­правные или требующие капитального ремонта агрегаты и сбороч­ные единицы (узлы) заменяют исправными.

Агрегатный метод позволяет сократить время простоя автомо­биля в ремонте, повысить производительность парка и снизить себестоимость транспортной работы. Поэтому, как правило, теку­щий ремонт выполняют агрегатным методом.

Восстановление и комплектовка деталей

Ремонт изношенных сопряженных деталей автомобиля можно осуществлять восстановлением начальной посадки изменением раз­меров деталей или восстановлением размеров деталей до их на­чального (номинального) значения (рис. 7).

При первом способе используют детали ремонтных размеров, больших или меньших номинального. При втором способе на изно­шенную поверхность детали наносят слой металла, а затем обра­батывают поверхность под номинальный размер. Нанесение слоя металла возможно наплавкой, гальваническими покрытиями и ме­таллизацией асплавленным металлом.

На авторемонтных предприятиях применяют наплавку: под флюсом, в среде защитных газов, вибродуговую и плазменно-дуго­вую. Из гальванических покрытий наиболее распространены хроми­рование и осталивание деталей, а также дуговая металлизация.

К способам нанесения металла на изношенную поверхность относится также заливка подшипников скольжения антифрикци­онными сплавами (баббитом, свинцовистой бронзой).

 ремонт системы питания двигателей с газобаллонными установками 1

Рис. 7. Классификация способов восстановления деталей автомобиля

Восстановление начальных размеров и посадки некоторых де­талей возможно раздачей, осадкой и обжатием.

Для устранения механических, повреждений деталей автомоби­лей применяют различные виды сварки, пайки, давления, металли­зации и слесарной обработки. Коррозионные повреждения устра­няют механическим или слесарно-механическим способом (шли­фованием, зачисткой и др.).

В целях предупреждения коррозии де­тали оперения, кабину, раму и другие красят, а на детали армату­ры кузовов и кабин наносят гальванические покрытия.

Работоспособность и долговечность автомобиля в большой ме­ре зависят от зазоров в сопряжениях. Сборка сопряжений с зазо­ром менее минимально допустимого приводит к нарушению масля­ной пленки, в результате чего происходит повышенный нагрев трущихся деталей и задиры их рабочих поверхностей.

Сборка с зазорами сверх допустимых приводит к выдавлива­нию смазки, увеличению динамической нагрузки и износу рабочих поверхностей деталей. Следовательно, зазор между сопряженными деталями выдерживают в полном соответствии с техническими условиями на контроль-сортировку и ремонт деталей.

При ремонте автомобилей в процессе сборки используют де­тали с номинальными размерами, с ремонтными размерами и с до­пустимым износом. Поэтому для обеспечения точности сборки необ­ходимо предварительное комплектование, т. е. подбор сопрягаемых деталей по размерам, а некоторых (поршней в двигателе) и по массе. В ряде случаев комплектование сопровождается слесарно-пригоночными операциями, носящими характер частичной сборки.

На крупных авторемонтных предприятиях применяют селектив­ный подбор сопрягаемых деталей. При этом способе комплекто­вания разбивают поле допусков сопрягаемых деталей на несколько равных частей и подбирают детали в пределах одинаковой группы.

Технология ремонта топливной аппаратуры

Совокупность ремонтных операций, выполняемых в определен­ной последовательности, представляет собой технологию ремонта. В зависимости от объема и условий выполнения ремонта техноло­гия может быть различной. Так, капитальный ремонт топливной аппаратуры автомобилей выполняют на специализированных авто­ремонтных заводах в централизованном порядке. При этом приме­няется маршрутная технология восстановления приборов, преду­сматривающая поточный метод производства. Эта технология пред­полагает высокое оснащение ремонтного процесса современными техническими средствами, которые свойственны крупносерийному производству.

Капитальный ремонт топливной аппаратуры целесообразен в том случае, если затраты на него не превышают себестоимости производства новых приборов. Это условие выполнимо для систе­мы питания дизельных двигателей. Для карбюраторных двигате­лей, имеющих сравнительно простое конструктивное исполнение приборов системы питания, капитальный ремонт топливной аппа­ратуры не предусматривается.

В условиях автотранспортного предприятия ремонт топливной аппаратуры выполняют в объеме текущего ремонта. Он включает три этапа: снятие неисправных приборов и деталей с автомобилей на рабочих постах; проверку, восстановление и регулировку при­боров в ремонтных цехах или участках; установку на автомобиль снятых и отремонтированных приборов.

Общая схема технологии ремонта топливной аппаратуры авто­мобилей в автотранспортных предприятиях представлена на рис. 8.

Приемка приборов в ремонт. Перед снятием и отправкой в ремонт неисправные приборы системы питания очищают от грязи, а масло, воду и топливо из внутренних полостей сливают. Приборы снабжают необходимой технической документацией (нарядом на ремонт и др.) и в полном комплекте подготавливают к сдаче в ремонт. Комплектность приборов устанавливают по технической до­кументации и наружным осмотром, затем определяют состояние прибора, оформляя соответствующий акт, где отмечают срок службы до ремонта, состояние базовых деталей и наличие неисправ­ностей.

 ремонт системы питания двигателей с газобаллонными установками 2

Рис. 8. Схема технологического процесса ремонта топливной аппаратуры

Наружная мойка приборов является обязательной перед раз­боркой и ремонтом. Ее выполняют различными способами, наи­более простым является мойка с помощью насосных установок.

Для мойки топливной аппаратуры на автомобиле применяют также пароводоструйные очистители. Например, очиститель ОМ-3360 представляет малогабаритную установку для мойки из шланга. Она может работать на пароводяной смеси, холодной или горячей воде, а также на моющих растворах. В качестве моющих растворов рекомендуется применять синтетическое моющее средст­во «Аэрол». Это сильнопенящееся и нетоксичное средство со спе­цифическим запахом применяется в концентрации 2—3 г/л рас­твора.

Применение каустической соды в качестве моющего средства следует избегать, так как она опасна для здоровья и вызывает коррозию деталей из цветных металлов.

Качество мойки считается удовлетворительным, если с поверх­ности приборов системы питания удалены грязь, пыль, отложения и подтеки масла.

Разборка приборов на сборочные единицы (узлы) и детали. Приборы системы питания снимают с двигателя в определенной последовательности. С двигателя вначале сни­мают топливопроводы высокого и низкого давления и сливные трубопроводы от форсунок и насоса высокого давления. Все топ­ливопроводы укладывают в специальный ящик, чтобы сохранить их конфигурацию. Затем снимают насос высокого давления, вы­нимая текстолитовую соединительную шайбу с муфты опережения впрыска, и фильтры тонкой и грубой очистки топлива.

Приборы системы питания карбюраторного двигателя снимают примерно в такой же последовательности, начиная с демонтажа подводящих и отводящих топливопроводов и кончая самими при­борами.

Снятые с двигателя приборы направляют в цех для ремонта, где их моют в ванне с керосином или в моечной машине, очища­ют волосяными щетками, продувают сжатым воздухом и разбира­ют. Для разборки приборов применяют стенды, приспособления и специальный инструмент. После разборки отдельные детали прибо­ров вновь моют в ванне с керосином, очищают от отложений и нагара, продувают сжатым воздухом или вытирают чистыми сал­фетками, контролируют и сортируют по техническому состоянию.

Контроль и сортировку деталей выполняют с целью определе­ния степени износа и пригодности детали к ремонту или эксплуа­тации. Детали сортируют на годные к эксплуатации, не подлежа­щие ремонту и требующие ремонта. Рассортированные детали в зависимости от их состояния отправляют в утиль, на комплектовку или в ремонт.

Комплектовка деталей — это подбор комплекта деталей для од­ной сборочной единицы (узла) в целом. Например, нагнетательные секции насоса высокого давления можно скомплектовать по паре плунжер — гильза.

Ремонт деталей приборов системы питания в АТП сводится к работам по их восстановлению, не требующим сложного оборудо­вания. К ним относятся притирка рабочих поверхностей клапанов и их седел, запорных игл и распылителей форсунок, плунжерных пар, замена потерявших упругость пружин, восстановление целос­ти трубопроводов, резьб, заделка трещин в корпусах, поплавках и др.

При наличии специального оборудования и приспособлений вы­полняют более сложные ремонтные работы: осталивание или хро­мирование изношенных поверхностей кулачков, толкателей, порш­ней насосов.

Шейки кулачкового вала ремонтируют вибродуговой наплавкой с последующим шлифованием и доведением до необходимого раз­мера.

После ремонта детали приборов системы питания очищают от следов механической обработки, комплектуют по техническим ус­ловиям и собирают. Собранные приборы прирабатывают, регули­руют и испытывают на стендах, затем устанавливают и регулиру­ют на автомобилях.

Ремонт газового редуктора МКЗ-НАМИ

Редуктор МКЗ-НАМИ ремонтируют при возникновении неис­правностей, для устранения которых требуется снятие его с авто­мобиля. К таким неисправностям относятся негерметичность кла­пана первой ступени, разбухание мембраны, негерметичность ва­куумных полостей разгрузочного и экономайзерного устройств, от­каз в работе клапана или мембраны второй ступени, срыв резьбы в корпусе редуктора и др. Снятый редуктор моют и в зависимос­ти от характера неисправностей полностью или частично разби­рают.

При разборке первой ступени (рис. 2) придерживаются пос­ледовательности: ослабляют гайки 13, вывертывают болт 14, пру­жины высокого давления и вынимают пружину 12, отвертывают гайки и снимают нижнюю крышку 11 редуктора. Разъединив шток мембраны первой ступени с рычажком 5, снимают мембрану 8, вывертывают ось 10 рычажка и вынимают рычажок вместе с кла­паном 7. Отвернув две гайки, снимают фильтр 2 вместе с седлом 1 клапана.

При разборке второй ступени редуктора (рис. 3) отверты­вают гайки и снимают дозирующе-экономайзерное устройство. Затем извлекают клапан 14. Для этого снимают фланец трубки холостого хода, вывертывают ось 9 рычажка мембраны и снимают рычажок 12 со штока.

Мембрану снимают в такой последовательности: ослабляют стопорный винт и отвертывают колпак 1 седла пружины, выни­мают из штока -шплинт 7, снимают упорную шайбу 2 и пружину 3. Затем ослабляют контргайку 4 и вывертывают седло 5 пружины, отвертывают болты, снимают верхнюю крышку 6 редуктора и мембрану 8 в сборе.

Разгрузочное устройство извлекают после разборки второй сту­пени. Для этого достаточно отвернуть на 2—3 оборота гайку сальника в корпусе редуктора. Разборка разгрузочного устройства не представляет особых сложностей. Детали устройства с учетом последовательности разборки приведены на рис. 9.

Дозирующе-зкономайзерное устройство разбирают в такой по­следовательности: отвертывают винты и снимают пластину 12

 ремонт системы питания двигателей с газобаллонными установками 3

Рис. 9. Детали разгрузочного устройства:

1 — корпус, 2 — фланец, 3 — мембрана, 4, 7 — шайбы, 5 — пружина, 6 — крышка, 8 — штуцер, 9 — винт клапана

Рис. 10. Детали дозирующе-эковомайзерного устройства:

1 — винт, 2, 7 — шайбы, 3 — крышка, 4 — пружина экоио- майзера, 5 — мембрана, 6 — замочная шайба, 8 — пружина, 9 — корпус, 10 — кла­пан экономайзера, 11 — про­кладка, 12 — пластина

(рис. 10) с дозирующими шайбами, снимают крышку 3, извлека­ют пружину 4 экономайзера и мембрану 5, снимают со штока клапана замочную шайбу 6, вынимают клапан 10 экономайзера и пружину 8 клапана. Снятые детали моют, дефектуют и ремон­тируют.

Основными неисправностями корпуса редуктора, которые под­лежат устранению, являются повреждение резьбы отверстий и прилегающих плоскостей. Резьбовые отверстия восстанавливают нарезанием резьбы большего размера или постановкой втулок. При ремонте резьбовых отверстий способом увеличения размера резьбы соответственно новому размеру изготовляют шпильки, резьбовые штуцера и т. п.

Повреждения плоскостей прилегания (риски, забоины) устра­няют шабрением поверхностей. При обломе ушек под оси рычаж­ков, связывающих клапан и мембрану в первой и второй ступенях, а также при появлении трещин корпус редуктора бракуют.

Негерметичность пары клапан — седло в первой и второй сту­пенях редуктора устраняют обработкой поверхностей седел и ре­монтом клапанов. Повреждения рабочих кромок седел удаляют зачисткой или подрезкой их торца. В клапанах переворачивают или заменяют поврежденные детали вставки. При заедании кла­панов зачищают трущиеся поверхности клапанов, а также оси вращения рычажка.

Негерметичкость вакуумных полостей разгрузочного и эконо-майзерного устройств является следствием нарушения целостнос­ти или повреждения прилегающих поверхностей. Такие поврежде­ния устраняют шабрением, а поврежденные мембраны заменяют. Мембраны изготовляют по чертежам или образцам из прорези­ненной маслобензостойкой ткани толщиной 0,35 мм.

После ремонта редуктор собирают в обратной последователь­ности. При этом проверяют все подвижные соединения, которые должны перемещаться легко без заеданий. При установке мембран обращают внимание на правильное расположение отверстий для болтов и стержня штока. При прижатии мембран не должно об­разовываться складок и загибов.

В процессе сборки первой ступени редуктора при необходи­мости регулируют положение рычажка 5 (см. рис. 2) винтом 3 и контргайкой 4 до момента, когда плечо рычажка 5 займет гори­зонтальное положение при полностью закрытом клапане.

После сборки газовый редуктор испытывают на стенде (рис. 11).

Стенд позволяет произвести проверки и регулировки I и II ступеней редуктора, разгрузочного и экономайзерного уст­ройств. Для проведения работ редуктор 1 закрепляют на стенде посредством пневматического приспособления. Проверка работо­способности систем редуктора осуществляется сжатым воздухом с давлением 1,6 МПа и разрежением до 665 Па, создаваемым диаф-рагменной камерой. Входящее давление воздуха и давление в I ступени редуктора контролируются манометрами 2 и 3. Для замера разрежения во время испытаний используют вакуумметр 4 и пьезометр 5.

В I ступени регулируют величину давления газа, проверяют быстроту наполнения камеры и герметичность соединений. Во II ступени регулируют ход клапана, его герметичность и момент открытия.

Отремонтированные зкономайзерные устройства проверяют на герметичность. При проверке создают разрежение под мембрана­ми не менее 265 Па. Падение вакуума в течение 3 мин не допус­кается. Кроме того, в экономайзерном устройстве проверяют мо­мент открытия клапана, а в разгрузочном — минимальное разре­жение, нейтрализующее усилие конической пружины.

Клапан экономайзера должен открываться при разрежении под

 ремонт системы питания двигателей с газобаллонными установками 4

Рис. 11. Стенд для испытания газового редуктора:

1 — газовый редуктор, 2—манометр высокого давления, 3 —

манометр низкого давления, 4 — вакууметр, 5 — пьезометр.6 — вентили управления

мембраной 165+15 Па. Разрежение, нейтрализующее усилие ко­нической пружины разгрузочного устройства, должно составлять 105—135 Па. При несоответствии устройств заданным параметрам пружины тарируют на специальном приборе . Дли­ну пружины замеряют по шкале, нанесенной на стержне. Причем при установке втулки без пружины риска должна совпадать с нулевой отметкой шкалы.

При определении длины пружины в свободном состоянии на стержень прибора надевают только пружину. При замере длины пружины под нагрузкой на втулку надевают тарировочный груз. Полученные при замере данные сравнивают с параметрами пру­жины (табл. 2) и в случае несоответствия их пружину бракуют.

Таблица 2. Параметры пружин экономайзерного и разгрузочного устройств

Параметр

Пружина

мембраны экономайаера

клапана экономайаера

разгрузочного устройства

Полное число витков

Рабочее число витков

Длина пружины, мм:

в свободном состоянии

под нагрузкой

Масса груза, кг

9

7

29

20

255±8

5

3

14,5

7

280±330

4

2

140

10

750±5

Ремонт испарителя, фильтра, смесителя и предохранительного клапана

В испарителе газа основными неисправностями, появляющи­мися в процессе эксплуатации, являются засорение газовых кла­панов, негерметичность но плоскости разъема, поры, раковины и трещины в корпусе.

Засорение газовых каналов устраняют при разборке испари­теля. Негерметичность по плоскости разъема может возникнуть вследствие повреждения прокладки или плоскости прилегания (за­усенцы, забоины и т. п.).

При ремонте испарителя прокладку за­меняют, а повреждения плоскости разъема исправляют шабрени­ем. Раковины и трещины устраняют заваркой алюминием. Мел­кие поры заделывают чеканкой или пропиткой корпусов бакели­товым лаком.

Перед пропиткой газовых каналов бакелитовым лаком испари­тель собирают, на выходной штуцер устанавливают заглушку и нагревают его до температуры 80—100°С. Затем через входной штуцер полость заполняют нагретым до такой же температуры бакелитовым лаком и подают воздух под давлением 1,6 МПа.

После непродолжительного времени (около одной минуты) давление снимают, лак из полости выливают и испаритель просу­шивают до полного высыхания пленки лака. Отремонтированный таким образом испаритель подвергают на стенде (рис. 12) пневматическим испытаниям на герметичность, конструкция стенда позволяет проверить отдельно в ванне с водой герметичность га­зовой и водяной полостей испарителя. Подъем и опускание ванны с водой и крепление испарителя осуществляется с помощью пнев­матической системы.

Проверяют сначала газовую полость под давлением воздуха 1,6 МПа, затем водяную —под давлением воздуха 0,15 МПа. Про­верка каждой полости произво­дится в течение 2 мин. Конт­роль параметров производится по манометрам 2 и 3 и реле времени 4, установленными на панели приборов стенда.

В магистральных га­зовых фильтрах чаще всего выходит из строя филь­трующий элемент и нарушает­ся герметичность соединений. Для устранения этих неисправ­ностей фильтр снимают и раз­бирают. При разборке (рис. 13) вывертывают болт 1, сни­мают колпак 2 и вынимают фильтрующий элемент 4. За­тем все эти детали промывают и проверяют их техническое состояние. Негерметичность по плоскости разъема фильтра устраняют заменой прокладки или шлифованием плоскостей разъема корпуса и колпака. Фильтрующий элемент при не­обходимости заменяют. Отре­монтированный фильтр прове­ряют на стенде (рис. 14) на герметичность в ванне 4 с во­дой давлением воздуха в 1,6 МПа в течение 3 мин.

Ремонт смесителя. В смеси­теле газа наиболее часто ре­монтируют обратный клапан. Для разборки клапана отвертывают винты и открывают крышку клапанной коробки, после чего кла­пан вместе со стержнем легко вынимается. К неисправностям кла­пана относится засмоление его или пропуск газа (негерметич­ность) при работе двигателя на холостом ходу.

Смолистые отложения удаляют промывкой клапана и его стержня в бензине. Негерметичность пары клапан — седло устра­няют снятием заусенцев с торцовой поверхности седла и притир­кой клапана пастой ГОИ.

 ремонт системы питания двигателей с газобаллонными установками 5

Рис. 12. Стенд для испытания испа­рителя:

1 — рычаги управления, 2 — манометр дли испытания газовой полости, 3 — мано­метр для испытания водяной полости, 4 — реле времени

После ремонта обратный клапан проверяют на герметичность под давлением воздуха 0,2 МПа и легкость его перемещения. Кла­пан в любых положениях не должен зависать.

В предохранительном клапане основной неисправностью явля­ется негерметичность пары клапан — седло. Негерметичность мо­жет быть следствием: попадания грязи (окалины, стружки, песка и т. п.) между седлом и клапаном, повреждения вставки клапана, появления раковин на седле и уменьшения давления пружины на клапан.

 ремонт системы питания двигателей с газобаллонными установками 6

Рис. 13. Магистральный фильтр газа:

1 — болт, 2 —колпак, 3 — прокладка, 4 —фильтрующий эле­мент

Рис. 14. Стенд для испытания фильтров:

1— баллон со сжатым воздухом, 2 — манометры, 3 — рычаг управления, 4 — ванна с водой. 5 — корпус, 6 — штуцер, 7 — электро­магнитный клапан

Повреждения вставки клапана устраняют зачисткой неровнос­ти на прилегающей поверхности бархатным напильником, а рако­вины на седле —подрезкой или зачисткой его торцовой поверхнос­ти. Давление пружины на клапан изменяют набором регулировочных шайб. При увеличении толщины набора шайб давление пружины увеличивается, а при уменьшении — кла­пан будет открываться при меньшем давлении газа в баллоне. После ремонта, вне зависимости от характера неисправности, предохранительный клапан проверяют и регулируют на давление открытия и закрытия клапана. Проверку можно проводить на грузопоршневом манометре типа МП-60 (рис. 15).

В один из

 ремонт системы питания двигателей с газобаллонными установками 7

Рис. 15. Схема грузопоршневого манометра МП-60:

1 — корпус, 2 — вспомогательный поршень, 3 — штуцер, 4 — предохрани­тельный клапан, 5 — колонка, 6 — основной поршень, 7 — тарировоч-ные грузы, 8 — образцовый манометр

штуцеров 3 устанавливают проверяемый предохранительный кла­пан 4, в другой — образцовый манометр 8 на 2 МПа.

Давление в системе прибора создают вспомогательным порш­нем и измеряют по образцовому манометру. Кроме того, макси­мальное давление открытия клапана контролируют основным поршнем. Для этого на его тарелку кладут грузы, соответствую­щие поднятию поршня при давлении 1,75 МПа. Правильно отре­гулированный предохранительный клапан должен открываться при давлении  ремонт системы питания двигателей с газобаллонными установками 8 МПа, уменьшить давление в системе и герметично закрыться при давлении 1,45 МПа. После регулировки предохранительный клапан пломбируют.

Освидетельствование баллонов для сжиженного газа

Баллоны для сжиженного газа периодически, один раз в два года, подвергают освидетельствованию. При освидетельствовании проводят гидравлические испытания, определяющие прочность баллонов, и пневматические для проверки герметичности соеди­нений баллонов с арматурой. Перед испытаниями баллоны сни­мают с автомобиля, освобождают от газа и направляют на пред­приятие (СТОГА), которое имеет разрешение на проведение ука­занных работ.

Для механизации трудоемких работ по снятию, постановке и транспортировке газовых баллонов применяют специальную те­лежку (рис. 16).

Конструкция тележки состоит из рамы 1, опор-

 ремонт системы питания двигателей с газобаллонными установками 9

Рис. 16. Тележка для снятия и постановки газо­вых баллонов:

1 — рама. 2 — газовый баллон. 3 — стрела с пантогра­фом, 4 — стойка. 5 — ножной насос

ной стойки 4 с пантографом. Подъем стрелы осуще­ствляется с помощью ножного гидравлического насоса 5.

При проведении гидравлических испытаний с баллонов снима­ют арматуру, на ее место устанавливают заглушки и баллоны полностью заполняют водой. Испытания проводят под давление ем 2,0 МПа, которое создается гидравлическим прессом и изме­ряется двумя манометрами, один из которых является контроль­ным.

Под давлением 2,0 МПа баллоны выдерживают в течение 1 мин. Затем давление снижают до рабочего (1,6 МПа), осмат­ривают баллоны снаружи и обстукивают сварные соединения. Баллоны считаются выдержавшими гидравлическое испытание, ес­ли не обнаружено признаков разрыва, течи, потения в сварных соединениях на основном металле, видимых остаточных деформаций. После гидравлических испытаний баллоны осушают и на них устанавливают арматуру.

Баллоны в сборе с арматурой подвергают пневматическим ис­пытаниям воздухом или инертным газом под давлением 1,6 МПа. Герметичность соединений определяют при опускании баллона в ванну с водой на 2 мин. Появление пузырьков воздуха на поверх­ности баллонов и в местах соединений их с арматурой не допус­кается.

О результатах освидетельствования делают запись в паспор­те баллона с указанием выявленных и устраненных неисправнос­тей. На стенке баллона выбивают месяц и год последующих ис­пытаний и ставят клеймо организации, проведшей освидетельствование.

В процессе эксплуатации баллонов при любой замене сбороч­ных единиц (узлов) арматуры проводят внеочередные пневмати­ческие испытания без регистрации в паспорте.

Проверка и регулировка газового редуктора и смесителя на моторном стенде

После ремонта и проверки сжатым воздухом газовый редук­тор совместно со смесителем проходят окончательную регулиров­ку и испытания на моторном стенде (рис. 17) при работе дви­гателя на сжиженном газе.

Моторный стенд оборудован газовым двигателем 1 со всем вспомогательным оборудованием (водяным, масляным и топлив­ным насосами, генератором и т. п.), тормозным 11 и весовым 10 устройствами, позволяющими делать отбор и замерять мощность, развиваемую двигателем.

При испытаниях кроме частоты вращения коленчатого вала и мощности, развиваемой двигателем, замеряют расход топлива га­зовым счетчиком и давление в различных сборочных единицах (узлах) газового оборудования. Давление газа в баллоне и в первой ступени редуктора замеряют техническими или образцовы­ми манометрами 5 и 6. Давление и разрежение в газовой аппара­туре, которое должно быть около 0,1 МПа, замеряют ртутным пьезометром. Для измерения малых давлений и разрежений (до 50 Па) используют водяной пьезометр 3.

Во время испытаний проверяют мощностные и экономические показатели двигателя, обеспечиваемые работой редуктора и сме­сителя.

Первым этапом испытаний является регулировка смесителя и редуктора для работы двигателя на холостом ходу. В смесителе регулируют количество подаваемого газа и воздуха, в редукторе — давление газа во второй ступени на величину 70—80 Па. Одновре­менно контролируют токсичность отработавших газов и регули­руют двигатель.

Следующим этапом испытаний является проверка удельных расходов топлива при работе двигателя с частичной нагрузкой на частоте вращения коленчатого вала 2000 об/мин. Для этого заме­ряют мощность двигателя и расход газа. Удельный расход в м 3 (Вт-ч) подсчитывают по формуле  ремонт системы питания двигателей с газобаллонными установками 10, где Vг — расход газа, м3 /ч; Nе — действующая мощность двигателя, Вт.

При полном открытии дроссельных заслонок на различной час­тоте вращения коленчатого вала замеряют мощность двигателя и расход газа.

 ремонт системы питания двигателей с газобаллонными установками 11

Рис. 17. Схема моторного стенда:

1 — двигатель, 2 — счетчик для замера расхода газа, 3 — водяной пьезометр, 4 — ртутный пьезометр, 5 — манометр редуктора, 6 — манометр баллона, 7 —указатель уровня газа в

баллоне, 8 — газовый баллон, 9 — бак с бензином, 10 — весовое устройство, 11 — тормозное устройство, 12 — прибор для замера токсичности отработавших часов

Кроме того, при моторных испытаниях проверяют работу огра­ничителя частоты вращения коленчатого вала двигателя.

После, регулировки редуктор и смеситель в комплекте поступа­ют для установки на автомобиль.

5. ТЕХНИЧЕСКАЯ ПЛАНИРОВКА УЧАСТКА ПО РЕМОНТУ ГАЗОВОЙ АППАРАТУРЫ И АРМАТУРЫ.

Приборы систем питания газобаллонных автомобилей, неис­правность которых не может быть устранена на постах техниче­ского обслуживания и ремонта автомобилей, снимают и направ­ляют в отделение по ремонту газовой аппаратуры и арматуры.

К помещениям отделения предъявляются особые требования. Минимально допустимая высота помещения, обусловленная сани­тарными нормами, должна быть от пола до потолка 3,2 мм, от пола до выступающих конструктивных элементов перекрытия 2,6 м. Полы должны быть ровными с нескользкой поверхностью, бензомаслоустойчивыми из несгораемого материала. Под помеще­ниями, занятыми отделением, запрещается устраивать подвалы, колодцы и подпольные каналы (пустоты).

Помещение, в котором выполняют обслуживание и ремонт га­зового оборудования, должно быть оборудовано искусственной приточно-вытяжной вентиляцией с двукратным обменом воздуха, а также противопожарной сигнализацией и средствами пожаро­тушения.

Снятое с автомобиля газовое оборудование имеет неприятный специфический запах одорирующих веществ, сернистых соедине­ний и остатки пропан-бутанового газа. Поэтому стеллаж-шкаф для хранения газовой аппаратуры в нижней части должен иметь принудительную вытяжную вентиляцию.

Секционный стеллаж-шкаф с переставными полками и вы­движными ящиками для хранения 20 комплектов газового обо­рудования представлен на рис. 143. Стеллаж имеет принудитель­ный отсос воздуха производительностью 0,25 м 3 /ч. Для предохра­нения газовой аппаратуры от повреждений секции стеллажа вы­полнены из материала меньшей твердости (дерево, пластмасса), чем агрегат аппаратуры.

 техническая планировка участка по ремонту газовой аппаратуры и арматуры  1

Рис. 18. Стеллаж-шкаф для хранения газового оборудо­вания

При мойке газового оборудования применяют те же машины и средства, что и для деталей бензиновой и дизельной топливной аппаратуры. Газовые приборы размещают на верстаках, оборудо­ванных тисками и устройством бортового отсоса воздуха.

На участке технического обслуживания и ремонта осуществля­ют дефектовку, сборку, проверку и регулировки деталей и сбороч­ных единиц (узлов) газового оборудования.

Монтажно-демонтажные, слесарные и регулировочные работы по газовому оборудованию выполняют с помощью специального инструмента. Для этих целей применяют комплект инструмента модели И-139 , который имеет медное покрытие, позво­ляющее применять его во взрывоопасной среде. Проверку и регулировку выполняют на специальных испыта­тельных стендах. Определяют рабочие параметры газового обору­дования и проверяют внутреннюю и внешнюю герметичность.

Для проверки и регулировки газового смесителя и карбюрато­ра-смесителя участок оборудуют безмоторной установкой. Ваку­умная часть этой установки размещена в отдельном помещении.

Рабочие параметры и герметичность сборочных единиц (уз­лов) газового оборудования проверяют сжатым воздухом или инертным газом при рабочем давлении 1,6 МПа. Сжатый газ по­дается из баллонов высокого давления (до 20 МПа) и редуцирует­ся до испытательного давления. Шкаф для хранения этих баллонов и тележка для их перемещения размещены на участке энергообеспечения.

ЛИТЕРАТУРА

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/remont-oborudovaniya-azs/

1. Напольский Г.М. Технологическое проектирование автотранспортных предприятий и станций технического обслуживания: Учебник для ВУЗов.-2-е изд., перераб. и доп.- М: Транспорт, 1993.-271с.

2. Положение о техническом обслуживании и ремонте подвижного состава авто мобильного транспорта -М: Транспорт, 1988.-78с.

3. С.Афонин. Газовое оборудование автомобиля. Легковые, грузовые. Устройство, установка, обслуживание. Практическое руководство. «ПОНЧиК», 2001 г.

4. Буралев Ю.В. и др. Устройство, обслуживание и ремонт топливной аппаратуры автомобилей. – М.: Высшая школа, 1982 г.