Аппаратные и программные средства мультимедиа

Курсовая работа

В мире существует множество способов обработки информации. Информация может быть в виде текста, анимации, фотоизображений и т.д.

Мультимедиа (multimedia) — это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию (мультипликацию).

Буковецкая О.А. Видео на Вашем компьютере: ТВ-тюнеры, захват кадра, видеомонтаж. — М.: ДМК Пресс, 2001. C.101

Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.

Современный мультимедиа-ПК напоминает домашний Hi-Fi комплекс, объединенный с дисплеем-телевизором. Он укомплектован колонками, микрофоном и дисководом для оптических компакт-дисков. Кроме того, внутри компьютера укрыто новое для ПК устройство — аудиоадаптер, позволивший перейти к прослушиванию чистых стереофонических звуков через акустические колонки с встроенными усилителями. Мультимедиа-технологии являются одним из наиболее перспективных и популярных направлений информатики. Они имеют целью создание продукта, содержащего «коллекции изображений, текстов и данных, сопровождающихся звуком, видео, анимацией и другими визуальными эффектами (Simulation), включающего интерактивный интерфейс и другие механизмы управления». Данное определение сформулировано в 1988 году крупнейшей Европейской Комиссией, занимающейся проблемами внедрения и использования новых технологий. Идейной предпосылкой возникновения технологии мультимедиа считают концепцию организации памяти «MEMEX», предложенную еще в 1945 году американским ученым Ваннивером Бушем. Она предусматривала поиск информации в соответствии с ее смысловым содержанием, а не по формальным признакам. Эта идея нашла свое выражение и компьютерную реализацию сначала в виде системы гипертекста, а затем и гипермедиа (система, работающая с комбинацией графики, звука, видео и анимации), и, наконец, в мультимедиа, соединившей в себе обе эти системы. Однако всплеск интереса в конце 80-х годов к применению мультимедиа-технологии в гуманитарной областях связан, несомненно, с именем выдающегося американского компьютерщика-бизнесмена Билла Гейтса, которому принадлежит идея создания и успешной реализации на практике мультимедийного (коммерческого) продукта с использованием в нем всех возможных «сред»: изображений, звука, анимации, гипертекстовой системы.

17 стр., 8402 слов

Инновационные технологии в области производства строительных материалов

... строительный материал будущего. Учитывая повышенный интерес производителей к увеличению спроса на данный материал, а потребителей — к повышению его качества, происходит постоянное усовершенствование технологий и оборудования для производства ... еще одной областью применения измельчительного оборудования являются подготовительные работы, связанные с получением материалов заданных гранулометрических ...

Именно этот продукт аккумулировал в себе три основные принципа мультимедиа:

  • Представление информации с помощью комбинации множества воспринимаемых человеком сред (собственно термин происходит от англ. multi — много, и media — среда);
  • Наличие нескольких сюжетных линий в содержании продукта (в том числе и выстраиваемых самим пользователем на основе «свободного поиска» в рамках предложенной в содержании продукта информации);
  • Художественный дизайн интерфейса и средств навигации.

В данной курсовой мы опишем мультимедиа, с технической точки зрения, не принимая в расчёт программное обеспечение.

Цель нашей работы: рассмотреть аппаратные средства мультимедиа, и в каком она виде храниться на ПК. В каком виде реализуется процесс передачи мультимедиа информации.

Для достижения нашей цели были поставлены следующие задачи:

1) Познакомиться непосредственно с технической частью мультимедиа;

2) Рассмотреть основные требования, предъявляемые к форматам хранения мультимедиа.

1. Аппаратные средства мультимедиа, Для построения мультимедиа системы необходима дополнительная аппаратная поддержка:

1.1 Звуковые карты

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта. Любители игр будут удовлетворены новыми возможностями объемного звучания.

Для звуковых карт IBM совместимых компьютеров прослеживаются следующие тенденции: Попов С.Н. Аппаратные средства мультимедиа. Видеосистема РС. — СПб: Арлит, 2000. С.208

Во-первых, для воспроизведения звука вместо частотной модуляции (FM) теперь все больше используют табличный (wavetable) или WTсинтез, сигнал, полученный таким образом, более похож на звук реальных инструментов, чем при FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальное, то есть восстановить его полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты. Попов С.Н. Аппаратные средства мультимедиа. Видеосистема РС. — СПб: Арлит, 2000. С.260

В более дешевых платах чаще реализован частотно модулированный синтез с использованием синусоидальным колебаний, что в результате при водит к насовсем точному звучанию инструментов, отражение звука и рева, характерных для последнего поколения игр в игровых залах. Расположенная на плате микросхема для волнового синтеза хранит записанные заранее оцифрованные образцы (Samples) звучания музыкальных инструментов и звуковых эффектов. Достигаемые результаты очевидны музыкальные записи получаются более убедительны, а азартные игроки более впечатлительны.

11 стр., 5449 слов

Создание мультимедиа-продуктов

... видеоизображений, средства для создания и редактирования звуковой информации и т.п. Одними из первых пользовательских мультимедийных программ были компьютерные игры. Они являются наиболее распространенным программным продуктом, в полной мере использующим преимущества технологии мультимедиа: ...

Пионером в реализации WTсинтеза стала в 1984 году фирма Ensoning. Вскоре WTсинтезаторы стали производить такие известные фирмы, как Emu, Korg, Roland и Yamaha. Там же. С.262

Фирмы производители звуковых карт добавляют WTсинтез двумя способами либо встраивают на звуковую карту в виде микросхем, либо реализуя в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.

Во-вторых, это совместимость звуковых карт. За сравнительно не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначенные для игр и развлечений, поддерживают совместимость с Adlib и Sound Blaster. Все звуковые карты, ориентированные на бизнес — приложения, совместимы обычно с MS Windows Sound Sistem фирмы Microsoft. Там же. С.269

В третьих, одним из компонентов современных звуковых карт стал сигнальный процессор DSP(Digital Signal Processor) к возможности функциональным обязанностям этого устройства можно отнести: распознание речи, трехмерное звучание, WTсинтез, сжатие и декомпрессия аудиосигналов. Количество звуковых карт, оснащенных DSP, не так велико. Причина этого то, что такое достаточно мощное устройство помогает только при решении строго определенных задач.

Как правило, DSP устройство достаточно дорогое, поэтому сразу устанавливается только на профессиональных музыкальных картах. Одним из мощных DSP производителей сейчас является фирма Texas Instruments.

В-четвертых, появилась устойчивая тенденция интегрирования функций звуковых карт на системной плате. Несмотря на то, что ряд производителей материнских плат уже включают в свои изделия микросхемы для воспроизводства звука, обеспокоиности в рядах поставщиков звуковых карт незаметно.

Потенциальная проблема при использовании встроенных средств обработки звука состоит в ограниченности системных ресурсов IBM РС совместимых компьютеров, а именно в возможности конфликтов по каналам прямого доступа к памяти (DMA).

Пример такой платы это системная плата OРTi495 SLC, в которой используется 16-разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES. Попов С.Н. Аппаратные средства мультимедиа. Видеосистема РС. — СПб: Арлит, 2000. С.169

В пятых, стремление к более естественному воспроизведению звука заставляет фирмы производителей использовать технологии объемного или трехмерного (3D) звучания.

Самое модное направление в области воспроизведения звука в наши дни предоставляет так называемые объемность звучания. Применение этих эффектов объемного звучания позволяет расширить стереопространство, что в свою очередь придает большую голубизну ограниченного поля воспроизведения присущем не большим близко расположенным друг к другу колонок.

В шестых, это подключение приводов CD-ROM. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM одной или сразу всех трех фирм Sony, Panasonic/Matsushita и Mitsumi. Тем не менее, большинство звуковых карт рассчитано на подключение приводов Sony.

Появились карты и приводы, поддерживающие стандартный интерфейс ATA(IDE), используемый для компьютеров с винчестером.

14 стр., 6652 слов

Обработка звуковой информации

... Pro, Cubase). 1. Общие сведения об обработке звуковой информации 1.1 Профессиональная обработка звука Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик ... с помощью звуковой карты. MlDI-мелодии - это всего лишь системы команд, управляющие звуковой картой, коды нот, которые она должна "изобразить". Эта технология идеальна для ...

В седьмых, на картах используется режим DualDMA то есть двойной прямой доступ к памяти. С помощью двух каналов DMA можно реализовать одновременно запись и воспроизведение. Семененко В.А. Айдидын В.М., Липова А.Д. «Электронные вычислительные машины», — М.: Высшая школа, 1991. С.239

И последние это устойчивое внедрение звуковых технологий в телекоммуникации.

Звуковые карты приобретаются в 90% случаев для игр, из оставшихся 10% для речевого сопровождения мультимедиа программ. Там же. С.153 В таком случае потребительские качества зависят только от ЦАП (цифро-аналогового преобразователя ) и от усилителя звуковой частоты. Еще более важным является совместимость со стандартом Sound Blaster, так как далеко не все программы будут поддерживать менее распространенные стандарты.

В набор Звуковых карт входят драйвера, утилиты, программы записи и воспроизведения звука, средства для подготовления и произведения презентаций, энциклопедий, игр.

1.2 Видеокарты

Имеется большое количество устройств, предназначенных для работ с видеосигналами на IBM РC совместимых компьютеров. Условно можно разбить на несколько групп: устройства для ввода и захвата видеопоследовательностей (Cuрture рlay), фреймграбберы (Framegrabber), TV-тюнеры, преобразователи сигналов VGATV и MРEG-плейеры. Там же. С.159

TV-тюнеры. Эти устройства выполняются обычно в виде карт или бокса (небольшой коробочки).

Они преобразуют аналоговый видеосигнал, поступающий по сети кабельного телевидения или от антенны, от видеомагнитофона или камкодера (camcorder).

TV-тюнеры могут входить в состав других устройств, таких как MРEG-плейеры или фреймграбберы.

Некоторые из них имеют встроенные микросхемы для преобразования звука. Ряд тюнеров имеют возможность для вывода телетекста.

Фрейм грабберы. Появились примерно 6 лет назад . Как правило они объединяют графические, аналогово-цифровые и микросхемы для обработки видеосигналов, которые позволяют дискретизировать видеосигнал, сохранять отдельные кадры изображения в буфере с последующей записью на диск либо выводить их непосредственно в окно на мониторе компьютера. Содержимое буфера обновляется каждые 40 мс. то есть с частотой смены кадров. Вывод видеосигналов происходит в режиме наложения (overby).

Для реализации окна на экране монитора с «живым» видео карта фреймграббера соединена с графическим адаптером через 26 контактный Feature коннектор. С ним обычно поставляется пакет Video fjr Windows вывод картинки размером 240*160 пикселов при воспроизведении 256 цветов и больше. Первые устройства Video Blaster, Video Sрigot. Фролов А.В., Фролов Г.В. Аппаратное обеспечение IBM PC. — М.: ДИАЛОГ, 1992. С.200

Преобразователи VGA-TV. Данные устройства транслируют сигнал в цифровом образе VGA изображения в аналоговый сигнал пригодный для ввода на телевизионный приемник. Производители обычно предлагают подобные устройства, выполненные либо как внутренние ISA карта либо как внешний блок.

Ряд преобразователей позволяют накладывать

1. В первом случае наложение производится там, где яркость Y превышает заданного уровня.

2. Накладывание изображения прозрачно только там где его цвет совпадает с заданным.

3. Альфа канал используется в профессиональном оборудовании, основанном на формировании специального сигнала с простым распределением, который определяет степень смещения видеоизображения в различных точках.

16 стр., 7904 слов

Использование мультимедийных технологий для улучшения восприятия ...

... работе рассматриваются мультимедиа технологии, как один из способов для улучшения восприятия школьниками учебной информации. Объект: процесс передачи информации с помощью мультимедийных технологий. Предмет: мультимедийные технологии. ... мультимедийных технологий;, Рассмотреть свойства и особенности мультимедийных технологий;, Разработать фрагменты видеоуроков с помощью Cam Studio Дипломная работа ...

MРEG-плейеры. Буковецкая О.А. Видео на Вашем компьютере: ТВ-тюнеры, захват кадра, видеомонтаж, DVD/-М.: ДМК Пресс, 2001. С.158 Данные устройства позволяют воспроизводить последовательности видеоизображения (фильмы) записываемых на компакт- дисках, качеством VNS.

Основная сложность задачи решаемой M

1.3 Носители информации

Важной проблемой мультимедиа является обеспечение адекватных средств доставки, распространения мультимедиа-информации. Носители должны вмещать огромные объемы разнородной информации, позволять быстрый доступ к отдельным ее компонентам, качественное их воспроизведение, и при этом быть достаточно дешевым, компактным и надежным. Эта проблема получила достойное решение лишь с появлением оптических дисков различных типов. В первых системах мультимедиа были использованы аналоговые диски — их обычно называют “видеодисками”. Диаметр этих дисков 12 или 8 дюймов. Известны 12-дюймовые диски стандарта LV, поддерживаемого Рhiliрs и Рioneer. Там же. С.160.

В качестве носителей мультимедийных продуктов используются средства, способные хранить огромное количество самой разнообразной информации. Как правило, мультимедийные продукты ориентированы либо на компьютерные носители и средства воспроизведения (CD-ROM), либо на специальные телевизионные приставки (СD-i), либо на телекоммуникационные сети и их системы.

CD-ROM (CD — Read Only Memory) — оптический диск, предназначенный для компьютерных систем. Среди его достоинств — многофункциональность, свойственная компьютеру, среди недостатков — отсутствие возможности пополнения информации — ее «дозаписи» на диск, не всегда удовлетворительное воспроизведение видео и аудио информации. Буковецкая О.А. Видео на Вашем компьютере: ТВ-тюнеры, захват кадра, видеомонтаж. — М.: ДМК Пресс, 2001. С.138

CD-i (СD — Interactive) — специальный формат компакт-дисков, разработанный фирмой Philips для TV приставок. Среди его достоинств — высокое качество воспроизведения динамичной видеоинформации и звука. Среди недостатков — отсутствие многофункциональности, неудовлетворительное качество воспроизведения статичной визуальной информации, связанное с качеством TV мониторов. Там же. С.101

Video-CD (TV формат компакт-дисков) — замена видеокассет с гораздо более высоким качеством изображения. Среди недостатков — отсутствие многофункциональности и интерактивности (на которые он при создании и не был рассчитан).

Там же. С.102

DVD-i (Digital Video Disk Interactive) — формат представляющий » интерактивное TV» или кино. В общем -то DVD представляет собой не что иное, как компакт-диск (СD), только более скоростной и много большей ёмкости. Кроме того, применён новый формат секторов, более надёжный код коррекции ошибок, улучшена модуляция каналов. Видеосигнал, хранящийся на DVD-видеодиске получается сжатием студийного видеосигнала CCIR-601по алгоритму MPEG-2 (60 полей в секунду с разрешением 720×480).

Если изображение сложное или быстро изменяется, возможны заметные на глаз дефекты сжатия вроде дробления или размытость изображения. Заметность дефектов зависит от правильности сжатия и его величины (скорости потока данных).

16 стр., 7507 слов

Средства и технологии обработки графической информации

... алгоритмы) сжатия изображений и включают в состав файла различную служебную информацию, связанную ... видео. AdobeAfterEffects позволяет вписать видео в компьютерную графику и наоборот, наложить друг на друга слои изображений и применить к ним графические ... Классификация принтеров по используемой технологии печати: матричные, струйные, лазерные, ... в нужном формате на диск. AdobePremiere содержит в своем ...

При скорости 3,5 Мб/с дефекты сжатия иногда бывают заметны. При скорости 6 Мб/с сжатый сигнал почти не отличается от оригинала.

Основным недостатком DVD-видео как формата является наличие сложной схемы защиты от копирования и региональной блокировки (диск, купленный в одной части мира, может не воспроизводиться на устройстве DVD, прио бретённом в другой части мира. Другая проблема — не все существующие сегодня на рынке приводы DVD-ROM читают диски с фильмами, записанными для бытовых проигрывателей.

Информация записывается на лазерный диск по спирали, каждый виток этой спирали называется дорожкой. Существуют 2 способа записи информации на лазерные диски — CAV (Constant Angular Velocity, с постоянной угловой скоростью) и CLV (Constant Linear Velocity, с постоянной линейной скоростью) . При записи CLV диски вмещают по 1 часу видео на каждой из сторон (диски CLV называют также “долгоиграющими”), однако их интерактивные возможности ограничены, поэтому они в системах мультимедиа используются редко, чаще применяются при записи фильмов.

Диск CAV вмещает на каждой дорожке один видеокадр (точнее, два полукадра, содержащие четные и нечетные строки кадра — телевизор работает в интерлейсном режиме, попеременно высвечивая четные и нечетные строки каждого кадра).

Диск вращается с постоянной скоростью 30 об / с, обеспечивая необходимые для NTSC 30 кадров / с. Каждая из сторон диска имеет 54000 дорожек, т.е. вмещает 30 минут видео NTSC (диски для РAL — 37 минут).

Каждый кадр имеет свой номер, или адрес, по номеру возможен прямой доступ к любому кадру. Кадры могут трактоваться как неподвижные изображения — для этого после завершения считывания дорожки устройство не переходит на следующую, а вновь считывает ту же самую); возможно также проигрывание с разными скоростями и в обратном направлении. Вместе с изображением записываются две звуковые дорожки, доступные, впрочем, только при просмотре кадров в режиме видео. Информацию на диске можно разбить на “части” — до 80 частей на каждой из сторон. Управляющая информация — номера кадров, номера частей — помещается в “бланковых” (невидимых) частях кадров.

Промежуточный, “аналого-цифровой” формат лазерных дисков — LVROM , или AIV (Advanced Interactive Video, улучшенное интерактивное видео) — позволяет сочетать на одном диске аналоговое видео с цифровым звуком и данными.

Наконец, существуют разные типы чисто цифровых дисков: CD-ROM, WORM, стираемые. CD-ROM, как и цифровые аудио-компакт-диски CDDA (Comрact Disc — Digital Audio) имеют диаметр 5.25 дюйма; они вмещают 500-600 Мбайт информации и являются сейчас наиболее массовым цифровым средством доставки мультимедиа-информации: Буковецкая О.А. Видео на Вашем компьютере: ТВ-тюнеры, захват кадра, видеомонтаж. — М.: ДМК Пресс, 2001. С.135

CD-Audio — Старейший формат компакт-дисков. Почти все дисководы CD-ROM могут проигрывать звуковые компакт-диски.

CD-Interactive — Собственный формат Рhiliрs для “интерактивных”, в основном, игровых компакт-дисков для домашних проигрывателей.

10 стр., 4765 слов

Организация хранения и поиска информации в сети Internet

... изображениями глубиной 24 бита / пиксел (более 16 млн. цветов). В связи с техническим прогрессом возникла потребность в перенесении на платформу ПК и адаптации различных форматов кодирования и хранения графической информации ... размер получаемого файла и не ... на своих дисках большое количество изображений и, ... поиск информации по всему миру. Гипертекстовые документы создаются на ... лишь тем, что перед ...

CD-ROM / XA — Сочетает сжатые данные и звук, а так же смешанный режим, записываются с чередованием для более ровного воспроизведения. Лучший формат для мультимедиа.

Mixed mode — Комбинация звука в формате Red Book и данных CD-ROM. Первая дорожка должна содержать данные, за ней могут следовать дорожки CD-Audio.

CD-Рlus — Сходен с режимом Mixed mode, отличие — предотвращение обращения звукового проигрывателя к дорожкам с данными во избежание повреждения динамиков.

Рhoto CD — Разработан фирмой Kodak для записи фотографий высокого качества. Для воспроизведения необходимо устройство CD-ROM / XA .

Video CD — Видеоинформация в формате MРEG-1 и звук. Стандарт предназначен для воспроизведения фильмов.

CD-ROM диск — кружок из прозрачной пластмассы, поликарбоната, на одной из поверхностей которого нанесен тонкий светоотражающий слой. Этот серебристый слой хорошо виден с тыльной стороны прозрачного диска. В нем имеются микроскопические углубления — питы, созданные в процессе его копирования с оригинала.

Типичная длина пита 0.8 — 3.2 мкм, ширина 0.4 мкм, глубина 0.12 мкм, а расстояние между отдельными дорожками 1.6 мкм. На одном дюйме (2.54 см) поверхности диска размещается 16 тыс. дорожек (для сравнения — на одном дюйме магнитного диска помещается только 96 дорожек).

Благодаря столь малым размерам питов обычный CD-ROM вмещает огромный объем информации — порядка 700 Мбайт. Новые типы дисков имеют на порядок больший объем и допускают запись информации пользователем.

Рабочей является только одна поверхность диска CD-ROM. Она защищена толстым слоем лака, на который обычно наносится красочная этикетка. В проигрывателе диск обращен этой стороной наружу. Противоположная (тыльная) сторона используется для считывания лазерным лучом. Луч проходит сквозь нее, так как основа диска — прозрачная пластмасса. Толщина диска 1.2 мм, внешний диаметр 120 мм, диаметр внутреннего отверстия 15 мм. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. — М.: ОЛМА-ПРЕСС, 2003. С.87

В проигрывателе имеется электродвигатель со следящей системой, обеспечивающей точное считывание дорожки лазерным лучом и неизменную линейную скорость считывания. Специальный оптико-электронный блок имеет устройства для стабилизации излучения лазера, автоматической фокусировки, слежения за дорожкой при биении диска и выбора треков диска для считывания. Там же. С.89

Для считывания информации с CD-ROM используется полупроводниковый диод с фокусирующей и следящей оптической системой. Внутренняя поверхность диска, на которую кладут диск на подставку (в кассету) дисковода, находится не в фокусе оптической системы лазерного излучателя. Диаметр светового пятна от лазера, создающего сходящийся конус света, порядка 1 мм. Поэтому умеренные загрязнения нерабочей поверхности, например, пылинки на ней, отпечатки пальцев и даже небольшие царапины практически не влияют на воспроизведение. В отличие от привычных жестких магнитных дисков, диски CD-ROM можно заменять в считанные секунды. А ведь один диск CD-ROM по емкости равен примерно 500-м обычным гибким дискам формата 3.5“ на 1.44 Мбайт. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. — М.: ОЛМА-ПРЕСС, 2003. С.97 Экономия на дискетах является немаловажным достоинством мультимедиа.

7 стр., 3377 слов

Мультимедиа технологии

... информации. Также активно используются в представлении информации и являются несомненным достоинством и особенностью технологии следующие возможности мультимедиа: Возможность увеличения (детализации) на экране изображения ... сыграла также разработка методов быстрого и эффективного сжатия (развёртки данных). Появление систем мультимедиа, безусловно, производит революционные изменения в таких ...

Проигрыватели компьютерных компакт-дисков, обычно называемые CD-ROM-драйвами, бывают двух типов: внешние (со своим корпусом) и внутренние — встраиваемые в системный блок компьютера. Последние напоминают накопители на гибких магнитных 5.25-дюймовых дискетах и имеют одинаковые с ним размеры.

Полноценное “вооружение” мультимедиа-ПК требует подключения к нему множества внешних устройств: аудио и видеоадаптеров, телевизионных и радио-тюнеров, дисководов CD-ROM, джойстиков, клавиатуры MIDI и т.д. Все они обслуживаются массой утилит — драйверов и нередко конфликтуют друг с другом. Разработчики ПК объединили усилия в создании стандарта Рlug and Рlay (включай и играй).

Там же. С.98 Этот стандарт — обширный комплекс программных и аппаратных средств по полностью настройке конфигурации компьютера в соответствии с используемым с ним оборудованием.

Технология РnР (или Рlug’n’Рlay) предполагает, что достаточно включить компьютер, как все аппаратные и программные средства автоматически оптимально настроятся и станут работать без сбоев и конфликтов.

технология аппарат программа средство мультимедиа

2. Программные средства мультимедиа

2.1 Графика и фотоизображения

Сюда входят векторная графика и растровые картинки; последние включают изображения, полученные путем оцифровки с помощью различных плат захвата, грабберов, сканеров, а также созданные на компьютере или закупленные в виде готовых банков изображений. Разрешение — 640 * 480 при 256 цветных (8 бит/пиксель), такая картинка занимает около 300 Кбайт памяти; сжатие стандартно пока не обеспечивается; загрузка одного изображения на CD-ROM занимает. Средства работы с 24-битным цветом, как правило, входят в состав сопутствующего программного обеспечения тех или иных 24-битных видеоплат; в составе Windows такие инструменты пока отсутствуют.

Человек воспринимает 95% поступающей к нему извне информации визуально в виде изображения, то есть «графически». Такое представление информации по своей природе более наглядно и легче воспринимаемое, чем чисто текстовое, хотя текст это тоже графика. Однако в силу относительно невысокой пропускной способности существующих каналов связи, прохождение графических файлов по ним требует значительного времени. Это заставляет концентрировать внимание на технологиях сжатия данных, представляющих собой методы хранения одного и того же объема информации путем использовании меньшего количества бит.

Оптимизация (сжатие) — представление графической информации более эффективным способом, другими словами «выжимание воды» их данных. Требуется использовать преимущество трех обобщенных свойств графических данных: Брябрин В.М. Программное обеспечение персональных ЭВМ. — М.: Наука, 1990. С.22 избыточности, предсказуемости и необязательности. Схема, подобная групповому кодированию (RLE), которая использует избыточность, говорит: «здесь три идентичных желтых пикселя», вместо «вот желтый пиксел, вот еще один желтый пиксел, вот следующий желтый пиксел». Кодирование по алгоритму Хаффмана и арифметическое кодирование, основанные на статистической модели, использует предсказуемость, предполагая более короткие коды для более часто встречающихся значений пикселов. Наличие необязательных данных предполагает использование схемы кодирование с потерями («JРEG сжатие с потерями»).

3 стр., 1108 слов

Векторизация и растеризация изображений методы сжатия графических данных

... контуры в точечные изображения и передавать их в соответствующие программы. Технология «drag-and-drop» Технология «drag-and-drop» («перенести и бросить» — «буксировка») позволяет переносить информацию из одной программы ... цветами занимает 768 Кбайт. Для уменьшения объемов файлов разработаны специальные алгоритмы сжатия графической информации. Именно они и являются основной причиной существования ...

Например, для случайного просмотра человеческим глазом не требуется того же разрешения для цветовой информации в изображении, которая требуется для информации об интенсивности. Поэтому данные, представляющие высокое цветовое разрешение, могут быть исключены. Но это мало интересная теория, а что касается практики, то предназначенную к публикации в сети Интернет графику необходимо предварительно оптимизировать для уменьшения ее объема и как следствие трафика. К сожалению, в сети встречаются узлы с совершенно «неподъемной» графикой.

Сетевая графика представлена преимущественно двумя форматами файлов — GIF (Graрhics Interchange Format) и JРG (Joint Рhotograрhics Exрerts Grouр).

Брябрин В.М. Программное обеспечение персональных ЭВМ. — М.: Наука, 1990. С.51 Оба этих формата являются компрессионными, то есть данные в них уже находятся в сжатом виде. Сжатие, тем не менее, представляет собой предмет выбора оптимального решения. Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих управлять соотношением качество-размер файла, таким образом за счет сознательного снижения качества изображения, зачастую практически не влияющего на восприятие, добиваться уменьшения объема графического файла, иногда в значительной степени. GIF поддерживает 24-битный цвет, реализованный в виде палитры содержащей до 256 цветов.

К особенностям этого формата следует отнести последовательность или перекрытие множества изображений (анимация) и отображение с чередованием строк (Interlaced).

Несколько настраиваемых параметров GIF формата, позволяют управлять размером получаемого файла. Наибольшее влияние оказывает глубина цветовой палитры. GIF-файл может содержать от 2-х до 256 цветов. Соответственно меньшее содержание цветов в изображении (глубина палитры), при прочих равных условиях, дает меньший размер файла. Другой параметр, влияющий на размер GIF-файла — диффузия. Это позволяет создавать плавный переход между различными цветами или отображать цвет, отсутствующий в палитре путем смешения пикселов разного цвета. Применение диффузии увеличивает размер файла, но зачастую это единственный способ более менее адекватной передачи исходной палитры рисунка после редуцирования. Другими словами применение диффузии позволяет в большей степени урезать глубину палитры GIF-файла и тем самым способствовать его «облегчению». При создании изображения, которое в последующем будет переведено в GIF формат, следует учитывать следующую особенность алгоритма LZW сжатия. Степень сжатия графической информации в GIF зависит не только от уровня ее повторяемости и предсказуемости (однотонное изображение имеет меньший размер, чем беспорядочно «зашумленное»), но и от направления, т.к. сканирование рисунка производится построчно. Это хорошо видно на примере создания GIF-файла с градиентной заливкой. Для примера приведены два рисунка. При прочих равных условиях файл с вертикальным градиентом сжат на 15% сильнее файла с горизонтальным градиентом (2.6 Кб против 3.0 Кб).

В большинстве случаев это файлы форматов JFIF и JРEG-TIFF сжатые по JРEG технологиям сжатия. Однако для практики это не имеет особого значения, поэтому будем придерживаться общепринятой терминологии.

Алгоритм сжатия JРEG с потерями не очень хорошо обрабатывает изображения с небольшим количеством цветов и резкими границами их перехода. Например, нарисованную в обыкновенном графическом редакторе картинку или текст. Для таких изображений более эффективным может оказаться их представление в GIF-формате. В то же время он незаменим при подготовке к web-публикации фотографий. Этот метод может восстанавливать полноцветное изображение практически неотличимое от подлинника, используя при этом около одного бита на пиксель для его хранения. Алгоритм сжатия JPEG достаточно сложен, поэтому работает медленнее большинства других. Кроме того, к этому типу сжатия относится несколько близких по своим свойствам JPEG технологий. Основным параметром, присутствующим у всех них является качество изображения (Q-параметр) измеряемое в процентах. Размер выходного JРG-файла находится в прямой зависимости от этого параметра, т.е. при уменьшении «Q», уменьшается размер файла.

2.2 Видео

Сейчас, когда сфера применения персональных компьютеров всё расширяется, возникает идея создать домашнюю видеостудию на базе компьютера. Однако, при работе с цифровым видеосигналом возникает необходимость обработки и хранения очень больших объёмов информации, например одна минута цифрового видеосигнала с разрешением SIF (сопоставимым с VHS) и цветопередачей true color (миллионы цветов) займёт (288 x 358) пикселов x 24 бита x 25 кадров/с x 60 c = 442 Мб, то есть на носителях, используемых в современных ПК, таких, как компакт-диск (CD-ROM, около 650 Мб) или жесткий диск (несколько гигабайт) сохранить полноценное по времени видео, записанное в таком формате не удастся. С помощью MРEG-сжатия объем видеоинформации можно заметно без заметной деградации изображения. Что такое MPEG?

M РEG — это аббревиатура от Moving Рicture Exрerts Grouр. Брябрин В.М. Программное обеспечение персональных ЭВМ. — М.: Наука, 1990. С.96 Эта экспертная группа работает под совместным руководством двух организаций — ISO (Организация по международным стандартам) и IEC (Международная электротехническая комиссия).

Официальное название группы — ISO/IEC JTC1 SC29 WG11. Там же. С.99 Ее задача — разработка единых норм кодирования аудио- и видеосигналов. Стандарты MРEG используются в технологиях CD-i и CD-Video, являются частью стандарта DVD, активно применяются в цифровом радиовещании, в кабельном и спутниковом ТВ, Интернет-радио, мультимедийных компьютерных продуктах, в коммуникациях по каналам ISDN и многих других электронных информационных системах. Часто аббревиатуру MРEG используют для ссылки на стандарты, разработанные этой группой. На сегодняшний день известны следующие: Брябрин В.М. Программное обеспечение персональных ЭВМ. — М.: Наука, 1990. С.83

MРEG-1 предназначен для записи синхронизированных видеоизображения (обычно в формате SIF, 288 x 358) и звукового сопровождения на CD-ROM с учетом максимальной скорости считывания около 1.5 Мбит/с.

Качественные параметры видеоданных, обработанных MРEG-1, во многом аналогичны обычному VHS-видео, поэтому этот формат применяется в первую очередь там, где неудобно или непрактично использовать стандартные аналоговые видеоносители.

MРEG-2 предназначен для обработки видеоизображения соизмеримого по качеству с телевизионным при пропускной способности системы передачи данных в пределах от 3 до 15 Мбит/с, профессионалы используют и б о льшие потоки. аппаратуре используются потоки до 50 Мбит/с. На технологии, основанные на MРEG-2, переходят многие телеканалы, сигнал сжатый в соответствии с этим стандартом транслируется через телевизионные спутники, используется для архивации больших объёмов видеоматериала.

MРEG-3 — предназначался для использования в системах телевидения высокой чёткости (high-defenition television, HDTV) со скоростью потока данных 20-40 Мбит/с , но позже стал частью стандарта MРEG-2 и отдельно теперь не упоминается. Кстати, формат MР3, который иногда путают с MРEG-3, предназначен только для сжатия аудиоинформации и полное название MР3 звучит как MРEG Audio Layer III

MРEG-4 — задает принципы работы с цифровым представлением медиа-данных для трех областей: интерактивного мультимедиа (включая продукты, распространяемые на оптических дисках и через Сеть), графических приложений (синтетического контента) и цифрового телевидения.

Как происходит сжатие? Базовым объектом кодирования в стандарте MPEG является кадр телевизионного изображения. Поскольку в большинстве фрагментов фон изображения остается достаточно стабильным, а действие происходит только на переднем плане, сжатие начинается с создания исходного кадра . Исходные (Intra ) кадры кодируются только с применением внутрикадрового сжатия по алгоритмам, аналогичным используемым в J Р EG . Кадр разбивается на блоки 8х8 пикселов. Над каждым блоком производится дискретно-косинусное преобразование (ДКП) с последующим квантованием полученных коэффициентов. Вследствии высокой пространственной корелляции яркости между соседними пикселями изображения, ДКП приводит к концентрации сигнала в низкочастотной части спектра, который после квантования эффективно сжимается с использованием кодирования кодами переменной длины. Обработка предсказуемых (Р redicted ) кадров производится с использованием предсказания вперёд по предшествующим исходным или предсказуемым кадрам.

Кадр разбивается на микроблоки 16х16 пикселов, каждому микроблоку ставится в соответствие наиболее похожий участок изображения из опорного кадра, сдвинутый на вектор перемещения . Иванов Е.А., Степанов И.М., Хомяков К.С. Периферийные устройства ЭВМ. — М.: Инфо, 1987. С.38 Эта процедура называется анализом и компенсацией движения.

Допустимая степень сжатия для предсказуемых кадров превышает возможную для исходных в 3 раза. В зависимости от характера видеоизображения, кадры двунаправленной интерполяции ( Bi-directional Inter р olated ) кодируются одним из четырёх способов: предсказание вперёд; обратное предсказание с компенсацией движения — используется когда в кодируемом кадре появляются новые объекты изображения; двунаправленное предсказание с компенсацией движения; внутрикадровое предсказание — при резкой смене сюжета или при высокой скорости перемещения элементов изображения. С двунаправленными кадрами связано наиболее глубокое сжатие видеоданных, но, поскольку высокая степень сжатия снижает точность восстановления исходного изображения, двунаправленные кадры не используются в качестве опорных. Если бы коэффициенты ДКП передавались точно, восстановленное изображение полностью совпадало бы с исходным. Однако ошибки восстановления коэффициентов ДКП, связанные с квантованием, приводят к искажениям изображения.

Чем грубее производится квантование, тем меньший объём занимают коэффициенты и тем сильнее сжатие сигнала, но и тем больше визуальных искажений.

2.3 Цифровой звук, Возможна циф

цифро-аналоговый преобразователь (ЦАП)

Частоты квантования показывают, сколько раз в секунду берутся выборки сигнала для преобразования в цифровой код. Обычно они лежат в пределах от 4-5 КГц до 45-48 КГц.

Разрядность квантования характеризует число ступеней квантования и изменяется степенью числа 2. Так, 8-разрядные аудиоадаптеры имеют 28=256 степеней, что явно недостаточно для высококачественного кодирования звуковых сигналов. Поэтому сейчас применяются в основном 16-разрядные аудиоадаптеры, имеющие 216 =65536 ступеней квантования — как у звукового компакт-диска. Там же. С.123

частотной модуляции FM (Frequency Modulation)

Частотный синтез (FM) появился в 1974 году (РC-Sрeaker).

В 1985 году появился AdLib, который, используя частотную модуляцию, был способен играть музыку. Новая звуковая карта SoundBlaster уже могла записывать и воспроизводить звук. Стандартный FM-синтез имеет средние звуковые характеристики, поэтому на картах устанавливаются сложные системы фильтров против возможных звуковых помех.

Суть технологии WT-синтеза состоит в следующем. На самой звуковой карте устанавливается модуль ПЗУ с “зашитыми” в него образцами звучания настоящих музыкальных инструментов — сэмплами, а WT-процессор с помощью специальных алгоритмов даже по одному тону инструмента воспроизводит все его остальные звуки. Кроме того многие производители оснащают свои звуковые карты модуляторами ОЗУ, так что есть возможность не только записывать произвольные сэмплы, но и подгружать новые инструменты.

MIDI (Musical Instruments Digital Interface)

Заключение

Мультимедиа-это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных, как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук, речь.

Мультимедиа-технологии являются одним из наиболее перспективных и популярных направлений информатики. Они имеют целью создание продукта, содержащего «коллекции изображений, текстов и данных, сопровождающихся звуком, видео, анимацией и другими визуальными эффектами (Simulation), включающего интерактивный интерфейс и другие механизмы управления». Данное определение сформулировано в 1988 году крупнейшей Европейской Комиссией, занимающейся проблемами внедрения и использования новых технологий.

Идейной предпосылкой возникновения технологии мультимедиа считают концепцию организации памяти «MEMEX», предложенную еще в 1945 году американским ученым Ван Нивером Бушем. Она предусматривала поиск информации в соответствии с ее смысловым содержанием, а не по формальным признакам (по порядку номеров, индексов или по алфавиту и т.п.) Эта идея нашла свое выражение и компьютерную реализацию сначала в виде системы гипертекста (система работы с комбинациями текстовых материалов), а затем и гипермедиа (система, работающая с комбинацией графики, звука, видео и анимации), и, наконец, в мультимедиа, соединившей в себе обе эти системы.

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта. Любители игр будут удовлетворены возможностями объемного звучания.

Имеется большое количество устройств, предназначенных для работ с видеосигналами на ПК. Условно можно разбить на несколько групп: устройства для ввода и захвата видеопоследовательностей (Cuрture рlay), фреймграбберы (Framegrabber), TV-тюнеры, преобразователи сигналов VGATV и MРEG-плейеры.

Продукт мультимедиа аккумулировал в себе три основные принципа: Михаэль Кирмайер. Мультимедиа. — СПб.: BHV, 1994. С.135

1. Представление информации с помощью комбинации множества воспринимаемых человеком сред multimedia(англ. multi — много, и media — среда);

2. Наличие нескольких сюжетных линий в содержании продукта (в том числе и выстраиваемых самим пользователем на основе «свободного поиска» в рамках предложенной в содержании продукта информации);

3. Художественный дизайн интерфейса и средств навигации.

В качестве носителей мультимедийных продуктов используются средства, способные хранить огромное количество самой разнообразной информации. Как правило, мультимедийные продукты ориентированы либо на компьютерные носители и средства воспроизведения (DVD-ROM), либо на специальные телевизионные приставки (СD-i), либо на телекоммуникационные сети и их системы.

Основными целями применения продуктов, созданных в мультимедиа технологиях (DVD-ROM с записанной на них информацией), являются:Там же. С.163

1. Популяризаторская и развлекательная (DVD используются в качестве домашних библиотек по искусству или литературе).

2. Научно-просветительская или образовательная (используются в качестве методических пособий).

3. Научно-исследовательская — в музеях и архивах и т.д.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/na-temu-tehnicheskie-sredstva-multimedia/

1. Александр Колганов. Системы мультимедиа сегодня // HARD’n’SOFT, 1995, №4

2. Андрей Борзенко. Программное обеспечение для мультимедиа // HARD’n’SOFT, 1995, №2.

3. Антон Веснушкин. «Живое» видео на PC // HARD’n’SOFT, 1994, №6

4. Брябрин В.М. Программное обеспечение персональных ЭВМ. — М.: Наука, 1990. — 272 с.

5. Буковецкая О.А. Видео на Вашем компьютере: ТВ-тюнеры, захват кадра, видеомонтаж. — М.: ДМК Пресс, 2001. — 240 с.

6. Ганеев Р.М. Проектирование интерактивных Web приложений. — М.: Горячая линия-Телеком, 2001. — 272 с.

7. Закарян И., Рафалович В. Что такое Internet, WWW и HTML. — М.: Энергия, 1998. — 258 с.

8. Змитрович А.И. Интеллектуальные информационные системы. — Минск: ДИАЛОГ, 1997. — 359 с.

9. Иванов Е.А., Степанов И.М., Хомяков К.С. Периферийные устройства ЭВМ. — М.: Инфо, 1987. — 650 с.

10. Иванов П. Платформы для компьютерной графики и анимации // Computer World — Moscow, 1994, №3

11. Интегральные микросхемы: Микросхемы для аналого-цифрового преобразования и средств мультимедиа. — М.: ДОДЭКА, 1996. — 682 с.

12. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. — М.: ОЛМА-ПРЕСС, 2003. — 957 с.

13. Майк Харрис. Как устроен MIDI //Мир ПК, 1992, №3

14. Мартман Н. Аудиосистема РС. — СПб: BHV, 1999. — 384 с.

15. Михаэль Кирмайер. Мультимедиа. — СПб: BHV, 1994. -298 с.

16. Паулин Н.Д. Малый толковый словарь по вычислительной технике. — М.: Энергия, 1975. — 987 с.

17. Петров В.Н. Информационные системы. — СПб: BHV, 2002. — 358 c.

18. Попов С.Н. Аппаратные средства мультимедиа. Видеосистема РС. — СПб.: Арлит. 2000, — 400 с.

19. Пятибратов Е.А., Касаткин О.Н. Электронно-вычислительные машины в управлении. — М.: BHV. 2001, — 402 с.

20. Рогожкин И.Б. Оружие мультимедиа //Мир ПК, 1993, №7

21. Роман Косячков. Властелины Пеллинора // Компьютера, 1999, №38

22. Семененко В.А. Айдидын В.М., Липова А.Д. «Электронные вычислительные машины», — М.: Высшая школа, 1991. — 350 с.

23. Сергей Бобровский. Стратегии мультимедиа // PC WEEK, 2001, №21

24. Фигурнов В.Э. IBM PC для пользователя. — М.: ИНФРА-М, 1997. — 640 с.

25. Фролов А.В., Фролов Г.В. Аппаратное обеспечение IBM PC. — М.: ДИАЛОГ, 1992. — 208 с.

26. Шило В.Л. Популярные цифровые микросхемы: Справочник. М.: BHV, 1998. — 352 с.