Вечные двигатели: история проблемы

Контрольная работа

Мартын: Что такое perpetuum mobile? Бертольд: Perpetuum mobile, то есть вечное движение. Если найду вечное движение, то я не вижу границ творчеству человеческому … видишь ли, добрый мой Мартын, делать золото — задача заманчивая, открытие, может быть, любопытное, но найти perpetuum mobile … О!…

А. С. Пушкин “Сцены из рыцарских времён”

Под возможностью создания современного «вечного» двигателя подразумевается, во-первых, создание эффективных преобразователей известных перспективных потенциальных источников энергии, и, во-вторых, возможности использования новых видов энергии, в частности, свободной энергии вакуума.

Т.е. возможность создания устройств, кажущийся КПД которых (грамотно измеренный современными методами) больше 1, что обусловлено неизвестными в настоящее время новыми эффектами (каковыми были, например, электричество в средние века и атомная энергия в 19 веке).

Конечно, истинные вечные двигатели (perpetuum mobile) не существуют и не могут существовать.

Поэтому можно рассматривать только такие устройства, которые не противоречат глобальным законам физики. Хотя именно изобретатели вечного двигателя все же были двигателем прогресса на протяжении веков.

Среди большого и все возрастающего числа изобретателей всегда находятся увлеченные мечтатели или максималисты, которые пытаются создать вечные двигатели, «перпетуум мобиле».

Это слово произошло от латинского perpetuum mobile, что означает вечно движущееся или вечный двигатель. Истории известны многие тысячи таких «открытий» и связанных с ними судеб, их неистово увлеченных авторов, наполненных радостями творчества, восторгами полученных сопутствующих побочных результатов и горькими разочарованиями за несостоявшиеся результаты.

Пока еще никому не удалось сконструировать вечный двигатель, и составить рецепт эликсира бессмертия.

Но при этом, сам собой напрашивается вопрос: так стоит ли вообще тогда заниматься изобретением «вечного» двигателя? Но многовековая мировая и отечественная история работы над «вечным» двигателем не позволяет дать скоропалительный, а может быть, и легкомысленный ответ.

Если обратиться с этим вопросом к популярным книгам и сугубо научным историческим источникам, к простым безвестным инженерам или известнейшим мэтрам науки, то никогда не получить на него однозначного ответа.

I. СТОИТ ЛИ ИЗОБРЕТАТЬ ВЕЧНЫЕ ДВИГАТЕЛИ ?

3 стр., 1059 слов

Вечный двигатель (2)

... Похожие рефераты: , Разрыв второго рода , Ошибки первого и второго рода , Числа Стирлинга второго рода , Фазовые переходы второго рода , Число Стирлинга второго рода , Уравнения Лагранжа второго рода . Категории: История науки , Вечный двигатель . ... патентование вечного двигателя из-за очевидной невозможности их создания. Американское патентное ведомство не выдаёт патенты на perpetuum mobile уже ...

Одними из первых, кто открыл эпоху создания «вечных двигателей» были алхимики (здесь под термином «вечный двигатель» подразумевается не только техническое устройство, а любой объект творческой и изобретательской деятельности, обладающий свойствами «абсолютности», «вечности»).

«Химия — дочь алхимии» — так высоко оценил роль алхимии, одного из самых ложных учений среди многих лжеучений прошлой поры, гений русской и мировой математики Николай Лобачевский. Эта «наука» родилась еще в первых столетиях нашей эры в Египте, перекинулась на другие страны и была узаконена арабами. Они присоединили к более раннему термину «химия» (наука о превращениях веществ) артикль «ал» и тем самым ввели алхимию в круг других наук, известных на Земле к тому времени. В основу своих воззрений алхимики взяли убеждение в одушевленности металлов. Якобы металлы все время «растут» и «созревают» в лоне Земли, чем и обусловлены их превращения.

Еще со времен средневековых алхимиков, открывших в поисках «философского камня» много новых и ценных химических веществ, история хранит немало примеров, когда азартная погоня за призраком приводила к важным изобретениям, не имевшим иногда никакой видимой связи с намерениями искателей. Так, американский наборщик Хьятт, обуреваемый благим желанием искусственно создать слоновую кость для биллиардных шаров (за это была обещана огромная премия), изобрел в 1863 году первую в мире пластмассу, которая под именем целлулоида получила широчайшее применение и быстро распространилась.

Любой творческой находке предшествует обычно довольно длительная, порой мучительная стадия поисков. Обостренная избирательность и особая зоркость нередко позволяют первооткрывателю добиться цели, пользуясь доступными и широко известными сведениями.

Сейчас очевидно, что это утопия. Но овладев умами, алхимия, увлекла их жаждой поиска и проложила первые тропинки к большой и истинной науке. Расцвет алхимии пришелся на 15 — 17-й век, и это как раз в то время, когда она жестоко преследовалась церковью. Многие ученые того времени, обвиненные в занятиях черной магией и распространении учения Сатаны, закончили свою жизнь в тюрьмах и даже были казнены.

В то же время, алхимия помогла людям открыть немало секретов природы, принесших пользу человечеству. Люди научились делать сплавы, различные красители, стекло.

Немецкий алхимик Бранд, пытаясь добыть философский камень, открыл новый химический элемент фосфор. В другое время немецкие же алхимики «варили» (в 1710 году) в одной из примитивных лабораторий золото. Естественно, что это им сделать не удалось, зато они изобрели фарфор знаменитой саксонской марки.

Одно из направлений поисков творцов, энтузиастов и упорных изобретателей — это создание, разработка «абсолютного двигателя», «вечного двигателя», который, будучи однажды запущен в действие, совершал бы работу неограниченно долгое время без привлечения энергии со стороны.

II. ИСТОРИЯ ПРОБЛЕМЫ

Первое упоминание о вечном двигателе ученые обнаружили в древней санскритской рукописи «Сиддхантасиромани», написанной великим индийским математиком Бхаскаром примерно в 1150 году. В этой книге рассказано о колесе, которое имело специальные полости, заполненные ртутью. Утверждалось, что если такое колесо закрепить на оси и придать ему первоначальное вращение, то оно в дальнейшем будет вращаться вечно.

4 стр., 1952 слов

Вечный двигатель

... двигает... тот самый Архимедов винт, который поднимает воду в верхний бак. Винт поворачивает колесо, а колесо - винт! 2.2.2. Магнит В истории изобретений вечного двигателя магнит сыграл не последнюю ... человечества при современном уровне её потребления на 14000 лет. Вечный двигатель «третьего рода». Научного термина «вечный двигатель третьего рода» не существует (это шутка), но существуют ...

Аналогичное колесо было описано и в астрономическом кодексе короля Кастилии Алфонса Великого, относящемся к 1272 году.

В арабской рукописи 1200 года, написанной Фахр ад дин Ридвана бен Мухаммедом, изложено три разных конструкции вечных двигателей.

Изыскания в этой области особенно активизировались в XVI веке, когда началось бурное развитие машинного производства.

В книге итальянского врача, философа и алхимика Марко Антонио Зимара «Пещера медицинской магии» описана «вечная ветряная мельница». Этот изобретатель предложил поставить напротив лопастей колеса ветряной мельницы кузнечные меха (воздушные насосы), приводимые в действие самим колесом. Зимара, по-видимому, был уверен, что воздух, выходящий из мехов, способен вращать то же самое мельничное колесо, которое, и приводит в движение эти меха.

В литературных источниках тех времен содержатся описания «вечных двигателей», основанных на использовании энергии воды. Основным элементом таких двигателей являлся спиральный водяной подъемник, так называемый, архимедов винт. При этом идея вечного движения казалась чрезвычайно простой: архимедов винт поднимает воду из резервуара на какую-то высоту, эта вода падает на лопасти водяного (мельничного) колеса, которое при этом вращается и, в свою очередь, приводит в движение архимедов винт.

Гипотеза создания идеально экономичной машины занимала тогда и сейчас занимает умы не только мечтателей — самоучек, но и умы многих видных ученых. Понятно, что вечный двигатель так и остался «работающим» лишь в воображении его творцов. Хотя их замыслы и были утопичны, попытки материализовать идею, споры вокруг нее принесли немало интересных теоретических и конструктивных решений, позволили выявить новые закономерности, увидеть ранее неизвестные процессы.

Работая над вечным двигателем, С. Стевин в 1857 году, поставил такой эксперимент: соединив 14 шаров в одну цепь, он накинул ее на трехгранную призму в надежде, что шары, скатываясь по наклонной грани, вовлекут в движение всю цепь и создадут за счет этого непрерывное ее вращение, но, несмотря на страстное желание изобретателя, шары не захотели непрерывно вращаться, а неподвижно зависали, в накинутом на призму положении. Зато эта неподвижная система навеяла ему идею равновесия. Данный результат и вошел в научную терминологию как закон равновесия сил на наклонной плоскости.

На рисунке 1 изображен мнимый самодвижущийся механизм — один из древнейших проектов вечного двигателя. В его теле имеется ряд улиткообразных камер, в каждую из которых помещен тяжелый груз-шар. Изобретатель воображал, что шары с одной стороны колеса (например, с правой) всегда находятся ближе к краю обода колеса, чем с левой, и своим весом заставят колесо бесконечное время вращаться, стоит лишь один раз подтолкнуть его в направлении движения по часовой стрелке. Ясно, что при демонстрации этого чуда произошел конфуз — колесо всякий раз после его запуска останавливалось.

Этот пример пришел в нашу литературу из Западной Европы. Однако нечто подобное имело место и в практике российских изобретателей — самоучек. Интересный эпизод неудачной демонстрации такого вечного двигателя можно найти в рассказе нашего соотечественника — писателя Н.Е.Петропавловского с символическим названием «Perpetuum mobili». Вот как он образно рассказывает об изобретателе — крестьянине из Пермской губернии Лаврентии Голдыреве, изображенном в этом рассказе под псевдонимом Пыхтин.

4 стр., 1984 слов

Вечный двигатель: миф или реальность?

... выяснили, что вечный двигатель - это воображаемое устройство, способное производить работу в нарушение первого (вечный двигатель первого рода) или второго (вечный двигатель второго рода) законов термодинамики. Вечные двигатели второго ... Можно было вместо одного колеса использовать несколько связанных между собой колес. Можно было сделать грузы в виде перекатывающихся шаров или роликов или тяжелого ...

«Перед нами стояла странная машина больших размеров, с первого взгляда похожая на тот станок, в котором подковывают лошадей; виднелись плохо тесаные деревянные столбы, перекладины и целая система колес, маховых и зубчатых; все это было неуклюже, не обстругано, безобразно. В самом низу, под машиной, лежали какие-то чугунные шары; целая куча этих шаров лежала и в стороне.

  • Это она и есть? — спросил управляющий.
  • Она — с…
  • Такое чудовище! Ты бы хоть немного обтесал ее.
  • Да, она точно …

не обтесана малость.

  • Что же, вертится она? — спросил управляющий.
  • Как же, вертится …
  • Да у тебя есть лошадь, чтобы вертеть-то ее?
  • Зачем же лошадь? Она сама, — отвечал Пыхтин и принялся показывать устройство чудища.

Главную роль играли те чугунные шары, которые были сложены тут же в кучу.

— Главная сила в этих вот шарах … Вот глядите: наперво шар бухнется на этот черпак … отсюда свистнет, подобно молнии, вон по этому желобу, а там его подденет тот черпак, и он перелетит, как сумасшедший, на то колесо и опять даст ему хорошего толчка, — такого то-есть толчка, от которого он зажужжит даже… А пока этот шар лежит, там уже свое дело делает другой… Там уж он опять летит … бросится на тот черпак, перескочит на то колесо и опять р-раз! Так и далее. Вот она в чем штука- то … Вот я пущу ее…

Пыхтин торопливо метался по сараю, собирая разбросанные шары. Наконец, свалив их в одну кучу подле себя, он взял один из них в руку и с размаху бухнул его на ближайший черпак колеса, потом быстро другой, за ним третий… В сарае поднялось что—то невообразимое: шары лязгали о железные черпаки, дерево колес скрипело, столбы стонали. Адский свист, жужжание, скрежет наполнили полутемное место … »

Как нам нетрудно догадаться, машина вращалась до тех пор, пока изобретатель продолжал подбрасывать все новые и новые шары. Сила их удара и вес были единственным источником работы мнимого вечного двигателя. И Пыхтин невольно сказал правду, что «главная сила в этих вот шарах».

Рассказывают, что позднее изобретатель глубоко разочаровался в своем детище, когда он представил его на промышленную выставку в г.Екатеринбург и впервые увидел настоящие действующие машины. Когда посетители выставки попросили его рассказать об изобретенной им «самодвижущейся машине», он в отчаянии произнес: — «Да ну ее к шуту! Прикажите изрубить ее на дрова … » Любопытно узнать, что «вечные двигатели» разрабатывались не только учеными и любителями-изобретателями, но и предпринимателями-шарлатанами. Последних соблазняли возможные баснословные барыши, некоторые из них рисковали своими деньгами, а иногда и теряли их, когда такого двигателя не получалось. В ряде случаев шарлатаны-изобретатели вынуждены были даже скрываться, когда их технические фокусы не удавались или разоблачались.

7 стр., 3312 слов

«Вечные » двигатели-история вопроса

... История проблемы Первое упоминание о вечном двигателе ученые обнаружили в древней санскритской рукописи "Сиддхантасиромани", написанной великим индийским математиком Бхаскаром примерно в 1150 году. В этой книге рассказано о колесе, ... долгое время называли его "перпетуум мобиле". Александр Степанович Фабристов, Самарский изобретатель, увлеченный идеей вечного двигателя, много сочинил его конструкций, ...

Однажды на такую тонкую уловку чуть было не попался царь Петр I, хорошо разбиравшийся в технике и собиравший через своих посланцев редкостные поделки на Западе. В те петровские времена в Германии некий доктор Орфиреус (Беслер) изобрел «самодвижущееся колесо», которое будто бы не только вращалось само собой, но и поднимало при этом тяжелый груз на значительную высоту. С этим колесом его автор путешествовал по Европе по выставкам и ярмаркам и зарабатывал очень большие деньги. Великие мира сего осыпали его высокими милостями, поэты слагали оды и гимны в честь его волшебного колеса. Весть об изумительном изобретении Орфиреуса дошла до Петра 1, сильно падкого до всяких «хитрых махин». Через своего российского дипломата царь предварительно сговорился о покупке этой машины за сто тысяч рублей, но только до сделки дело не дошло из-за смерти царя. Между тем, у знаменитого изобретателя были и недруги, которые изобличили его в обмане. А многолетняя тайна заключалась в том, что в действительности «вечный двигатель» приводился в движение его братом и служанкой, спрятанными в соседней комнате, незаметно и периодически сообщающими колесу энергию вращения через рычаги и тонкий шнурок.

Более безобидным представляется использование «вечных двигателей» в рекламных целях. Об одном из таких примеров их «применения» рассказал автор широко известных и увлекательных книг по физике, астрономии и математике Я.И. Перельман. В одном из крупных кафе в Лос-Анджелесе (Америка) для привлечения внимания публики на входной гигантской рекламе был установлен «вечный двигатель» в виде колеса с перекатывающимися шарами (подобно тому, что приведен на рисунке).

Этот двигатель незаметно приводился в действие искусно скрытым электродвигателем, хотя всем прохожим и посетителям казалось, что колесо двигают перекатывающиеся в прорезях тяжелые шары. Рабочие — слушатели школы Я.И. Перельмана — были страшно поражены увиденным и не хотели верить доказательствам учителя о невозможности вечных двигателей. Учителя выручило только то, что в городе в выходные дни электрическая сеть полностью отключалась. Зная об этом, он посоветовал слушателям наведаться к витрине в эти дни. Последовав его совету, они увидели, что по выходным дням двигатель не работал и предусмотрительно прикрывался занавеской. И за счет этого, как шуточно пишет автор, закон сохранения энергии вновь завоевал доверие слушателей.

Важно отметить, что открытиями вечных двигателей, как правило, занимаются «бессребреники», т.е. люди, которые это делают не ради корысти, не ради денег, не ради золота, а в силу своей творческой увлеченности, своего новаторского призвания. Яркой иллюстрацией сказанного может служить ученый — алхимик Бертольд, описанный А.С.Пушкиным в его прозаическом произведении «Сцены из рыцарских времен». Бедный ученый Бертольд делает бесконечные опыты по получению золота из разных химических элементов. Его многообещающие опыты поддерживает кредитами богатый купец Мартын в надежде на успех изобретателя. В одном из диалогов между ними Мартын спрашивает: «Если твой опыт тебе удастся и у тебя будет золота и славы вдоволь, будешь ли ты наслаждаться жизнью?» В ответ ему Бертольд говорит: «… Займусь еще одним исследованием. Мне кажется, есть средство открыть перпетуум мобиле. Если найду вечное движение, то я не вижу границ творчеству человеческому. Видишь ли, добрый мой Мартин, делать золото задача заманчивая, но найти перпетуум мобиле… О!» Можно при этом упомянуть, что А.С.Пушкин написал это произведение под впечатлением незадолго изобретенного до этого (в 1834 году) в Санкт-Петербурге академиком Борисом Семеновичем Якоби, которого он знавал лично, первого электрического приводного двигателя. Этот двигатель, питающийся на постоянном токе от батареи Вольта, настолько поразил своей новизной и оригинальностью просвещенных современников, что они долгое время называли его «перпетуум мобиле».

13 стр., 6011 слов

Вавилов ТО системы смазки двигателя. 1 Устройство системы смазки двигателя

... обращения. 1.1. Устройство системы смазки двигателя Смазочная система предназначена для ... для бензинового, и для дизельного двигателя, индекс опускается. Масла перечисленных ... колесам привода распределительного вала, топливному насосу высокого давления дизеля. В некоторых двигателях ... двигателя; надежно защищать рабочие поверхности деталей двигателя от коррозии; не содержать механических примесей и воды; ...

Александр Степанович Фабристов, Самарский изобретатель, увлеченный идеей вечного двигателя, много сочинил его конструкций, создал много образцов, но все неудачно. И, наконец, устройство, которое он называет «вечный двигатель», и которое, как он убежден, способно вырабатывать «бесплатную» энергию только за счет сил гравитации. Его устройство не так уж хитро по конструкции и состоит из 8 металлических «стаканов», укрепленных на крестовине, из свинцовых уголков, храповиков и двух шестеренчатых дуг. «Стакан», прикрепленный к крестовине, движется по кругу, проходит через одну дугу — угольник внутри перемещается и силовое плечо становится больше. Проходит через другую — угольник встает на прежнее место. Так, что получается, что у четырех «стаканов» с одной стороны масса значительно больше, чем у стаканов с другой, из-за действия сил гравитации. К сожалению его «вечный двигатель» не запатентован, и не апробирован, так как и наш российский институт патентной экспертизы не принимает к рассмотрению проекты таких двигателей. Создать же опытный образец изобретателю — одиночке не под силу, а промышленным предприятиям вроде бы и неприлично заниматься разными выдумками. А ведь, по идее, это экологически чистый двигатель, не портящий ландшафт и природу, не загрязняющий атмосферу.

Прослеживая историю, можно заметить, что одни изобретатели и ученые горячо верили в возможность создания вечного двигателя, другие — упорно сопротивлялись этому, отыскивая все новые истины. Галилео Галилей, доказывая, что любое имеющее тяжесть тело не может подняться выше того уровня, с которого оно упало, открыл закон инерции. Таким образом, польза для науки шла как со стороны верующих, так неверующих. Известный физик, академик Виталий Лазаревич Гинзбург считал, что по-существу, идея вечного двигателя была научной. Плохо ли, хорошо ли, но она готовила благодатную почву грядущим естествоиспытателям для постижения более высоких истин.

Как хорошо сказал томский профессор, философ А.К.Сухотин: «… неуклонно подогревая интерес, идея вечного двигателя стала своего рода идейным двигателем вечного сгорания, подбрасывающим свежие поленья в топки, ищущей мысли».

Тем временем, из-за большого числа заявок изобретателей на выдачу патентов на придуманные ими вечные двигатели, ряд национальных патентных ведомств и академий наук зарубежных стран (в частности, Парижская академия наук приняла запрет еще в 17-м веке), приняли решение вообще не принимать к рассмотрению заявки на изобретения абсолютного двигателя, поскольку это противоречит закону сохранения энергии.

3 стр., 1482 слов

Альтернативные источники энергии. Вечные двигатели

... (электромагнитное, гравитационное и другие) как вид материи. Поэтому часто вопрос "вечного двигателя" формулировался, как преобразование энергии поля в ... пространстве. Перспективы развития и коммерческое использование технологий альтернативной энергетики Несмотря на множество факторов тормозящих развитие ... но не к современной физике. В данном реферате мы рассмотрим ряд способов генерации свободной ...

Всемирно известный в области механики советский академик Борис Викторович Раушенбах считает такие решения научных организаций ошибочными и вредными для дальнейшего развития науки. Он утверждает, что наука должна глубоко исследовать, доказывать и терпеливо разъяснять, а не пресекать и, тем более, не запрещать любые изобретения («не накидывать уздечку на исследовательскую активность, куда бы она не расходовалась»).

Понятно, что принцип сохранения энергии никакими конструкциями вечных двигателей не поколебать, но возможны уточнения, выяснение сфер его применения и пересечения с другими физическими принципами. Открылось же, например, что этот закон комбинируется с законом сохранения массы и такое проявление пошло на пользу более глубокого осмысления этих двух законов.

На практике такие устройства оказались не работоспособными, а заявленная их авторами дополнительная энергия (сверх затраченной) существовала на самом деле, на уровне погрешности экспериментов либо была чистым вымыслом авторов. Возможно, их авторы при расчете эффективности (когда получили КПД много больше 1) учли далеко не все факторы… В большинстве же случаев просто было выдано желаемое за действительное, как общеизвестная работа Флейшмана и Понса по открытию «холодного» термоядерного синтеза, который наделал много шума из ничего и был закрыт…

Известный механик середины XVII века Эдуард Сомерсет, маркиз Вустерширский, в свои пятьдесят лет решил на удивление всем заняться постройкой перпетуум мобиле доселе невиданных размеров. Честолюбивые намерения этого достопочтенного и преданного короне дворянина нашли полную поддержку у его государя Карла I. Старый лондонский Тауэр стал свидетелем грандиозных приготовлений. Вместе со своими помощниками маркиз соорудил огромное колесо диаметром более 4 метра с размещенными по его периметру 14 грузами весом по 50 фунтов каждый. К сожалению, в сообщениях об этом широко разрекламированном опыте, при котором присутствовал сам король со своим двором, о результатах экспериментов подробно не говорится. Известно лишь, что к этому своему опыту Сомерсет никогда более не возвращался; позднее он занимался строительством парусного экипажа и другими смелыми по тому времени проектами.

Некоторое видоизменение машины Сомерсета представляет собой перпетуум мобиле, в котором откидывающиеся грузы заменены шарами, свободно перекатывающимися в клиновидных камерах, прикрепленных к ступице колеса. Автор проекта исходил из предположения, что шары, подкатившиеся к внешнему краю колеса, будут обладать большим силовым моментом, чем шары, находящиеся в суженной части камер вблизи его оси.

Примерно в то же самое время, в первой половине XVII в., известный астроном и член ордена иезуитов Христофор Шейнер сделал важное открытие — он обнаружил пятна на поверхности Солнца.

В сочинении «Комментарий к основаниям гномоники», изданное в Ингольштадте в 1616 г., автор описывает оригинальную идею еще одного перпетуум мобиле, которому он дал громкое название «шейнеров гномон в центре мира». Постоянное движение гномона Шейнер обосновывал следующим образом. Произвольная точка, выбранная в качестве центра мира, одновременно будет являться и центром гравитации.

10 стр., 4578 слов

По физике «В мире энергии»

... мощность двух турбин составит 28МВт. Проект позволит повысить самообеспечение комбината в электрической энергии ... и установках для создания микроклимата - устройства для обогрева полов помещений, водонагреватели, калориферы ... для развития экономики. Чтоб крутилось колесо, Чтобы постирать белье, Чтоб работал ... опыты по электроактивации жидкостей и воды. Сушка, нагрев, дезинсекция, металлизация изделий ...

Если раскрутить рычаг с перпендикулярно установленным на одном его конце гномоном так, чтобы свободный конец рычага проходил через этот центр гравитации, вся система придет в непрерывное вращение, потому что сила, притягивающая гномон с рычагом к центру гравитации, будет одинаковой во всех точках траектории.

Идея Шейнера сразу же вызвала многочисленные возражения современников. Так, собрат Шейнера по ордену иезуитов астроном Джиованни Баптиста Риччиоли утверждал, что гномон моментально упадет в центр гравитации по наикратчайшему пути, другой математик того времени Марио Беттино не без иронии заявил: «Да, это будет перпетуум, но не мобиле, а покоя!»

В 60-х годах XVIII века интересный вариант вечного двигателя с неуравновешенными шарами предложил некий Ульрих из Гранаха: для подачи шаров к верхней части ведомого колеса автор использовал архимедов винт, т.е. элемент, с которым мы встречались еще у Леонардо да Винчи.

Вечные двигатели с неуравновешенными шарами имели много разновидностей. В большинстве случаев принцип их действия оказывался по существу одинаковым, а доставка шаров обратно в исходную точку их траектории осуществлялась различными способами. Так, в одном из перпетуум мобиле, шары поднимаются наверх с помощью бесконечной ленты с черпаками.

Еще один перпетуум мобиле, состоявший из звездчатого колеса с восемью рычагами, имел дополнительно четыре пары взаимно соединенных мехов Связь между противоположными мехами осуществлялась с помощью полых трубчатых рычагов, наполовину заполненных ртутью. Прикрепленные к мехам грузы при повороте колеса поочередно сжимали и разжимали меха, при этом ртуть внутри рычагов переливалась так, что возникавшее в результате неравновесие сил приводило всю систему в режим постоянного вращения.

Многочисленные попытки создания вечного двигателя, приводимого в действие силой тяжести различных масс в виде откидных рычагов, неуравновешенных шаров и т.п., с самого начала исходили из неверного предположения о том, что для приведения такой машины в непрерывное движение достаточно сместить центр тяжести ее вращающейся части (колеса, рычагов и т.д.) из положения равновесия, т.е. сдвинуть его с оси вращения. Это ошибочное понимание закона тяготения, по всей видимости, имело своими главными причинами несколько консервативный взгляд на статику тел, а также почти полное отсутствие опыта практического применения новых законов динамики, установленных Галилеем.

До сих пор при исследовании эволюции идеи перпетуум мобиле мы продвинулись не слишком далеко, сумев подробно рассмотреть лишь механические вечные двигатели, приводившиеся в действие гравитационными эффектами. Колеса, молотки, шары, противовесы, цепи, ремни, рычаги, зубчатые передачи вот главные детали того «конструктора», из которого собирали элементы своих фантастических машин изобретатели тех времен.

При этом большинство из них было абсолютно убеждено в глобальной справедливости своей идеи, или же, по крайней мере, проникнуто твердой верой в нее. В самом деле, вряд ли можно найти человека, который занимался бы постройкой какой-нибудь машины, специально задавшись целью доказать ее бессмысленность.

Один из неписаных законов жизни утверждает, что авторы самых важных открытий и изобрет

5 стр., 2167 слов

Приборы измерения расходов и скорости воды

... измерение средней скорости потока в электропроводных жидкостях осуществляется путем измерения наведенной ЭДС в электромагнитной катушке прибора, а уровень потока измеряется гидоростатическим методом. Вычисление расхода жидкости ... крыльчатого колеса или турбины, вызывая вращение. Это вращение посредством зубчатой передачи сообщается счетному устройству, регистрирующему количество расходуемой воды. По ...

Тысячи мельниц, пил и насосов приводил в действие этот двигатель, который наряду с мускульной силой человека и животных столетиями являлся единственным реальным источником их двигательной силы. Правда, несмотря на свою простоту, водяное колесо обладало и существенным недостатком — оно нуждалось в достаточном количестве проточной воды вне зависимости от времени года.

Должно быть, именно поэтому большой популярностью пользовалась идея работы водяного колеса в замкнутом цикле, что позволило бы сделать его независимым от изменчивых водяных потоков и тем самым обеспечить более широкое его использование. Слабость же этой идеи заключалась в том, что оставалось неясным, как доставлять воду обратно, к лотку, питающему лопатки водяного колеса.

Схемы сухих водяных мельниц, создававшихся по принципу гидравлического перпетуум мобиле, так никогда и не были реализованы на практике. Об этом свидетельствует целый ряд проектов, отличающихся друг от друга лишь некоторыми деталями конструкции. В попытках увеличить количество воды, подаваемой к верхнему лотку колеса, авторы подобных проектов часто прибегали к объединению двух или более архимедовых винтов. Гидравлическим перпетуум мобиле с архимедовым винтом занимался также английский епископ Джон Уилкинс, подробно описавший его в своем сочинении «Математическая магия», опубликованном в 1648 г. Еще один проект гидравлического вечного двигателя, представляет собой нечто среднее между трехступенчатым водяным колесом и турбиной в тройном каскаде, сидящими на общем наклонном валу. Внутри этого вала размещался архимедов винт, поднимавший воду из нижнего резервуара на лопатки самого верхнего

колеса. Чтобы выяснить всю несостоятельность этих проектов, проанализируем кратко работу водяного колеса и проведем примерную оценку его энергетического баланса. Рассмотрим сначала водяное колесо с подачей воды сверху — этот единственный гидравлический двигатель, в котором непосредственно используется потенциальная энергия падающей воды. Действительно, находящаяся в верхнем лотке вода падает в ковши рабочего колеса и своей тяжестью заставляет их двигаться вниз до тех пор, пока колесо не повернется примерно на пол-оборота и вода не выльется в отводящий канал.

Диаметр водяных колес обычно выбирался приблизительно равным высоте используемого перепада уровней. Следовательно, в случае значительных перепадов водяное колесо теряло ряд своих преимуществ, поскольку оно становилось слишком большим и тяжелым. Мощность, развиваемая колесами водяных мельниц и пил, составляла обычно от 3,5 до 11 кВт при перепаде от 3 до 12 м и секундном расходе воды порядка 0,1-0,8м 3 . При этом колесо всегда располагалось строго над поверхностью воды в отводном канале, с тем чтобы при повышении уровня в нем нижний край колеса не оказывался бы в воде. Именно это обстоятельство не позволяло полностью использовать всю потенциальную энергию воды, определявшуюся теоретически только разностью высот верхнего и нижнего уровней. Общая сумма потерь даже у тщательно изготовленного водяного колеса с верхней подачей воды достигала примерно 20%, так что коэффициент полезного действия такого колеса никогда не превышал 80%. В эту цифру не включены, однако, потери энергии в передаточном механизме, представляющем собой необходимый элемент каждого двигателя.

Таким образом, после подсчета всех потерь и пассивных сопротивлений собственно колеса и передаточных звеньев коэффициент полезного действия всего устройства падает уже до 50-60%; эффективность же колес с подачей воды на среднем и нижнем уровне оказывается еще более низкой. В случае использования водяного колеса в качестве движущего элемента перпетуум мобиле, приводимое им в действие перекачивающее устройство должно было доставлять к верхнему лотку ровно такое же количество воды, которое в тот же самый момент вытекало на лопатки самого колеса.

Даже если при этом не учитывать потери в перекачивающем насосе, то потребляемая насосом мощность должна в точности соответствовать потенциальной энергии воды, которая определяется упомянутой разностью верхнего и нижнего уровней и которую никакое водяное колесо полностью использовать не может. Это обстоятельство уже само по себе доказывает, почему не может существовать сухая водяная мельница с замкнутым круговоротом воды.

К аналогичному выводу еще в 1724г. пришел Якоб Леупольд, подробно рассматривавший этот вопрос в своей книге «Всеобщий театр машин», изданной в Лейпциге; свою отрицательную точку зрения на подобные устройства он выразил следующими словами: «Один фунт (т.е. груз) способен удержать другой фунт в равновесии, но никогда не сможет привести его в движение».

Сегодня, по-видимому, уже никто не сомневается, что энергия перем

В 1815 году в «Еженедельном вестнике искусств и ремесел королевства Баварии» появилось сообщение о новом перпетуум мобиле, автором которого был некий Рамис из Мюнхена. Этот перпетуум мобиле, полное описание которого приводит Иоганн фон Поппе в уже упомянутой нами книге, по существу представлял собой электрический маятник, который качался на опоре, помещенной, между сферическими электродами двух электрических элементов Замбони , вставленных внутрь стеклянных столбиков. Верхнее удлиненное плечо маятника оканчивалось стеклянной палочкой с металлическим шариком на конце. При касании сферического электрода одного из элементов на шарик переходила небольшая часть его электрического заряда. Поскольку тела, несущие на себе одноименные заряды, отталкиваются, маятник отклонялся в другую сторону, где шарик притягивался электродом противоположной полярности, который в свою очередь забирал его заряд, и весь процесс повторялся вновь в обратном направлении. С помощью удачных усовершенствований конструкции Рамису удалось использовать этот способ для приведения в действие маятниковых часов, которые благодаря энергии, запасенной в электрических элементах, могли идти очень долгое время.

После Рамиса созданием аналогичных часов занимался также Карл Стрейциг из Вероны. Отметим, что эти перпетуум мобиле не были совершенно оригинальными — как справедливо указывалось в тогдашней литературе, оба они основывались на идее весьма популярного в то время физического прибора-электроскопа, известного со времен самых ранних опытов с электричеством.

Еще одна значительная часть мнимых перпетуум мобиле получала необходимую для своей работы энергию в результате изменений барометрического давления. Одним из самых старых проектов подобного рода был барометрический вечный двигатель англичанина Кокса, относящийся к 70-м годам XVIII в. Внешний вид этого перпетуум мобиле, подробно описанного в «Геттингенском вестнике ученых» за 1775 г. Принцип действия этого устройства основывался на известном опыте Торричелли с заполненной ртутью трубкой. Главной частью машины Кокса являлся большой сосуд, в который было налито 200 кг ртути; его подвешивали на цепях и с помощью системы блоков уравновешивали специальным грузом. В этот сосуд с ртутью погружалась длинная стеклянная трубка с запаянным верхним концом, которую изобретатель перед запаиванием также наполнял ртутью до самого верха. При падении барометрического давления уровень ртути в трубке понижался, и часть ее вытекала в сосуд, который, утяжеленный весом вытекшей ртути, начинал опускаться; далее это движение передавалось на заводное колесо пружины часового механизма. Если атмосферное давление повышалось, тогда, наоборот, некоторое количество ртути выталкивалось обратно в трубку и противовес возвращал сосуд в исходное положение. Небольшого изменения давления внешнего воздуха оказывалось достаточно для завода часовой пружины на восьмисуточный запас хода.

Этот барометрический перпетуум мобиле привлек пристальное внимание английского ученого Фергюсона. Так, еще в 1774 г. он писал об этом устройстве:

«Я осмотрел вышеописанные часы, которые приводятся в непрерывное движение подъемом и опусканием ртути в своеобразно устроенном барометре. Нет основания полагать, что они когда-нибудь остановятся, поскольку накопляющаяся в них двигательная сила могла бы обеспечивать их ход в течение целого года даже после полного устранения барометра. Должен сказать со всей откровенностью, что, как показывает детальное знакомство с этими часами, по своей идее и исполнению они являются самым замечательным механизмом, какой мне когда-либо случалось видеть».

В так называемых автодинамических часах, сконструированных во второй половине прошлого столетия австрийским инженером Лёсслем, принцип работы «вечного» приводного устройства заключался в следующем. Автор соединил два металлических меха, выполненные в форме цилиндров, с толстостенным резервуаром, вмещавшим 500 литров воздуха. При изменениях атмосферного давления эти меха растягивались или сжимались — максимальное же изменение длины мехов достигало 12 см. Этого изменения длины оказывалось достаточно, чтобы обеспечить завод пружины довольно крупных часов для непрерывного их хода в течение 80 дней.

В 1751 г. известный французский часовщик Ле-Плат из Нанси построил оригинальные «вечные» часы: он взял обычные маятниковые часы и повесил их на стену со скрытым в ней воздушным каналом, сообщавшимся с комнатой через специальное отверстие. Когда двери в комнату открывались, более теплый, а потому и более легкий воздух из комнаты начинал проходить через канал в стене, выталкиваемый более холодным и более тяжелым наружным воздухом. На пути протекающего в канале воздуха Ле-Плат установил небольшую крыльчатку, приводившую во вращение передаточный механизм, который в свою очередь обеспечивал поднятие свинцовой гири часов.

Завод пружин хронометрических устройств с помощью протекающего воздуха, как это описал в 1755 г. Ле-Плат в своем «Трактате о часовом деле», являлся излюбленным приемом того времени, привлекавшим внимание многих исследователей. Подобные часы, построенные по принципу «сквозняка» (их, кстати, тоже часто принимали за перпетуум мобиле), устанавливались во многих общественных местах, например, на Северном вокзале в Брюсселе.

К несколько иному способу прибегнул в 1682 г. Иоганн Иоахим Бехер: для завода часового механизма он использовал дождевую воду, стекавшую по крыше его дома. Через год он построил еще один самодвижущийся механизм, непрерывно работавший за счет изменений температуры окружающего воздуха. Об этом устройстве Бехер писал: «…своим термоскопом я могу заводить небольшие маятниковые часы, причем они будут идти так долго, пока у них что-нибудь не сломается…».

При чтении раздела о мнимых вечных двигателях, естественно, может возникнуть вопрос, не выгодно ли создавать по этому принципу крупные машины, которые можно было бы использовать, например, в промышленном производстве.

И хотя совершенно ясно, что речь идет не о «настоящих» вечных двигателях, в современных условиях острой нехватки энергетических ресурсов энергия, полученная таким способом из окружающей среды, могла бы оказаться ценным подспорьем для человечества. В связи с этим попробуем хотя бы приблизительно подсчитать экономичность работы такой машины и затраты, связанные с ее изготовлением. Из опыта известно, что для суточного завода обычных ручных часов требуется работа, равная примерно 0,4Дж, что составляет около 5.10 -6 Дж на каждую секунду хода часов. А поскольку 1кВт равняется 1000Дж/с, то мощность пружины нашего часового механизма составляет всего 5.10-9 кВт. Если расходы на изготовление основных частей описанного выше устройства, действующего по принципу теплового расширения, принять равными 0,01 рубля, то за машину мощностью 1кВт нам пришлось бы заплатить 2 млн. рублей. Конечно же, создание и использование таких дорогих источников энергии в широком масштабе абсолютно нерентабельно.

Одним из современных примеров мнимых перпетуум мобиле являлась популярная в послевоенные годы игрушка — стилизованная фигурка пьющей утки (рис. 2).

Туловищем утки служила стеклянная трубочка, верхний конец которой заканчивался шариком в виде утиной головы с клювом. Нижний конец трубочки был погружен в небольшой запаянный сосуд, наполненный эфиром. При этом эфир выбирался потому, что он легко испаряется уже при комнатной температуре и, кроме того, с изменением температуры резко меняется давление его насыщенных паров. Для того чтобы «оживить» утку, следовало лишь слегка смочить ее головку и поставить игрушку перед стаканом с водой. При этом утка, наклоняясь вперед, погружала свой клюв в воду, потом откидывалась назад, в вертикальное положение, снова наклонялась, окуная клюв в воду, и т.д.

Секрет действия этой игрушки легко понять, если посмотреть, как ведут себя пары эфира в двух местах — в трубочке с головкой и в нижнем сосуде. Так, если увлажнить головку утки водой, то вследствие испарения температура головки упадет ниже температуры окружающего воздуха. Для усиления этого эффекта на головке обычно укрепляется кусочек какого-либо пористого материала, например, ваты, который хорошо впитывает воду и интенсивно ее испаряет. В результате охлаждения головки давление насыщенных эфирных паров в ней падает, и эфир под действием паров в нижней части трубочки поднимается вверх. При этом центр тяжести фигурки перемещается по направлению к голове, и утка постепенно наклоняется вперед. В то же время при горизонтальном положении туловища-трубочки происходят два независимых процесса. Во-первых, утка опускает клюв в воду, так что ватный хохолок на ее головке вновь увлажняется. Во-вторых, насыщенные пары из верхней и нижней частей смешиваются, давление их выравнивается, и жидкий эфир под действием собственного веса вновь вытекает в нижний сосуд, в результате чего тело утки опять начинает выпрямляться. Весь цикл качаний этой игрушки будет повторяться до тех пор, пока головка утки будет увлажняться и пока окружающий воздух сам не окажется слишком влажным, с тем чтобы вода из хохолка могла нормально испаряться и охлаждать головку утки. Понятно, однако, что и в этом случае речь идет вовсе не о реальном перпетуум мобиле, поскольку постоянные качания утки происходят только благодаря тому, что в процессе этих качаний она отбирает тепло из окружающего воздуха.

Из приведенных примеров видно, что некоторые явления природы, по крайней мере внешне, оказываются в противоречии с повседневным опытом человека, — именно это обстоятельство являлось одной из причин возникновения иллюзий о возможности использования при создании вечных двигателей скрытых природных сил. Например, опыты с различными видами радиоактивных излучений, получившие широкое распространение в конце прошлого столетия, взбудоражив фантазию многих изобретателей, послужили мощным импульсом к созданию многочисленных проектов перпетуум мобиле, приводившихся в действие этими невидимыми лучами. Отметим, что в небольших масштабах для этих же целей некоторыми изобретателями использовалась энергия солнечного излучения.

В заключение о мнимых перпетуум мобиле упомянем еще об одном устройстве — о так называемом радиоскопе или радиометре, представлявшем собой маленькую лопастную мельницу, помещенную внутрь стеклянной колбы, из которой выкачивался воздух — давление понижалось до 0,02 мм рт.ст. (=2,7 паскаля).

Главную часть мельницы составляли четыре небольшие слюдяные лопатки, одна сторона которых была зачернена, а другая оставалась незачерненной; при этом сами лопатки могли вращаться вокруг вертикальной оси. Если лучи света, несущие тепловую энергию, попадали внутрь колбы, то зачерненные поверхности лопаток нагревались больше, нежели блестящие, так что немногие молекулы разреженного воздуха, остававшиеся в колбе, отлетали от них с большей скоростью. В результате зачерненной стороне лопаток передавался больший импульс, что и приводило всю мельницу во вращение.

Перечисленные примеры мнимых вечных двигателей показывают, что подобные устройства почти с самого начала сопровождали «настоящие» вечные двигатели. Незнание основных физических законов, вполне оправданное в XVII-XVIII вв., т.е. до открытия законов сохранения массы и энергии, приводило к тому, что изобретатели «предэнергетической» эпохи совершенно не представляли себе, что их машины черпают свою энергию не из какого-то таинственного «нутра», а из колоссальных природных источников Земли или Вселенной.

В истории же техники мнимые перпетуум мобиле так и остались игрушками, радующими глаз любителей курьезов, или даже источниками новых, подчас еще не раскрытых возможностей науки, в то же время абсолютно не оправдав ожиданий тех, кто с их помощью все-таки надеялся раскрыть тайну вечного движения.

энергия вечный двигатель алхимик

ЗАКЛЮЧЕНИЕ

Действующие модели «вечных» двигателей, якобы нарушающие 2 начало термодинамики, на самом деле работали в полном соответствии с этим вторым началом термодинамики (в общем виде для открытых неравновесных систем), однако имели архинизкую эффективность и годились лишь как демонстрационные модели возможности получать энергию.

Так, простой расчет показал, что для получения 1 киловатта энергии потребовалось бы построить агрегат размером с современный 17-этажный дом! Гораздо более эффективно использовать ветровую или солнечную энергию…

Практически все авторы «действующих» моделей используют постоянный внешний источник энергии (обычно, электрическая сеть или батарейка) и эффективность системы рассчитывают на основании соотношения полученной энергии к затраченной.

Поскольку суммарную поглощенную и выделенную энергию точно замерить не всегда очень просто, по-видимому, в этом и кроется большинство ошибок. Есть также и другие ошибки при расчете суммарного КПД устройства.

Казалось, чего бы проще, создать режим самогенерации свободной энергии, т.е. часть получаемой энергии пустить на возбуждение устройства вместо внешнего источника, который нужен лишь, чтобы запустить машину, и далее в чистом виде получать только заявленную сверхъединичную разность…

Однако таких устройств не существует.

Хотелось бы увидеть действительно работающую модель, в которой имеется замкнутый контур и машина производит энергию без внешнего источника.

В заключение хочу отметить, что все существующие естественно-научные законы (физики, химии и т.д.) строго соблюдаются. В первую очередь это касается второго начала термодинамики.

Конечно, многие физические законы и модели несовершенны, однако пока не известны надежные экспериментальные данные, которые бы противоречили существующим законам.

СПИСОК ЛИТЕРАТУРЫ

[Электронный ресурс]//URL: https://inzhpro.ru/kontrolnaya/problema-vechnogo-dvigatelya/

1. http://www.limm.mgimo.ru/science/main.html

2. http://www.pm.far-for.net/

3.

4. ..

ПРИЛОЖЕНИЕ

рис.1