Нефте- и газодобывающие компании постоянно развивают новые технологии в своем нескончаемом стремлении к оптимизации скорости отбора нефти из скважин и общей добычи нефти и газа при одновременном сдерживании затрат и минимизации нежелательных воздействий на окружающую среду.
Некоторые из этих новых технологий на самом деле вовсе не новы, а просто являются новыми областями применения или улучшениями уже существующих технологий.
Гибкие трубы — это одна из тех технологий, известных на протяжении десятилетий и имевшая ограниченное применение до недавнего времени, когда интерес к ней резко возрос благодаря существенным техническим достижениям. Данная технология является одной из самых динамично развивающихся в мире. Но приоритет в области конструирования, изготовления и промышленной эксплуатации установок с колонной гибких труб принадлежит фирмам США и Канады.
Существует достаточно много терминов, означающих технологию применения длинномерной колонны труб, не имеющих резьбовых соединений и наматываемых на барабан. Это и «гибкие трубы», и «непрерывные трубы», и «безмуфтовая колонна», и «гибкие НКТ». Основным применяемым термином у нас для обозначения этого направления является русифицированная транскрипция сочетания английских слов «coiled tubing» — колтюбинг, что означает наматываемые трубы.
Роль колтюбинга как совокупности новой техники, реализующей новые технологии, трудно переоценить. Если при традиционных технологиях технические возможности машин, в основном, определяли режимы работ, то колтюбинг позволяет обеспечить условия рациональной эксплуатации месторождения, оптимальные режимы вскрытия, освоения, эксплуатации и ремонта скважин. Подобные задачи ставились и частично решались в бурении и КРС с использованием традиционных конструкций колонн, но в полном объеме они могут быть решены только сейчас.
Наиболее значительный эффект гибкие трубы дают при бурении. Именно это направление интенсивно развивается в настоящее время. Гибкие трубы позволяют проводить бурение на депрессии без глушения скважин и увеличить их дебит в 3-5 раз. Особенно перспективным является применение гибких труб для бурения дополнительных горизонтальных стволов из колонны старой скважины при доразработке истощенных месторождений на поздней стадии, вовлечении в разработку трудноизвлекаемых запасов, восстановление бездействующих и малодебитных скважин. Бурение гибкими трубами позволяет уже сегодня вовлечь в разработку значительную часть, а в перспективе — практически все забалансовые запасы углеводородов и добывать дополнительно в России до 50 млн. тонн нефти и до 30 млрд. м 3 газа ежегодно.
Фонтанная и газлифтная эксплуатация скважин
... оборудования современная фонтанирующая скважина имеет достаточно сложное внутрискважинное оборудование. Комплекс оборудования для фонтанной эксплуатации состоит из наземной части и внутрискважинного оборудования. 1.1 Наземное оборудование К наземному оборудованию ... подъемников, отличающиеся числом рядов спускаемых в скважину колонн труб, их взаимным расположением, направлением движения рабочего ...
Особенно эффективно применение гибких труб при разбуривании и эксплуатации морских месторождений.
Весьма важным при проведении любых работ в скважине является решение социальной задачи — исключается значительный объем операций, выполняемых под открытым небом в любое время года при любой погоде.
Сегодня из 50-60 известных операций, проводимых с использованием гибких труб, в России наиболее широко распространены следующие:
- ликвидация отложений парафина, гидратных и песчаных пробок в НКТ;
- обработка призабойной зоны, подача технологических растворов, специальных жидкостей (в том числе щелочных и кислотных растворов) и газов;
- спуск оборудования для проведения геофизических исследований, особенно в наклонных и горизонтальных скважинах;
- установка цементных мостов;
- выполнение работ по изоляции пластов.
Область применения описываемых технологий постоянно расширяется. Сейчас у специалистов, работающих над созданием и совершенствованием оборудования, существует мнение, что нет таких операций или процессов при бурении и ПРС, где нельзя было бы применять колонны гибких труб. Предполагают, что в ближайшее время с помощью таких установок будут выполнять более половины всех подземных ремонтов скважин.
Последнее время все больше внимания уделяется экологическим вопросам. Компании при использовании колтюбинговой технологии получают возможность соблюдать более высокие требования в области экологии при проведении всех операций по ремонту скважин. В частности, это происходит за счет меньших размеров комплексов оборудования для этих целей по сравнению с традиционными. Еще следует подчеркнуть, что компании в результате применения колонн гибких труб, как при ремонте, так и при проведении буровых работ получают существенный экономический эффект. С одной стороны, по стоимости работ использование колтюбинговых установок иногда оказывается более дорогим, чем применение обычных установок КРС. Но экономические преимущества обуславливаются объемами нефти, которые можно добывать за счет разницы в сроках проведения работ. Если у обычных бригад КРС уходит до 7 дней на проведение довольно простых операций, то с использованием колтюбинга это вполне удается сделать за три дня. Ориентировочно можно сказать, что эффективность применения колтюбинга оказывается на 15-20% выше стандартных методов.
1. Геологическая часть
1.1 Общие сведения о месторождении
Уренгойское нефтегазоконденсатное месторождение по физико-географическому районированию расположено в северной части Западносибирской низменности. В административном отношении оно входит в состав Надымского района Ямало-Ненецкого автономного округа Тюменской области.
Граница полярного круга проходит между УКПГ 9 и УКПГ 10. Район малонаселен. Ближайшие к г. Новый Уренгой населенные пункты: пос. Тарко-Сале, Старый Уренгой, Самбург, Тазовск, Коротчаево, Надым, Пангоды.
Территория Уренгойского месторождения представляет собой сильно заболоченную, слабовсхолмленную равнину. Характерной гидрогеологической особенностью является обилие рек, ручьев, озер, при этом судоходство возможно только по реке Пур. Реки и озера покрываются льдом в начале октября, вскрываются ото льда в середине-конце мая. Около 50% территории занимают болота, что делает ее труднопроходимой, а местами и вовсе непроходимой.
Анализ организации работ бригад подземного ремонта новых экономических ...
... достаточно теплым летом. Среднегодовая температура минус 1,8 0С. Средняя температура самого холодного месяца-января ... Вниз по разрезу преобладают глинистые отложения с прослоями песчано-алевритовых пород, ... -пыльцевыми комплексами, выделенными в разрезе скважин 1р Талинской,2р Ем-Еговской и 29р ... Сосново и другие. Почвы в районе работ подзолисто-аллювиальноглеевые, на заболоченных участках местности ...
Климат резко континентальный, с холодной зимой и коротким прохладным летом. Среднезимняя температура составляет -17 °С. Самые холодные месяцы года — декабрь, январь, февраль. В эти месяцы морозы достигают (-45… — 55)°С и часто сопровождаются сильными ветрами. Безморозный период — с середины июня до середины сентября. Самый теплый месяц — июль. Его средняя температура колеблется от +6 до +15 о С, а максимальная может достигать 40о С. Среднегодовая температура района — (-7,5… — 8.5)о С. Амплитуда колебаний температуры между наиболее холодными и теплыми месяцами составляет 80о С. Мощность снежного покрова на всех рассматриваемых площадях достигает 1-2 м в понижениях рельефа. Среднегодовое количество осадков достигает 350 мм.
Район работ находится в зоне распространения многолетнемерзлых пород (ММП), температура которых понижается с юга на север примерно на 1°С на 100 км. На водораздельных участках температуры ММП выше в среднем на 2°С и имеют величину в пределах от -2°…+1,5°С и до 0°…+0,5°С, в то время как на участках с малой мощностью снега могут быть низкие температуры (до -5°С и ниже).
На водоразделах образуются и существуют многочисленные надмерзлотные талики, мерзлота несливающего типа, на подошве слоя годовых теплооборотов формируются талые породы с температурой 0°…+0,5°С.
Криогенный фактор представляет собой сложность при освоении северных месторождений. Нарушение температурного равновесия приповерхностного слоя четвертичных отложений в результате хозяйственной деятельности сопровождается рядом негативных явлений — термокарста, криогенного пучения, выводящих из строя несущие фундаменты сооружений, свайные опоры, трубопроводы.
Возможны осложнения в процессе бурения, например, замерзание промывочной жидкости в скважине, а также протаивание и потеря связности в рыхлых породах с образованием значительных по объему каверн. В процессе эксплуатации скважин отмечается образование гидратных пробок, забивающих скважинное оборудование.
Таким образом, территория Уренгойского месторождения характеризуется неустойчивостью термодинамического равновесия геологической среды, обусловленной существованием многолетнемерзлых пород.
Сообщение с участком работ осуществляется дорожным, воздушным и водным путем (из Салехарда через Обскую губу суда поднимаются вверх по течению реки Пур).
По территории проложены автомобильная и железная дорога (пассажирское и грузовое движение от г. Тюмени до г. Новый Уренгой и п. Ямбург).
Автомобильная дорога между п. Коротчаево и п. Пурпе находится на стадии строительства, зимой на этом участке широко используется зимник.
Непосредственно на Уренгойском месторождении ведется добыча газа, конденсата и нефти из сеноманских и валанжинских отложений.
Район работ приравнивается к 4 категории трудности.
1.2 Стратиграфия
Геологическое строение Уренгойского месторождения представлено породами палеозойского складчатого фрагмента и терригенными песчано-глинистыми отложениями платформенного мезозойского кайнозойского осадочного комплекса.
Глина в строительстве
... крупных частиц, принято классифицировать как лёсс. Большинство глин — серого цвета, но встречаются глины белого, красного, жёлтого, коричневого, синего, зелёного, ... поверхность». Если просуммировать площадь поверхности зёрен в одном грамме цемента, то в зависимости от толщины помола цемента получатся значения от 2000 до ... О. Бем. — М.: АСТ-ПРЕСС КНИГА, 2003.. Данный реферат составлен на основе .
Стратиграфия мезозойско-кайнозойских отложений приводится по материалам региональной стратиграфической схемы мезозойских отложений Западносибирской равнины
В разрезе платформенных отложений прослеживаются все ярусы от юры до палеогена.
Палеозойский фундамент
На Уренгойской площади сверхглубокой скважиной СГ-6 отложения палеозойского фундамента вскрыты на глубине 7 км. Породы фундамента представлены метаморфизованными аргиллитами и алевролитами.
Юрская система
Абаланская свита литологически делится на две подсвиты: нижнюю и верхнюю. Нижняя подсвита толщиной от 49 до 117 м представлена аргиллитами с прослоями песчаников и алевролитов, верхняя — аргиллитами.
Баженовская свита толщиной от 9 до 26 м представлена аргиллитами.
Меловая система
Отложения меловой системы представлены всеми ярусами нижнего и верхнего отделов. Объединяются в три надгоризонта:
- зареченский (берриас, валанжин, готерив, баррем, нижняя часть апта);
- покурский (верхняя часть апта, альб, сеноман);
- дербышинский (турон, коньяк, сантон, кампан, маастрихт).
В основании меловых отложений залегает сортымская свита (ранее мегионская) (K 1 br-v), которая включает в себя в нижней части ачимовскую толщу, выше мощную (до 700 м) преимущественно глинистую толщу, ранее называемую очимкинской и песчано-алевролитово-глинистую (ранее южно-балыкская).
Ачимовская толща содержит в своем составе песчаники серые, мелкозернистые, слюдистые, часто известковистые, с прослоями песчано-алевролитовых и глинистых пород. По текстуре песчаники однородные или горизонтально-слоистые за счет прослоек глинистого материала и углистого детрита. Аргиллиты темно-серые, слюдистые, крепкие, горизонтально-слоистые. Общая толщина ачимовской толщи составляет 43 — 167 м. К отложениям ачимовской толщи на Восточно- и Ново-Уренгойском месторождениях приурочены продуктивные пласты Ач 1 — Ач6 , имеющие локальное распространение и содержащие газ, конденсат и нефть.
Для вышележащей толщи характерны глины аргиллитоподобные, серые, темно-серые, тонко отмученные и алевритовые, с разнообразными типами слоистости, с невыдержанными прослоями песчаников.
Из песчаных пластов, залегающих в этой части разреза, на рассматриваемой площади продуктивны БУ 16 и БУ17 .
Верхняя часть сортымской свиты сложена песчаниками серыми, с прослоями глин аргиллитоподобных, серых, темно-серых, тонко отмученных и алевритовых, разнообразно слоистых. Характерен обугленный растительный детрит, скопление криноидей. Толщина этой части свиты достигает 100 м.
На собственно Уренгойском месторождении в разрезе верхней части свиты выделяются основные продуктивные пласты — БУ 10 и БУ11 .
В кровле сортымской свиты залегает глинистая чеускинская пачка, представленная глинами аргиллитоподобными серыми, темно-серыми, тонкоотмученными и алевритовыми, с единичными пластами песчаников. Толщина чеускинской пачки составляет 19 — 47 м.
Месторождение кирпично-черепичных глин в Татарстане
... повсеместное приповерхностное распространение. Основной промышленно-генетический тип месторождений кирпично-черепичных глин Татарстана приурочен к осадочно континентальным покровным ... месторождениями являются Бавлинское, Первомайское, Бондюжское, Елабужское, Собачинское. Вместе с нефтью добывается попутный газ -- около 40 мі на 1 тонну нефти. Известны несколько незначительных месторождений ...
Тангаловская свита, известная ранее под именем вартовской, (K 1 h+K1 b+K1 a) делится на три подсвиты: нижнюю, среднюю и верхнюю. Нижнетангаловская подсвита состоит из глин серых, иногда аргиллитоподобных, чередующихся с песчаниками и алевролитами. Характерен обугленный растительный детрит, обрывки растений, корневидные растительные остатки. К этой подсвите на собственно Уренгойском месторождении приурочены продуктивные пласты БУ8 — БУ9 . Толщина подсвиты составляет 131 — 215 м.
Перекрывается нижнетангаловская подсвита хорошо выдержанной по всей площади месторождения пачкой «шоколадных» глин. Глины с прослоями серых и темно-серых разностей, оскольчатые. Толщина 8-15 м.
Среднетангаловская подсвита представлена песчаниками серыми, с прослоями серых глин, иногда слабо комковатых. Толщина 181 — 336 м.
Заканчивается среднетангаловская подсвита пимской пачкой глин серых, аргиллитоподобных, с прослоями песчаников толщиной 27 — 67 м.
Верхнетангаловская подсвита представлена песчаниками и алевролитами серыми, иногда зеленовато-серыми, изредка комковатыми, с единичными зеркалами скольжения. Отмечаются редкие прослои аргиллитоподобных глин. Характерен обугленный растительный детрит, остатки флоры, единичные фораминиферы. В составе подсвиты выделяются шесть песчаных пластов. Толщина подсвиты 250 — 400 м.
Покурская свита (K 1 a+K1 al+K1 s) условно разделяются на 3 части в соответствии с ярусами.
В пределах аптского яруса она представлена песчаниками светло-серыми, реже серыми, в отдельных прослоях с зеленоватым оттенком, часто каолинизированными, которые чередуются в сочетании с глинами, алевролитами темно-серыми. Толщина до 200 м.
Альбский ярус нижнего мела представлен крупными пачками глин, глинистых алевролитов, иногда углистых, преимущественно темно-серого цвета в единичных прослоях с зеленоватым, буроватым оттенком, чередующимися в сложном сочетании с песчаниками серыми и светло-серыми, иногда каолинизированными, с окатышами глин в основании отдельных пластов. Породы преимущественно горизонтально-слоистые. Характерен растительный детрит, остатки растений, сидерит, единичные пласты бурых углей. Толщина достигает 380 м.
В пределах сеноманского яруса верхнего мела в составе покурской свиты распространены пески уплотненные, песчаники серые, мелко зернистые, слабо сцементированные, глины алевритистые, темно-серые до серых, нередко углистые. Характерен растительный детрит, обрывки растений. Толщина 300 — 350 м.
Туронский ярус верхнемелового отдела представлен отложениями кузнецовской свиты (K 2 t), которая сложена глинами темно-серыми до черных, слабо битуминозными, алевритистыми, мощностью 20 — 40 м.
Коньякский, сантонский и кампанский ярусы объединяются в березовскую свиту (K 2 k+K2 st+K2 km), в подошве которой залегают песчано-алевролитовые породы, встречаются кремнистые разности. Верхняя часть березовской свиты сложена преимущественно глинистыми породами. Толщина свиты составляет 150-250 м.
В пределах маастрихтского яруса верхнего мела и датского яруса палеогеновой системы выделяется ганькинская свита (K 2 m+P1 d), сложенная глинами и песчано-алевритовыми породами с преобладанием глин в подошве свиты. Толщина свиты 250 — 350 м.
Палеогеновая система
В разрезе палеогена выделяются отложения тибейсалинской, люлинворской, юрковской свит и корликовской толщи.
В нижней части тибейсалинская свита (Р 1 ) сложена глинами серыми и темно-серыми, слюдистыми с маломощными прослоями песчаников и алевролитов, а в верхней — преимущественно алеврито-песчаными породами. Толщина свиты изменяется от 180 до 320 м. Люлинворская свита (Р2 ) подразделяется на нижнюю, среднюю и верхнюю подсвиты и сложена глинами опоковидными, алевритистыми с прослоями диатомитовых глин. Толщина свиты 150 — 200 м.
Юрковская свита (Р 2 — Р3 ) (ранее чеганская) представлена песками светло-серыми разнозернистыми с прослоями и линзами глин и гравия. Встречаются прослои бурого угля. Общая толщина юрковской свиты достигает 100 м.
Корликовская толща (Р 3 ) (ранее атлымская) объединяет песчаные отложения континентального генезиса. Породы представлены песками белыми и светло-серыми, плохо отсортированными с линзами гравелитов. Характерно обилие каолина в виде заполнителя гнезд, линзообразных прослоев и окатышей. Толщина достигает 100 м.
Четвертичные отложения (Q)
Разрез четвертичных отложений представлен песками, глинами, супесями с включениями гравия и галек, а также древесно-растительных остатков. В верхнем деятельном слое установлены отложения торфяных болот. Толщина четвертичных отложений варьируется от 18 до 50 м.
Западносибирская плита является частью молодой платформы и характеризуется трехъярусным строением: кристаллический фундамент — промежуточный комплекс — осадочный чехол.
Нижний этап сформировался в допалеозойское и палеозойское время и отвечает геосинклинальному этапу развития современной платформы. Отложения этого возраста составляют складчатый фундамент, тектоническое строение которого в северной части плиты изучено в настоящее время достаточно подробно.
Средний структурно-тектонический этаж объединяет породы, отложившиеся в парагеосинклинальных условиях в пермо-триасовое время. От отложений фундамента эти отложения отличаются меньшей степенью дислоцированности и метаморфизма. В пределах Уренгойского месторождения пермо-триасовый комплекс не вскрыт.
Верхний структурно-тектонический этаж — типичный платформенный, сформировавшийся в условиях длительного погружения территории.
Уренгойское месторождение приурочено к структуре первого порядка — Нижне-Пурскому мегавалу. На севере мегавал граничит с Хадуттейской впадиной, на востоке — с Нижне-Пурским мегапрогибом, на западе — с Песцовой мегаседловиной и Нерутинской впадиной, на юге — Средне-Пурским и Пякупурским мегапрогибами. К Нижне-Пурскому мегавалу приурочены структуры второго порядка: Пырейное куполовидное поднятие, Центрально-Уренгойский вал.
Центральный Уренгойский вал осложнен следующими локальными поднятиями, принятыми при подсчете запасов структурным зонам:
Северо-Уренгойское — Северному куполу (СК),
Центрально-Уренгойское I и II поднятия — Центральной приподнятой зоне (ЦПЗ),
Уренгойское локальное поднятие — Южному куполу (ЮК).
Северо-Уренгойское локальное поднятие (СК) имеет изометрическую форму, северо-северо-западное простирание, размеры по изогипсе — 2050 м составляют 26,0*9,0 км с амплитудой 80 м. Углы наклона крыльев не превышают 1°30′. Это поднятие является наиболее приподнятой частью Уренгойского вала.
Центрально-Уренгойскому поднятию I (север ЦПЗ) соответствует участок скважин 104-108-120 с размерами по изогипсе — 2600 м, 9,5*7,0 км с амплитудой 35 м.
Центрально-Уренгойскому поднятию II (юг ЦПЗ) соответствует участок, прилегающий к скважине 58, по изогипсе — 2600 м размеры составляют 12,0*4,7 км с амплитудой 30 м. Оба поднятия имеют меридиональное простирание.
Уренгойское локальное поднятие (ЮК) вытянуто в региональном направлении, по форме оно близко к овальной, по изогипсе — 2625 м размеры составляют 19,0*9,0 км и амплитуду 60 м.
На структурных картах по кровлям коллекторов пластов БУ 8 — БУ14 сохраняются все элементы, выделяемые на структурной карте — по отражающему сейсмическому горизонту Б2 и кровле пласта БУ8 0 , что подтверждает унаследованный характер структурного плана.
Формирование современного структурного плана тесно связано с предшествующим мезозойским этапом платформенного тектогенеза и является непосредственным продолжением последнего.
горизонту «Б»
горизонту «В»
горизонту «С»
В пределах сейсмоизогипсы «- 1040 м» Ен-Яхинское поднятие имеет размеры 40*57 км. Оно имеет более пологое строение, осложнено большим количеством куполов, наиболее высокие из которых замыкаются сейсмоизогипсой» — 940 м». Конфигурация поднятия по изогипсе» — 1040 м» имеет очень изрезанный рельеф, с большим количеством структурных осложнений. Углы падения пластов на всех бортах Ен-Яхинского поднятия изменяются от 40′ до 1°12′. На западном склоне Ен-Яхинского поднятия сейсмоизогипсы «-1040 м» размыкается в сторону Песцового поднятия. Имеющийся фактический материал позволяет говорить о том, что Песцовое поднятие также оконтуривается сейсмоизогипсой» — 1040 м».
Замыкающая изогипса для Уренгойского месторождения проходит на отметке «-1200 м». В пределах этой изогипсы длина залежи 180 км при ширине от 15 до 37 км. Изменение крутизны крыльев возрастает в северном направлении. Углы падения меняются на западном крыле от 1° до 3°48′ и на восточном — от 1° до 1°36′. В этом же направлении возрастают и амплитуды локальных поднятий.
1.4 Нефтегазоносность
Под 400-метровым слоем вечной мерзлоты располагаются три этажа нефтегазоносности:
Первый — сеноманский газовый горизонт, который является наиболее крупным и играет более важную роль в экономике России. Так, из всего фонда 2400 скважин УНГКМ 1400 пробурены на сеноман для добычи газа.
По контуру охватывает три структуры: Уренгойский вал, Песцовое и Ен-Яхинское поднятия. Эту залежь отделяет от поверхности Земли немногим более тысячи метров. Начальное пластовое давление газа 122 атмосферы, а температура +31 °С. В составе пластового газа преобладает метан (почти 98%).
Здесь нет опасного сероводорода, крайне малы примеси азота, аргона, гелия, углекислого газа. Отложения характеризуются исключительно благоприятными условиями для накопления и сохранения крупных залежей газа. Песчано-алевролитовые коллекторы сеномана отличаются высокими емкостными свойствами: открытая пористость их 26-34%, проницаемость нередко достигает 3000-6000 мД, составляя в среднем 1000-1500 мД. Это и обусловливаеточень высокие дебиты газа из сеноманских отложений.
Второй — нефтегазоконденсатные залежи нижнего мела, залегают на Уренгойской, Ен-Яхинской, Песцовой, Северо-Уренгойской площадях на глубинах 1700-3340 метров. В нем выделяют до 17 нефтегазоконденсатных пластов. Газа тут уже не так много, как в верхнем ярусе, зато очень много жидких углеводородов — нефти и конденсата. B нижнемеловых отложениях выявлено свыше 25 залежей газового конденсата, в том числе 7 c нефтяными оторочками. Продуктивные пласты представлены чередованием песчаников, алевролитов и аргиллитов c резкой литологической изменчивостью.
При этом на долю коллекторов приходится 50-70%, на долю глин — 25-50%. Глинистые прослои не выдержаны по площади, поэтому все пласты песчано-алевролитовых коллекторов являются гидродинамически взаимосвязанными. Они отличаются высокими емкостными свойствами.
Давление не в пример «первому» этажу достаточно высокое — около 300 атмосфер, да и температура до +97 °С. На одной из скважин в этих отложениях получен необычный результат: суточный дебит составил около полумиллиона кубометров газа и более 200 тонн конденсата. Он содержит этан, пропан, бутан. Эффективная мощность коллекторов 1,6-69,2 м, мощность глинистых прослоев 2-45 м. Высота залежей до 160 м.
Перспективы третьего этажа (нефтегазоконденсатные залежи ачимовской толщи и юры) растут по мере его дальнейшего изучения. Кроме того, возможен выход к еще более глубоко залегающему, четвертому, этажу газоносности — триас-полеозойскому.
1.5 Физико-химические свойства флюидов, насыщающих продуктивные горизонты
Газы сеноманских залежей всех известных месторождений однотипного состава. Они почти нацело состоят из метана (98-99,6%) и отличаются ничтожным содержанием тяжелых углеводородов (0,1 — 0,3%).
Из неуглеводородных компонентов отмечены углекислота (0,5-1,2%) и азот (0,1-0,4%).
По большинству месторождений конденсат практически отсутствует.
Газы валанжинской залежи характеризуются, наоборот, значительным количеством тяжелых углеводородов (до 9,5%) и содержанием метана до 88,5%. Нефть месторождения легкая, ее плотность 766-799 кг/м 3 . Содержание серы до 0,06%, парафина 2,87%, смол 0,88%.
1.6 Конструкция скважины
Колонна |
Диаметр колонны, мм |
Интервал спуска колонны, м |
Подъём цемента за колонной, м |
Направление |
426 |
0 — 105 |
до устья |
Кондуктор |
324 |
0 — 570 |
до устья |
Э/колонна |
219 |
0 — 1248 |
до устья |
2. Расчетно-техническая часть
2.1 Техника для проведения подземного ремонта скважин с применением гибких труб
К настоящему времени сформировалось несколько определенных и отличающихся друг от друга направлений в проектировании и изготовлении комплексов оборудования для работы с использованием колонны гибких труб. Под термином «комплекс» в дальнейшем будем подразумевать набор оборудования, позволяющий выполнять все технологические операции при подземном ремонте скважин с применением КГТ. К ним относятся:
транспортные операции по доставке оборудования на место проведения работ;
спуск и подъем колонны гибких труб;
подготовка технологической жидкости, применяемой при ремонте скважины, — доставка жидкости, ее подогрев и т.д.;
собственно подземный ремонт — промывка пробок, сбивка клапана. К этой же группе операций относится и закачка жидкости в скважину;
операции по восстановлению свойств технологической жидкости, использованной в процессе подземного ремонта, — дегазация, очистка и подогрев. При определенной организации работ эта группа операций может не выполняться.
В строгом смысле слова термину «комплекс» удовлетворяет не все оборудование. Например, машины, поставленные фирмами «Hydra Rig», «Dreco», «Stewart & Stevenson», а также в достаточной степени, отечественная установка «Скорпион» представляют собой комплексы, поскольку они обеспечивают проведение операций и с гибкой трубой, и с технологической жидкостью. А установки, выпускаемые заводом «Рудгормаш», фирмой «Коннас», и другие позволяют осуществлять работу только с колонной гибких труб. Поэтому при использовании их во время подземного ремонта скважин необходимо дополнительно иметь насосный агрегат для технологической жидкости, передвижные парогенераторные установки для подачи тепла в емкость для хранения, нагрева и дегазации жидкости.
Несмотря на сложность и значительные габариты оборудования для обеспечения подачи технологической жидкости, его основные компоненты не являются принципиально новыми, и поэтому не требуется поиска иных конструктивных решений. Основные проблемы при создании комплекса агрегатов связаны с разработкой оборудования для использования колонны гибких труб.
Все элементы, входящие в комплекс рассматриваемого оборудования, выполняются мобильными. Отличаются они лишь количеством единиц, входящих в комплекс, типами транспортных средств, используемых для их перемещения, и компоновками основных узлов на последних. Столь пристальное внимание к средствам транспортирования обусловлено тем, что именно они в значительной степени определяют общую компоновку машин и их основные показатели.
Рассмотрим наиболее характерные и достаточно хорошо отработанные в настоящее время конструктивные решения.
2.2 Агрегаты капитального и подземного ремонта скважин с применением гибких труб
Наиболее типичным из описываемых комплексов является оборудование фирмы «Dreco». Оно представляет собой два агрегата, один из которых осуществляет операции с трубой, второй обеспечивает подачу технологической жидкости.
Агрегат, обеспечивающий работу с КГТ (рис. 1), смонтирован на специализированном шасси с формулой «10 ´ 10». Оно включает два передних и три задних моста, которые все являются ведущими. В конструкции используют серийно изготавливаемые мосты, установленные на раму, специально спроектированную для данного агрегата. Для перемещения последнего и привода его механизмов во время работы служит дизельный двигатель, расположенный за кабиной водителя. Крутящий момент от двигателя передается карданным валом к раздаточной коробке, находящейся в средней части рамы, а от нее — к группе передних и задних мостов. Над двигателем смонтирована кабина управления агрегатом, которая может перемещаться вертикально по специальным направляющим на высоту около 1 м.
Рис. 1. Агрегат для работы с колонной гибких труб фирмы «Dreco»: 1 — кабина водителя; 2 — силовой агрегат; 3 — кабина оператора; 4 — барабан с КГТ; 5 — катушки с гибкими шлангами; 6 — направляющая дуга; 7 — транспортер; 8 — монтажное устройство; 9 — задняя тележка шасси; 10 — раздаточная коробка шасси; 11 — передняя тележка шасси
В средней части рамы агрегата находится барабан с колонной гибких труб, на нем смонтирован укладчик трубы. В кормовой части агрегата установлен гидроприводной манипулятор, предусмотрено место для перевозки транспортера, превентора и инструментов. Рядом с ними располагается катушка с гибкими трубопроводами, служащими для соединения транспортера с агрегатом. Последний в рабочем положении на скважине опирается на четыре гидравлических домкрата. Для обслуживания оборудования агрегат имеет удобные лестницы и трапы, позволяющие безопасно перемещаться и работать на нем.
Агрегат, обеспечивающий нагрев и закачивание технологической жидкости, показан на рис. 2. Его оборудование смонтировано на специализированном автошасси с формулой «6 ´ 4», конструкция кабины управления которого аналогична применяемой в агрегате для работы с колонной гибких труб. И так же за кабиной водителя расположен двигатель. Кабина для обслуживающего персонала здесь отсутствует, а управление узлами агрегата осуществляется со специального пульта, расположенного в средней части установки. На агрегате имеется печь для нагрева технологической жидкости, насос для закачивания ее в колонну гибких труб, емкость для хранения, топливные баки и контрольно-измерительная аппаратура.
Нагретая жидкость подается от насоса к агрегату с КГТ по металлическому трубопроводу, снабженному быстроразъемными соединениями.
Необходимо отметить, что кабины управления транспортными базами не только описанного оборудования, но и всех других импортных агрегатов хорошо спроектированы. Они удобны при управлении машинами в дорожных условиях и обеспечивают достаточный обзор в рабочем положении при установке их на скважинах. Основным недостатком рассматриваемого комплекса является ограниченная проходимость, обусловленная, прежде всего малым диаметром колес шасси. Для полноты обзора конструкций агрегатов следует отметить, что существуют различные варианты размещения комплекса оборудования на транспортном средстве и его прицепе, один из которых представлен на рис. 3.
Они интересны тем, что кабина оператора располагается в кормовой части за барабаном. При этом оператор имеет хороший обзор устьевого оборудования, однако наблюдение за процессом намотки трубы на барабан затруднено.
Рис. 3.