Вода в пищевых продуктах

Контрольная работа

Водам (оксид водорода) — химическое вещество в виде прозрачной жидкости, не имеющей цвета (в малом объёме), запаха и вкуса (при нормальных условиях).

Химическая формула: Н2O. В твёрдом состоянии называется льдом, снегом или инеем, а в газообразном — водяным паром. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды).

Является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).

Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды.

Вода на Земле может существовать в трёх основных состояниях — жидком, газообразном и твёрдом и приобретать различные формы, которые могут одновременно соседствовать друг с другом: водяной пар и облака в небе, морская вода и айсберги, ледники и реки на поверхности земли, водоносные слои в земле. Вода способна растворять в себе много веществ, приобретая тот или иной вкус. Из-за важности воды, «как источника жизни», её нередко подразделяют на типы по различным принципам.[12]

По особенностям происхождения, состава или применения, выделяют, в числе прочего:

Мягкая вода и жёсткая вода — по содержанию катионов кальция и магния

По изотопам молекулы:

1.Лёгкая вода (по составу почти соответствует обычной)

2.Тяжёлая вода (дейтериевая)

3.Сверхтяжёлая вода (тритиевая)

4.Пресная вода

5.Дождевая вода

6.Морская вода

7.Подземные воды

8.Минеральная вода

9.Солоноватая вода (en: Brackish water)

10.Питьевая вода, Водопроводная вода

11.Дистиллированная вода и деионизированная вода

12.Сточные воды

13.Ливневая вода или поверхностные воды

14.Структурированная вода — термин, применяемый в различных неакадемических теориях.[3]

2. Химические названия воды:

С формальной точки зрения вода имеет несколько различных корректных химических названий:

  • Оксид водорода
  • Гидроксид водорода
  • Монооксид дигидрогена
  • Гидроксильная кислота
  • англ. hydroxic acid
  • Оксидан
  • Дигидромонооксид[15]

3. Физические свойства воды

Вода в нормальных атмосферных условиях сохраняет жидкое агрегатное состояние, тогда как аналогичные водородные соединения являются газами. Это объясняется особыми характеристиками слагающих молекулы атомов и присутствием связей между ними. Атомы водорода присоединены к атому кислорода, образуя угол 104,45°, и эта конфигурация строго сохраняется.

14 стр., 6748 слов

Реферат добыча воды в природных условиях

... природных вод. В питании болот участвуют сток с водосборной площади и атмосферные осадки, выпавшие непосредственно на ... затопления и подтопления, создают условия для равномерного внутригодового ... вод в ледниках Ледники, наледи и снежники являются существенными аккумуляторами пресной воды. На территории России основная масса ледников сосредоточена на арктических островах и в горных районах (Новая Земля ...

Из-за большой разности электроотрицательностей атомов водорода

и кислорода электронные облака сильно смещены в сторону кислорода. По этой причине молекула воды является активным диполем, где кислородная сторона отрицательна, а водородная положительна. В результате молекулы воды притягиваются своими противоположными полюсами, и образуют полярные связи, на разрыв которых требуется много энергии. В составе каждой молекулы .Ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, в результате чего он может проникать в электронную оболочку отрицательно поляризованного атома кислорода соседней молекулы, образуя водородную связь с другой молекулой. Каждая молекула связана с четырьмя другими посредством водородных связей — две из них образует атом кислорода и две атомы водорода. Комбинация этих связей между молекулами воды — полярной и водородной и определяет очень высокую температуру её кипения и удельную теплоты парообразования. В результате этих связей в водной среде возникает давление в 15-20 тыс. атмосфер, которое и объясняет причину трудносжимаемости воды, так при увеличении атмосферного давления на 1 Бар (единица измерения), вода сжимается на 0,00005 доли её начального объёма.

Водородная связь

Структуры воды и льда между собой очень похожи. В воде, как и во льду, молекулы стараются расположиться в определённом порядке — образовать структуру, однако тепловое движение этому препятствует. При температуре перехода в твёрдое состояние тепловое движение молекул более не препятствует образованию структуры, и молекулы воды упорядочиваются, в процессе этого объёмы пустот между молекулами увеличиваются и общая плотность воды падает, что и объясняет причину меньшей плотности воды в фазе льда. При испарении, напротив, рвутся все связи. Разрыв связей требует много энергии, отчего у воды самая большая удельная теплоёмкость среди прочих жидкостей и твёрдых веществ. Для того чтобы нагреть один литр воды на один градус, требуется затратить 4,1868 кДж энергии. Благодаря этому свойству вода нередко используется как теплоноситель. Однако удельная теплоёмкость воды, в отличие от других веществ непостоянна: при нагреве от 0 до 35 градусов Цельсия её удельная теплоёмкость падает, в то время как у других веществ она постоянна при изменении температуры. Помимо большой удельной теплоёмкости, вода также имеет большие значения удельной теплоты плавления (0 °C и 333,55 кДж/кг) и парообразования (2250 кДж/кг).[8]

Таблица 1.-Физические свойства воды

Температура

°С

Удельная теплоёмкость воды

кДж/(кг*К)

-60 (лёд)

1,64

-20 (лёд)

2,01

-10 (лёд)

2,22

0 (лёд)

2,11

0 (чистая вода)

4,218

10

4,192

20

4,182

40

4,178

60

4,184

80

4,196

100

4,216

Вода обладает также высоким поверхностным натяжением среди жидкостей, уступая в этом только ртути. Относительно высокая вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Вода обладает отрицательным электрическим потенциалом поверхности.[2]

Чистая (не содержащая примесей) вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO? составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.[9]

4. Агрегатные состояния

Агрегатное состояние воды

Фазовая диаграмма воды: по вертикальной оси — давление в Па, по горизонтальной — температура в Кельвинах. Отмечены критическая(647,3 K; 22,1 МПа) и тройная (273,16 K; 610 Па) точки. Римскими цифрами отмечены различные структурные модификации льда.

По состоянию различают:

1.Твёрдое — лёд

2.Жидкое — вода

3.Газообразное — водяной пар

При нормальном атмосферном давлении (760 мм рт. ст., 101 325 Па) вода переходит в твердое состояние при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C (температура 0 °C и 100 °C были специально выбраны как температура таяния льда и кипения воды при создании температурной шкалы «по Цельсию» в системе СИ).

При снижении давления температура таяния (плавления) льда медленно растёт, а температура кипения воды — падает. При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01 °C. Такое давление и температура называются тройной точкой воды. При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки (сублимации) льда падает со снижением давления. При высоком давлении существуют модификации льда с температурами плавления выше комнатной.

С ростом давления температура кипения воды растёт:

Таблица 2.-Температура кипения воды [15]

Давление

Ткип гр. Цельсия

нормальные условия

+98,9°

1

+100°

2

+120°

6

+158°

218,5

+374,1°

При росте давления плотность водяного пара в точке кипения тоже растёт, а жидкой воды — падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.

Так же возможны метастабильные состояния — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, нетрудно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0 °C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.

Чистая вода способна как переохлаждаться не замерзая до температуры -33°C, так и быть перегрета до +200°C. За это её свойство она получила применение в промышленности (например в паровых турбинах).

Существует тип воды, которая имеет плотность на 40% выше нормальной и закипает при температуре +300°С. Эта разновидность воды была открыта советским учёным Б. В. Дерягиным на поверхности кристаллов кварца[2].

5. Изотопные модификации воды

И кислород, и водород имеют природные и искусственные изотопы. В зависимости от типа изотопов водорода, входящих в молекулу, выделяют следующие виды воды:

Лёгкая вода (основная составляющая привычной людям воды) .

Тяжёлая вода (дейтериевая) .

Сверхтяжёлая вода (тритиевая) .

тритий-дейтериевая вода

тритий-протиевая вода

дейтерий-протиевая вода

Последние три вида возможны, так как молекула воды содержит два атома водорода. Протий — самый легкий изотоп водорода, дейтерий имеет атомную массу 2,0141017778 а.е.м., тритий — самый тяжелый, атомная масса 3,0160492777 а.е.м.

Известно, что тяжёлая вода не поддерживает жизни, то есть большинство живых организмов (за исключением некоторых микроорганизмов и грибов) в такой воде умирает.

По стабильным изотопам кислорода 16O, 17O и 18O существуют три разновидности молекул воды. Таким образом, по изотопному составу существуют 18 различных молекул воды. В действительности любая вода содержит все разновидности молекул.[4]

6. Химические свойства

Вода является наиболее распространённым растворителем на планете Земля, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ. Её иногда рассматривают, как амфолит — и кислоту и основание одновременно (катион H+анион OH?).

В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ? 16.

Вода химически довольно активное вещество. Сильно полярные молекулы воды сольватируют ионы и молекулы образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.[2]

Вода реагирует при комнатной температуре:

с активными металлами (натрий, калий, кальций, барий и др.)

с галогенами (фтором, хлором) и межгалоидными соединениями

с солями, образованными слабой кислотой и слабым основанием, вызывая их полный гидролиз с ангидридами и галогенангидридами карбоновых и неорганических кислот с активными металлорганическими соединениями (диэтилцинк, реактивы Гриньяра, метилнатрий и т. д.) 1.с карбидами, нитридами, фосфидами, силицидами, гидридами активных металлов (кальция, натрия, лития и др.)

2.со многими солями, образуя гидраты

3.с боранами, силанами

4.с кетенами, недоокисью углерода

5.с фторидами благородных газов

Вода реагирует при нагревании:

с железом, магнием

с углем, метаном

с некоторыми алкилгалогенидами

Вода реагирует в присутствии катализатора:

1.с амидами, эфирами карбоновых кислот

2.с ацетиленом и другими алкинами

3.с алкенами

4.с нитрилами

7. Вода в пищевых продуктах

Вода — важная составляющая пищевых продуктов. Она присутствует и разнообразных растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, обусловливая их консистенцию и структуру и влияя на внешний вид, вкус и устойчивость продукта при хранении. Благодаря физическому взаимодействию с белками, полисахаридами, липидами и солями, вода вносит значительный вклад.

Количество воды в пищевых продуктах влияет на их качество и сохраняемость. Скоропортящиеся продукты с повышенным содержанием влаги без консервирования длительное время не сохраняются. Вода, содержащаяся в продуктах, способствует ускорению в них химических, биохимических и других процессов. Продукты с малым содержанием воды лучше сохраняются.

Многие виды пищевых продуктов содержат большое количество влаги, что отрицательно сказывается на их стабильности в процессе хранения. Поскольку вода непосредственно участвует в гидролитических процессах, ее удаление или связывание за счет увеличения содержания соли или сахара тормозит многие реакции и ингибирует рост микроорганизмов, таким образом удлиняя сроки хранения продуктов. Важно также отметить, что удаление влаги путем высушивания или замораживания существенно влияет на химический состав и природные свойства.

Для достижения поставленной цели решаются следующие основные задачи:

  • изучение различных форм связи воды в пищевых продуктов;
  • выяснение взаимосвязи активности воды пищевых продуктов с их физико-химическими, реологическими и технологическими свойствами, а также качественными изменениями при обработке и хранении.

а) Свободная и связанная влага в пищевых продуктах

Вода в пищевых продуктах играет, как уже отмечалось, важную роль, т. к. обусловливает консистенцию и структуру продукта, а ее взаимодействие с присутствующими компонентами определяет устойчивость продукта при хранении.

Общая влажность продукта указывает на количество влаги в нем, но не характеризует ее причастность к химическим, биохимическим и микробиологическим изменениям в продукте. В обеспечении его устойчивости при хранении важную роль играет соотношение свободной и связанной влаги. Связанная влага — это ассоциированная вода, прочно связанная с различными компонентами — белками, липидами и углеводами за счет химических и физических связей. Свободная влага — это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций. Рассмотрим некоторые примеры.[6]

При влажности зерна 15 — 20% связанная вода составляет 10 — 15%. При большей влажности появляется свободная влага, способствующая усилению биохимических процессов (например, прорастанию зерна).

Плоды и овощи имеют влажность 75 — 95%. В основном, это свободная вода, однако примерно 5% влаги удерживается клеточными коллоидами в прочно связанном состоянии. Поэтому овощи и плоды легко высушить до 10 — 12%, но сушка до более низкой влажности требует применения специальных методов.

Большая часть воды в продукте может быть превращена в лед при —5°С, а вся — при — 50°С и ниже. Однако определенная доля прочно связанной влаги не замерзает даже при температуре —60°С.[6]

«Связывание воды» и «гидратация» — определения, характеризующие способность воды к ассоциации с различной степенью прочности с гидрофильными веществами. Размер и сила связывания воды или гидратации зависит от таких факторов, как природа неводного компонента, состав соли, рН, температура.

В ряде случаев термин «связанная вода» используется без уточнения его смысла, однако предлагается и достаточно много его определений. В соответствии с ними связанная влага:

  • характеризует равновесное влагосодержание образца при некоторой температуре и низкой относительной влажности;
  • не замерзает при низких температурах (—40°С и ниже);
  • не может служить растворителем для добавленных веществ;
  • дает полосу в спектрах протонного магнитного резонанса;
  • перемещается вместе с макромолекулами при определении скорости седиментации, вязкости, диффузии;
  • существует вблизи растворенного вещества и других неводных веществ и имеет свойства, значительно отличающиеся от свойств всей массы воды в системе.

Указанные признаки дают достаточно полное качественное описание связанной воды. Однако ее количественная оценка по тем или иным признакам не всегда обеспечивает сходимость результатов. Поэтому большинство исследователей склоняются к определению связанной влаги только по двум из перечисленных выше признаков. По этому определению, связанная влага — это вода, которая существует вблизи растворенного вещества и других неводных компонентов, имеет уменьшенную молекулярную подвижность и другие свойства, отличающиеся от свойств всей массы воды в той же системе, и не замерзает при — 40°С. Такое определение объясняет физическую сущность связанной воды и обеспечивает возможность сравнительно точной ее количественной оценки, т.к. вода, незамерзающая при — 40°С, может быть измерена с удовлетворительным результатом (например, методом ПМР или калориметрически).

При этом действительное содержание связанной влаги изменяется в зависимости от вида продукта.[10]

Причины связывания влаги в сложных системах различны. Наиболее прочно связанной является так называемая органически связанная вода. Она представляет собой очень малую часть воды в высоковлажных пищевых продуктах и находится, например, в щелевых областях белка или в составе химических гидратов. Другой весьма прочно связанной водой является близлежащая влага, представляющая собой монослой при большинстве гидрофильных групп неводного компонента. Вода, ассоциированная таким образом с ионами и ионными группами, является наиболее прочно связанным типом близлежащей воды. К монослою примыкает мультислойная вода (вода полимолекулярной адсорбции), образующая несколько слоев за близлежащей водой. Хотя мультислой — это менее прочно связанная влага, чем близлежащая влага, она все же еще достаточно тесно связана с неводным компонентом, и потому ее свойства существенно отличаются от чистой воды. Таким образом, связанная влага состоит из «органической», близлежащей и почти всей воды мультислоя.[7]

Кроме того, небольшие количества воды в некоторых клеточных системах могут иметь уменьшенные подвижность и давление пара из-за нахождения воды в капиллярах. Уменьшение давления пара и активности воды (aw) становится существенным, когда капилляры имеют диаметр меньше, чем 0,1µ м. Большинство же пищевых продуктов имеют капилляры диаметром от 10 до 100 мм, которые, по-видимому, не могут заметно влиять на уменьшение aw в пищевых продуктах.

В пищевых продуктах имеется также вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани при небольшом количестве органического материала могут физически удерживать большие количества воды [3].

Хотя структура этой воды в клетках и макромолекулярной матрице точно не установлена, ее поведение в пищевых системах и важность для качества пищи очевидна. Эта вода не выделяется из пищевого продукта даже при большом механическом усилии. С другой стороны, в технологических процессах обработки она ведет себя почти как чистая вода. Ее, например, можно удалить при высушивании или превратить в лед при замораживании. Таким образом, свойства этой воды, как свободной, несколько ограничены, но ее молекулы ведут себя подобно водным молекулам в разбавленных солевых растворах.

Именно эта вода составляет главную часть воды в клетках и гелях, и изменение ее количества существенно влияет на качество пищевых продуктов. Например, хранение гелей часто приводит к потере их качества из-за потери этой воды (так называемого синерезиса).

Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды в процессе оттаивания.[7]

Свойства различных видов влаги в пищевых продуктах

Свойства

Органически связанная вода

Монослой

Мультислой

Общее описание

Вода как общая частьневодного компонента

Вода, которая сильно взаимодействует с гидрофильными группами неводных компонентов путем вода-ион, или вода — диполь ассоциации; вода в микрокапиллярах (d < 0,1 \м)

Вода, которая примыкает к монослою и которая образует несколько слоев вокруг гидрофильных групп неводного компонента. Превалируют вода—вода и вода—растворенное вещество—водородные связи

Точка замерзания по сравнению с чистой водой

Не замерзает при -40 °С

Не замерзает при -40 °С

Большая часть не замерзает при -40 «С.Остальная часть замерзает при значительно пониженной температуре

Способность служить растворителем

Нет

Нет

Достаточно слабая

Молекулярная подвижность

Очень малая

Существенно меньше

Меньше

Энтальпия парообразования по сравнению с чистой водой

Сильно увеличена

Значительно увеличена

Несколько увеличена

Зона изотермы сорбции

Органически связанная вода показывает практически нулевую активность и,таким образом, существует в экстремально левом конце зоны

Вода в зоне 1 изотермы состоит изнебольшого количества органической влаги с остатком монослоя влаги. Верхняя граница зоны I не является четкой и варьирует в зависимости от продукта и температуры

Вода в зоне 11 состоит из воды, присутствующей в зоне I, + вода добавленная или удаленная внутри зоныII(мультислойная влага).

Граница зоны IIне является четкой и варьирует в зависимости от продукта и температуры

Стабильность пищевых продуктов

Самоокисление

Оптимальная стабильность при aw = 0,2-0,3

Если содержание воды увеличивается выше нижней части зоны II, скорость почти всех реакций

Давно известно, что существует взаимосвязь (хотя и далеко не совершенная) между влагосодержанием пищевых продуктов и их сохранностью (или порчей).

Поэтому основным методом удлинения сроков хранения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.

Однако часто различные пищевые продукты с одним и тем же содержанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, сильнее связанная, меньше способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.

Чтобы учесть эти факторы, был введен термин «активность воды». Этот термин безусловно лучше характеризует влияние влаги на порчу продукта, чем просто содержание влаги. Естественно, существуют и другие факторы (такие как концентрация 02, рН, подвижность воды, тип растворенного вещества), которые в ряде случаев могут сильнее влиять на разрушение продукта. Тем не менее, водная активность хорошо коррелирует со скоростью многих разрушительных реакций, она может быть измерена и использована для оценки состояния воды в пищевых продуктах и ее причастности к химическим и биохимическим изменениям. Активность воды (aw) — это отношение давления паров воды надданным продуктом к давлению паров над чистой водой при той же температуре. Это отношение входит в основную термодинамическую формулу определения энергии связи влаги с материалом (уравнение Ребиндера):

ДF =L=RTln =-RT-lnaw.

По величине активности воды (табл. 3) выделяют: продукты с высокой влажностью (aw= 1,0-0,9); продукты с промежуточной влажностью (aw= 0,9-0,6); продукты с низкой влажностью (а = 0,6-0,0).

Таблица 3 — Активность воды (aw) в пищевых продуктах

Продукт

Влажность, %

aw

ПроПродукт

Влажность, %

аw

Фрукты

90-95

0,97

Мука

16-19.

0,80

Яйца

70-80

0,97

Мед

10-15

0,75

Мясо

60-70

0,97

Карамель

7-8

0,65

Сыр

40

0,92-0,96

Печенье

6-9

0,60

Джем

30-35

0,82-0,94

Шоколад

5-7

0,40

Хлеб

40-50

0,95

Сахар

0-0,15

0,10

Кекс

20-28

0,83

Кривые, показывающие связь между содержанием влаги (масса воды, г Н20/г СВ) в пищевом продукте с активностью воды в нем при постоянной температуре, называются изотермами сорбции. Информация, которую они дают, полезна для характеристики процессов концентрирования и дегидратации (т.к. простота или трудность удаления воды связана с aw), а также для оценки стабильности пищевого продукта. На рис. 10.5 изображена изотерма сорбции влаги для продуктов с высокой влажностью (в широкой области влагосодержания).

Рисунок 3. Изотерма сорбции влаги для продуктов с высокой влажностью

Однако, с учетом наличия связанной влаги, больший интерес представляет изотерма сорбции для области низкого содержания влаги в пищевых продуктах

Рисунок 4.Изотермы сорбции влаги для области низкого содержания влаги в пищевых продуктах.

Для понимания значения изотермы сорбции полезно рассмотреть зоны I—III.

Свойства воды в продукте сильно отличаются по мере перехода от зоны I (низкие влагосодержания) к зоне III (высокая влажность).

ЗонаI изотермы соответствует воде, наиболее сильно адсорбированной и наиболее неподвижной в пищевых продуктах. Эта вода абсорбирована, благодаря полярным вода-ион и вода-диполь взаимодействиям. Энтальпия парообразования этой воды много выше, чем чистой воды, и она не замерзает при — 40°С. Она неспособна быть растворителем, и не присутствует в значительных количествах, чтобы влиять на пластичные свойства твердого вещества; она просто является его частью.

Высоко влажный конец зоны I (граница зон I и II) соответствует монослою влаги. В целом зона I — соответствует чрезвычайно малой части всей влаги в высоковлажном пищевом продукте.

Вода в зоне II состоит из воды зоны I и добавленной воды (ресорбция) для получения воды, заключенной в зону II. Эта влага образует мультислой и взаимодействует с соседними молекулами через вода-вода—водородные связи. Энтальпия парообразования для мультислойной воды несколько больше, чем для чистой воды. Большая часть этой воды не замерзает при — 40°С, как и вода, добавленная к пищевому продукту с содержанием влаги, соответствующим границе зон I и II. Эта вода участвует в процессе растворения, действует как пластифицирующий агент и способствует набуханию твердой матрицы. Вода в зонах II и I обычно составляет менее 5% от общей влаги в высоковлажных пищевых продуктах.

Вода в зоне III изотермы состоит из воды, которая была в зоне I и II, и добавленной для образования зоны III. В пищевом продукте эта вода наименее связана и наиболее мобильна. В гелях или клеточных системах она является физически связанной, так что ее макроскопическое течение затруднено. Во всех других отношениях эта вода имеет те же свойства, что и вода в разбавленном солевом растворе. Вода, добавленная (или удаленная) для образования зоны III, имеет энтальпию парообразования практически такую же, как чистая вода, она замерзает и является растворителем, что важно для протекания химических реакций и роста микроорганизмов. Обычная влага зоны III (не важно, свободная или удерживаемая в макромолекулярной матрице) составляет более 95% от всей влаги в высоко влажных материалах. Состояние влаги, как будет показано ниже, имеет важное значение для стабильности пищевых продуктов.

В заключение следует отметить, что изотермы сорбции, полученные добавлением воды (ресорбция) к сухому образцу, не совпадают полностью с изотермами, полученными путем десорбции. Это явление называется гистерезисом. Изотермы сорбции влаги для многих пищевых продуктов имеют гистерезис. Величина гистерезиса, наклон кривых, точки начала и конца петли гистерезиса могут значительно изменяться в зависимости от таких факторов, как природа пищевого продукта, температура, скорость десорбции, уровень воды, удаленной при десорбции.

Как правило, изотерма абсорбции (ресорбции) нужна при исследовании гигроскопичности продуктов, а десорбции — полезна для изучения процессов высушивания.

б)Активность воды и стабильность пищевых продуктов

С учетом вышесказанного ясно, что стабильность пищевых продуктов и активность воды тесно связаны.

В продуктах с низкой влажностью могут происходить окисление жиров, не ферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганизмов здесь подавлена. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.

Окисление липидов начинается при низкой aw. По мере ее увеличения скорость окисления уменьшается примерно до границы зон I и II на изотерме, а затем снова увеличивается до границы зон II и III. Дальнейшее увеличение aw снова уменьшает скорость окисления. Эти изменения можно объяснить тем, что при добавлении воды к сухому материалу сначала имеет место столкновение с кислородом. Эта вода (зона I) связывает гидропероксиды, сталкивается с их продуктами распада и, таким образом, препятствует окислению. Кроме того, добавленная вода гидратирует ионы металлов, которые катализируют окисление, уменьшая их действенность.

Наблюдаемый максимум потемнения может объясняться наступлением равновесия в процессе диффузии, которая регулируется величиной вязкости, степенью растворения и массообменом. При низкой активности воды медленная диффузия реагентов замедляет скорость реакции. По мере увеличения влагосодержания более свободная диффузия ускоряет реакцию до тех пор, пока в верхней точке диапазона влажности растворение реагентов снова не замедляет ее. Точно так же более высокая концентрация воды замедляет ход реакции на тех обратимых стадиях, на которых образуется вода.

Ферментативные реакции могут протекать при более высоком содержании влаги, чем влага монослоя, т.е. тогда, когда есть свободная вода. Она необходима для переноса субстрата. Учитывая это, легко понять, почему скорость ферментативных реакций зависит от aw.

При aw, соответствующей влаге монослоя, нет свободной воды для переноса субстрата. Кроме того, в ряде ферментативных реакций вода сама играет роль субстрата.

Для большинства бактерий предельное значения aw= 0,9, но, например, для St.aureus aw= 0,86. Этот штамм продуцирует целый ряд энтсротоксинов типа А, В, С, D, Е. Большинство пищевых отравлений связаны с токсинами А и D. Дрожжи и плесени могут расти при более низких значениях активности воды.

При хранении пищевых продуктов активность воды оказывает влияние на жизнеспособность микроорганизмов. Поэтому активность воды в продукте имеет значение для предотвращения его микробиологической порчи.

В основном порчу продуктов с промежуточной влажностью вызывают дрожжи и плесени, меньше — бактерии. Дрожжи вызывают порчу сиропов, кондитерских изделий, джемов, сушеных фруктов; плесени — мяса, джемов, пирожных, печенья, сушеных фруктов (табл. 4).[6]

Эффективным средством для предупреждения микробиологической порчи и целого ряда химических реакций, снижающих качество пищевых продуктов при хранении, является снижение активности воды в пищевых продуктах. Для снижения активности воды используют такие технологические приемы, как сушка, вяление, добавление различных веществ (сахар, соль и др.), замораживание. С целью достижения той или иной активности воды в продукте можно применять такие технологические приемы, как:

  • адсорбция
  • продукт высушивают, а затем увлажняют до определенного уровня влажности;
  • сушка посредством осмоса — пищевые продукты погружают в растворы, активность воды в которых меньше активности воды пищевых продуктов.

Часто для этого используют растворы Сахаров или соли. В этом случае имеет место два противотока: из раствора в продукт диффундирует растворенное вещество, а из продукта в раствор — вода. К сожалению, природа этих процессов сложна, и в литературе нет достаточных данных по этому вопросу.

Для достижения требуемой активности воды добавляют различные ингредиенты в продукт, обработанный одним из указанных выше способов, и дают ему возможность прийти в равновесное состояние, т.к. один лишь процесс сушки часто не позволяет получить нужную кон-систенцию. Применяя увлажнители, можно увеличить влажность продукта, но снизить aw. Потенциальными увлажнителями для пищевых продуктов являются крахмал, молочная кислота, сахара, глицерин и др.

в)Роль льда в обеспечении стабильности пищевых продуктов

Замораживание является наиболее распространенным способом консервирования (сохранения) многих пищевых продуктов. Необходимый эффект при этом достигается в большей степени от воздействия низкой температуры, чем от образования льда. Образование льда в клеточных структурах пищевых продуктов и гелях имеет два важных следствия:

  • а) неводные компоненты концентрируются в незамерзающей фазе (незамерзающая фаза существует в пищевых продуктах при всех температурах хранения);
  • б) вся вода, превращаемая в лед, увеличивается на 9% в объеме.

Во время замораживания вода переходит в кристаллы льда различной, но достаточно высокой степени чистоты. Все неводные компоненты поэтому концентрируются в уменьшенном количестве незамерзшей воды. Благодаря этому эффекту, незамерзшая фаза существенно изменяет такие свойства, как рН, титруемая кислотность, ионная сила, вязкость, точка замерзания, поверхностное натяжение, окислительно-восстановительный потенциал. Структура воды и взаимодействие «вода — растворенное вещество» также могут сильно изменяться.

Эти изменения могут увеличить скорости реакций. Таким образом, замораживание имеет два противоположных влияния на скорость реакций: низкая температура как таковая будет ее уменьшать, а концентрирование компонентов в незамерзшей воде — иногда увеличивать. Так, в ряде исследований показано увеличение при замораживании скорости реакций не ферментативного потемнения, имеющих место при различных реакциях.

Фактор возможности увеличения скорости различных реакций в замороженных продуктах необходимо учитывать при их хранении, поскольку этот фактор будет влиять на качество продуктах.

Многочисленными исследованиями показано, что существенное снижение скорости реакций (более чем в 2 раза) имеет место при хранении пищевых продуктов в условиях достаточно низкой температуры (-18°С).

При отрицательных температурах, достаточно близких к температуре замерзания воды (0°С) имеет место увеличение доли не солюбилизованного белка. При температуре — 18°С инсолюбилизация белка уменьшается существенно, и это создает оптимальные условия для хранения продуктов.[9]

г)Методы определения влаги в пищевых продуктах

Определение общего содержания влаги.

Высушивание до постоянной массы. Содержание влаги рассчитывают по разности массы образца до и после высушивания в сушильном шкафу при температуре 100— 105°С. Это — стандартный метод определения влаги в техно-химическом контроле пищевых продуктов. Поскольку в основе метода лежит высушивание образца до постоянной массы, метод требует много времени для проведения анализа.

Титрование по модифицированному методу Карла Фишера. Метод основан на использовании реакции окисления-восстановления с участием йода и диоксида серы, которая протекает в присутствии воды. Использование специально подобранных органических реагентов позволяет достигнуть полного извлечения воды из пищевого продукта, а использование в качестве органического основания имидазола способствует практически полному протеканию реакции. Содержание влаги в продукте рассчитывается по количеству йода, затраченному на титрование. Метод отличается высокой точностью и стабильностью результатов (в том числе при очень низком содержании влаги) и быстротой проведения анализа.

Определение свободной и связанной влаги

Дифференциальная сканирующая калориметрия. Если образец охладить до температуры меньше 0°С, то свободная влага замерзнет, связанная — нет. При нагревании замороженного образца в калориметре можно измерить тепло, потребляемое при таянии льда. Незамерзающая вода определяется как разница между общей и замерзающей водой.[3]

Термогравиметрический метод.

Метод основан на определении скорости высушивания. В контролируемых условиях граница между областью постоянной скорости высушивания и областью, где эта скорость снижается, характеризует связанную влагу.

Диэлектрические измерения.

Метод основан на том, что при 0°С значения диэлектрической проницаемости воды и льда примерно равны. Но если часть влаги связана, то ее диэлектрические свойства должны сильно отличаться от диэлектрических свойств объемной воды и льда.

Измерение теплоемкости.

Теплоемкость воды больше, чем теплоемкость льда, т.к. с повышением температуры в воде происходит разрыв водородных связей. Это свойство используют для изучения подвижности молекул воды. Значение теплоемкости воды в зависимости от ее содержания в полимерах дает сведения о количестве связанной воды. Если при низких концентрациях вода специфически связана, то ее вклад в теплоемкость мал. В области высоких значений влажности ее в основном определяет свободная влага, вклад которой в теплоемкость примерно в 2 раза больше, чем льда.[13]

ЯМР.

Метод заключается в изучении подвижности воды в неподвижной матрице. При наличии свободной и связанной влаги получают две линии в спектре ЯМР вместо одной для объемной воды.

Вывод

Содержание воды в пищевых продуктах должно быть определенным. Уменьшение или увеличение содержания воды влияет на качество продукта. Так, товарный вид, вкус и цвет моркови, зелени, плодов и хлеба ухудшаются при снижении влажности, а крупы, сахара и макаронных изделий — при ее увеличении. Многие продукты способны поглощать пары воды, т. е. обладают гигроскопичностью (сахар, соль, сухофрукты, сухари).

Так как влажность влияет на питательную ценность пищевых продуктов, а также на сроки и условия хранения, она является важным показателем в оценке их качества.

Содержание воды в пищевых продуктах в процессе их перевозки и хранения не остается постоянным. В зависимости от особенности самих продуктов, а также условий внешней среды они теряют влагу или увлажняются. Высокой гигроскопичностью (способностью поглощать влагу) обладают продукты, содержащие много фруктозы (мед, карамель), а также сушеные плоды и овощи, чай, поваренная соль. Эти продукты хранят при относительной влажности воздуха не выше 65-70 %

Активность воды — один из самых критических параметров в определении качества и безопасности товаров, которые потребляются каждый день. Водная активность затрагивает срок годности, безопасность, структуру и запах пищевых продуктов. Это также жизненно важно для стабильности фармацевтических препаратов и косметики. Поскольку активность воды столь важна, необходимо измерить ее точно и быстро

Количество воды во многих продуктах, как правило, нормируется стандартами с указанием верхнего предела ее содержания, так как от этого зависят не только качество и сохраняемость, но и пищевая ценность продуктов

Список литературы:

[Электронный ресурс]//URL: https://inzhpro.ru/kontrolnaya/vlajnost-pischevyih-produktov/

1.Лосев К.С. Вода. — Л.: Гидрометеоиздат, 1989. — 272 с.

2.Жорес Медведев. Какая вода лучше

3Гидробионты в самоочищении вод и биогенной миграции элементов. М.: МАКС-Пресс. 2008. 200 с. Предисловие члена-корр. РАН В. В. Малахова. (Серия: Наука. Образование. Инновации. Выпуск 9).

ISBN 978-5-317-02625-7.

4.О некоторых вопросах поддержания качества воды и ее самоочищения // Водные ресурсы. 2005. т. 32. № 3. С. 337—347.

5.Андреев В. Г. Влияние протонного обменнного взаимодействия на строение молекулы воды и прочность водородной связи. Материалы V Международной конференции «Актуальные проблемы науки в России», Кузнецк 2008, т.3 с.58-62.

6. Вода в пищевых продуктах / Под редакцией Р.Б. Дакуорта. — Перевод с англ. — М.: Пищевая промышленность,1980. — 376 с.

7. Гинзбург A.C., Громов М.А., Красовская Г.И. Теплофизические характеристики пищевых продуктов: Справочник. — М.: Агропромиздат, 1990. -287 с.

8. Ляйстнер, Л. Барьерные технологии: комбинированные методы обработки, обеспечивающие стабильность, безопасность и качество продуктов питания / Л. Ляйстнер, Г. Гоулд. — Перевод с англ. — М.: ВНИИ мясной промышленности им. В.М. Горбатова, 2006. — 236 с.

9. Моик И.Б. Термо и влагометрия пищевых продуктов. Под ред. И.А.Рогова-М.: Агропромиздат, 1988. — 303 с.

10. Пищевая химия/Нечаев А.П., Траубенберг С.Е., Кочеткова А.А. и др.Под ред. А.П. нечаева.Издание 3-е,испр.- СПб.:ГИОРД, 2004. — 640с.

11. Ребиндер, П.А. О формах связи воды с материалом в процессе сушки / В кн. Всес. совещание по интенсивности процессов и улучшение качества материалов при сушке в основных отраслях промышленности и сельского хозяйства. — М.: Профиздат, 1958. —483с.

12.

13.

14. http://www.giord.ru/0419205820310.php

15.