Щелочноземельные металлы

Реферат

носят название щелочноземельных металлов. Названы они так, потому что их окиси придают воде щелочную среду. щелочноземельный металл гибрид цианид

История

Известняк, мрамор и гипс уже в глубокой древности (5000 лет назад) применялись египтянами в строительном деле. Вплоть до конца 18 века химики считали известь простым веществом. В 1746 г. И. Потт получил и описал довольно чистую окись кальция. В 1789 году Лавуазье предположил, что известь, магнезия, барит — вещества сложные. Еще задолго до открытия стронция и бария их “нерасшифрованные” соединения применяли в пиротехнике для получения соответственно красных и зеленых огней. До середины 40-х годов прошлого века стронций был прежде всего металлом “потешных огней”. В 1787 г. в свинцовом руднике близ шотландской деревни Стронциан был найден новый минерал, который назвали стронцианитом SrCO 3 . А. Крофорд предположил существование еще неизвестной «земли». В 1792 г. Т. Хоп доказал что в состав найденного минерала входит новый элемент — стронций. В то время что с помощью Sr(OH)2 выделяли нерастворимый дисахарат стронция (С12 Н22 О4 . 2SrO ), при получения сахара из мелассы. Добыча Sr возрастала. Однако скоро было замечено, что аналогичный сахарат кальция тоже не растворим, а окись кальция была несомненно дешевле. Интерес к стронцию сразу же пропал и вновь возрос к нему лишь в 40-х годах прошлого века. Тяжелый шпат был первым известным соединением бария. Его открыл в начале XVII в. итальянский алхимик Касциароло. Он же установил, что этот минерал после сильного нагревания с углем светится в темноте красным светом и дал ему название «lapis solaris» (солнечный камень).

В 1808 году Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с окисью ртути, приготовил амальгаму кальция, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. Calх, род. падеж calcis — известь). Тем же способом Дэви были получены Ва и Sr. Промышленный способ получения кальция разработан Зутером и Редлихом в 1896 г. на заводе Ратенау (Германия).

В 1904 г. начал работать первый завод по получению кальция.

Радий был предсказан Менделеевым в 1871 г. и открыт в 1898 г. супругами Марией и Пьером Кюри. Они обнаружили, что урановые руды обладают большей радиоактивностью чем сам уран. Причиной были соединения радия. Остатки урановой руды они обрабатывали щелочью, а что не растворялось — соляной кислотой. Остаток после второй процедуры обладали большей радиоактивностью, чем руда. В этой фракции и был обнаружен радий. О своем открытии супруги Кюри сообщили в докладе за 1898 г.

7 стр., 3029 слов

Свойства кальция

... школьные мелки. Его используют в бумажной и резиновой промышленности - в качестве наполнителя, в строительстве и при ремонте зданий - для побелки. Третья разновидность карбоната кальция - мрамор - ... на нужды химической промышленности. Он незаменим в производстве цемента, карбида кальция, соды, всех видов извести (гашеной, негашеной, хлорной), белильных растворов, цианамида кальция, известковой воды ...

Распространенность

Содержание кальция в литосфере составляет 2,96% от общей массы земной коры, стронция- 0,034%, бария- 0,065%, радия- 1 . 10-10 %. В природе кальций состоит из изотопов с массовыми числами 40(96,97%), 42(0,64%), 43(0,14%), 44(2,06%), 46(0,003%), 48(0,19%); стронций- 84(0,56%), 86(9,86%), 87(7,02%), 88(82,56%); барий- 130(0,1%), 132(0,1%), 134(2,42%), 135(6,59%), 136(7,81), 137(11, 32%), 138(71,66).

Радий радиоактивен. Наиболее устойчивый природный изотоп- 226 Ra. Основные минералы щелочноземельных элементов- угле- и сернокислые соли: СаСО3 — кальцит, СаSO4 — андидрит, SrCO3 — стронцианит, SrSO4 — целестин, BaCO3 — витерит. BaSO4 — тяжелый шпат. Флюорит СаF2 — тоже полезный минерал.

Са играет важную роль в процессах жизнедеятельности. Человеческий организм содержит 0,7-1,4 вес.% кальция, 99% которого приходится на костную и зубную ткань. Растения тоже содержат большие количества кальция. Соединения кальция содержатся в природных водах и почве. Барий, стронций и радий содержатся в человеческом организме в ничтожных количествах.

Получение щелочноземельных металлов

Сначала получают окиси или хлориды Э. ЭО получают прокаливанием ЭСО 3 , а ЭС12 действием соляной кислоты на ЭСО3 . Все щелочноземельные металлы можно получить алюмотермическим восстановлением их окисей при температуре 1200 о С по примерной схеме:

3ЭО + 2Al = Al 2 O3 + 3Э

Процесс при этом ведут в вакууме во избежании окисления Э. Кальций (как и все остальные Э) можно получить электролизом расплава СаСl 2 с последующей перегонкой в вакууме или термической диссоциацией СаС2 . Ва и Sr можно получить пиролизом Э2 N3 , Э(NH3 )6 , ЭН2 . Радий добывают попутно из урановых руд.

Особен

Кальций имеет атомный номер 20 и атомный вес 40,08. Стронций — 38 и 87,62. Барий — 56 и 137,33. Радий 88 и 226,02. Э характеризуются наибольшим сходством между собой, т.к. для них характерна не только групповая и типовая аналогия, но и слоевая. В основном состоянии Э нульвалентны и имеют структуру ns 2 . возбуждение до двухвалентного состояния может идти по схемам: ns2 nsnp или ns2 ns(n-1)d. Потенциалы ионизации и ОЭО представлены ниже:

Ca

Sr

Ba

Ra

I 1

6,11

5,69

5,21

5,28

I 2

11,87

11,03

10,00

10,14

ОЭО

1,04

0,99

0,97

0,97

Как видно из таблицы ОЭО элементов различаются незначительно. В целом от Са к Ва немного возрастает химическая активность щелочноземельных металлов (свойства радия изучены не лучшим образом, ввиду малой распространенности и радиоактивности).

Во многих отношениях Э напоминают щелочные металлы. И те и другие — химически активны, не проявляют комплексообразовательной способности. Их гидроокиси — сильные основания, а гидриды — солеобразные вещества.

Физические свойства щелочноземельных металлов

Са и его аналоги представляют собой серебристо-белые металлы. Кальций из них самый твердый. Стронций и особенно барий значительно мягче кальция. Все щелочноземельные металлы пластичные, хорошо поддаются ковке, резанью и прокатке. Кальций при обычных условиях кристаллизуется в ГЦК-структуре с периодом а=0,556 нм (КЧ=12), а при температуре выше 464 о С в ОЦК-стуктуре. Са образует сплавы с Li, Mg, Pb, Cu, Cd, Al, Ag, Hg. Стронций имеет ГЦК — структуру; при температуре 488 о С стронций претерпевает полиморфное превращение и кристаллизуется в гексагональной структуре. Он парамагнитен. Барий кристаллизуется в ОЦК структуре. Са и Sr способны образовывать между собой непрерывный ряд твердых растворов, а в системах Са-Ва и Sr-Ba появляются области расслаивания. В жидком состоянии стронций смешивается с Ве, Hg, Ga, In, Sb, Bi, Tl, Al, Mg, Zn, Sn, Pb. С последними четырьмя Sr образует интерметаллиды. Электропроводность щелочноземельных металлов с повышением давления падает, вопреки обратному процессу у остальных типичных металлов. Ниже приведены некоторые константы для щелочноземельных металлов:

Са

Sr

Ba

Ra

Атомный радиус, нм

0,197

0,215

0,221

0,235

Радиус иона Э 2+ , нм

0,104

0,127

0,138

0,144

Энергия кр. решетки, мкДж\кмоль

194,1

164,3

175,8

130

, г\см 3

1,54

2,63

3,5

5,5-6

Т пл. ,о С

852

770

710

800

Т кип. ,о С

1484

1380

1640

1500

Электропроводность (Hg=1)

22

4

2

Теплота плавления ккал\г-атом

2,1

2,2

1,8

Теплота испарения ккал\г-атом

36

33

36

Удельная теплоемкость, Дж\(кг . К)

624

737

191,93

136

Сжижаемость Па -1. 10-11

5,92

8,36

Химические свойства щелочноземельных металлов и их соединений

Свежая поверхность Э быстро темнеет вследствие образования оксидной пленки. Пленка эта относительно плотна — с течением времени весь металл медленно окисляется. Пленка состоит из ЭО, а также ЭО 2 и Э3 N2 . Нормальные электродные потенциалы реакций Э-2е = Э2+ равны =-2,84В(Са), =-2,89(Sr).

Э очень активные элементы: растворяются в воде и кислотах, вытесняют большинство металлов из их оксидов, галогенидов, сульфидов. Первично (200-300о С) кальций взаимодействует с водяным паром по схеме:

2Са + Н 2 О = СаО + СаН2 .

Вторичные реакции имеют вид:

CаН 2 + 2Н2 О = Са(ОН)2 + 2Н2 и СаО + Н2 О = Са(ОН)2 .

В крепкой серной кислоте Э почти не растворяются ввиду образования пленки из малорастворимых ЭSO 4 . С разбавленными минеральными кислотами Э реагируют бурно с выделением водорода. Кальций при нагревании выше 800о С с метаном реагирует по схеме:

3Cа + СН 4 = СаН2 + СаС2 .

Э при нагревании реагируют с водородом, с серой и с газообразным аммиаком. По химическим свойствам радий ближе всего к Ва, но он более активен. При комнатной температуре он заметно соединяется с кислородом и азотом воздуха. В общем, его химические свойства немного более выражены чем у его аналогов. Все соединения радия медленно разлагаются под действием собственного излучения, приобретая при этом желто-ватую или коричневую окраску. Соединения радия обладают свойством автолюминесценции. В результате радиоактивного распада 1 г Ra каждый час выделяет 553,7 Дж тепла. Поэтому температура радия и его соединений всегда выше температуры окружающей среды на 1,5 град. Также известно, что 1 г радия в сутки выделяет 1 мм 3 радона(226 Ra = 222 Rn + 4 He), на чем основано его применение как источника радона для радоновых ванн.

Гидриды Э — белые, кристаллические солеобразные вещества. Их получают непосредственно из элементов при нагревании. Температуры начала реакции Э + Н2 = ЭН2 равны 250 о С (Са), 200 о С (Sr), 150 о С (Ва).

Термическая диссоциация ЭН2 начинается при 600о С. В атмосфере водорода СаН2 не разлагается при температуре плавления (816о С).

В отсутствии влаги гидриды щелочноземельных металлов устойчивы на воздухе при обычной температуре. Они не реагируют с галогенами. Однако при нагревании химическая активность ЭН2 возрастает. Они способны восстанавливать оксиды до металлов(W, Nb, Ti, Се, Zr, Ta), например

2СаН 2 + ТiO2 = 2CaO + 2H2 + Ti.

Реакция СаН 2 с Al2 O3 идет при 750о С:

3СаН 2 + Al2 O3 = 3СаО + 3Н2 + 2Аl,

и затем:

СаН 2 + 2Al = CaAl2 + H2 .

С азотом СаН 2 при 600о С реагирует по схеме:

3СаН 2 + N2 = Ca3 N2 +3H2 .

При поджигании ЭН 2 они медленно сгорают:

ЭН 2 + О2 = Н2 О + СаО.

В смеси с твердыми окислителями взрывоопасны. При действии воды на ЭН 2 выделяется гидроокись и водород. Эта реакция сильно экзотермична: смоченный водой на воздухе ЭН2 самовоспламеняется. С кислотами ЭН2 реагирует, например по схеме:

2HCl + CaH 2 = CaCl2 + 2H2 .

ЭН 2 применяют для получения чистого водорода, а также для определения следов воды в органических растворителях. Нитриды Э представляют собой бесцветные тугоплавкие вещества. Они получаются непосредственно из элементов при повышенной температуре. Водой они разлагаются по схеме:

Э 3 N2 + 6H2 O = 3Э(ОН)2 + 2NH3 .

Э 3 N2 реагируют при нагревании с СО по схеме:

Э 3 N2 + 3СО = 3ЭО + N2 + 3C.

Процессы которые происходят при нагревании Э 3 N2 с углем выглядят так:

Э 3 N2 + 5С = ЭCN2 + 2ЭС2 ; (Э = Са, Sr); Ва3 N2 + 6С = Ва(СN)2 + 2ВаC2 ;

  • Нитрид стронция реагирует с HCl, давая хлориды Sr и аммония. Фосфиды Э3 Р2 образуются непосредственно из элементов или прокаливанием трехзамещенных фосфатов с углем:

3 (РО4 )2 + 4С = Са3 Р2 + 4СО

Они гидролизуются водой по схеме:

Э 3 Р2 + 6Н2 О = 2РН3 + 3Э(ОН)2 .

С кислотами фосфиды щелочноземельных металлов дают соответствующую соль и фосфин. На этом основано их применение для получения фосфина в лаборатории.

Комплексные аммиакаты

Карбиды щелочноземельных металлов которые получаются прокаливанием Э с углем разлагаются водой с выделением ацетилена:

ЭС 2 + 2Н2 О = Э(ОН)2 + С2 Н2 .

Реакция с ВаС 2 идет настолько бурно, что он воспламеняется в контакте с водой. Теплоты образования ЭС2 из элементов для Са и Ва равны 14 и 12 ккал\моль. При нагревании с азотом ЭС2 дают СаСN2 , Ba(CN)2 , SrCN2 . Известны силициды (ЭSi и ЭSi2 ).

Их можно получить при нагревании непосредственно из элеменов. Они гидролизуются водой и реагируют с кислотами, давая H2 Si2 O5 , SiH4 , соответствующее соединение Э и водород. Известны бориды ЭВ6 получаемые из элементов при нагревании.

Окиси кальция и его аналогов — белые тугоплавкие(Tкип СаО = 2850о С) вещества, энергично поглощающие воду. На этом основано применение ВаО для получения абсолютного спирта. Они бурно реагируют с водой, выделяя много тепла (кроме SrO растворение которой эндотермично).

ЭО растворяются в кислотах и хлориде аммония:

ЭО + 2NH 4 Cl = SrCl2 + 2NH3 + H2 O.

Получают ЭО прокаливанием карбонатов, нитратов, перекисей или гидроксидов соответствующих металлов. Эффективные заряды бария и кислорода в ВаО равны 0,86. SrO при 700 о С реагирует с цианистым калием:

KCN + SrO = Sr + KCNO.

Окись стронция растворяется в метаноле с образованием Sr(ОСН 3 )2 . При магнийтермическом восстановлении ВаО может быть получен промежуточный окисел Ва2 О, который неустойчив и диспропорционирует.

Гидроокиси

Ca(OH) 2 + CO2 = CaCO3 + Н2 О.

Около 400 о С Са(ОН)2 реагирует с угарным газом:

СО + Ca(OH) 2 = СаСО3 + Н2 .

Баритовая вода реагирует с СS 2 при 100 о С:

СS 2 + 2Ва(ОН)2 = ВаСО3 + Ва(НS)2 + Н2 О.

Алюминий реагирует с баритовой водой:

2Al + Ba(OH) 2 + 10H2 O = Ba[Al(OH)4 (H2 O)2 ]2 + 3H2 . Э(ОН)2

используются для открытия угольного ангидрида.

Э образуют перекиси белого цвета. Они существенно менее стабильны в отличие от окисей и являются сильными окислителями. Практическое значение имеет наиболее устойчивая ВаО2 , которая представляет собой белый, парамагнитный порошок с плотностью 4,96 г1см 3 и т. пл. 450°. BaО2 устойчива при обычной температуре (может храниться годами), плохо растворяется в воде, спирте и эфире, растворяется в разбавленных кислотах с выделением соли и перекиси водорода. Термическое разложение перекиси бария ускоряют окислы, Cr2 O3 , Fe2 O3 и CuО. Перекись бария реагирует при нагревании с водородом, серой, углеродом, аммиаком, солями аммония, феррицианидом калия и т. д. С концентрированной соляной кислотой перекись бария реагирует, выделяя хлор:

ВаO 2 + 4НСl = BaCl2 + Cl2 + 2H2 O.

Она окисляет воду до перекиси водорода:

Н 2 О + ВаО2 = Ва(ОН)2 + Н2 О2 .

Эта реакция обратима и в присутствии даже угольной кислоты равновесие смещено вправо. ВаО 2 используется как исходный продукт для получения Н2 О2 , а также как окислитель в пиротехнических составах. Однако, ВаО2 может выступать и в качестве восстановителя:

HgCl 2 + ВаО2 = Hg + BaCl2 + O2 .

Получают ВаО 2 нагреванием ВаО в токе воздуха до 500о С по схеме:

2ВаО + О 2 = 2ВаО2 .

При повышении температуры имеет место обратный процесс. Поэтому при горении Ва выделяется только окись. SrO 2 и СаО2 менее устойчивы. Общим методом получения ЭО2 является взаимодействие Э(ОН)2 с Н2 О2 , при этом выделяются ЭО2 .2 О. Термический распад ЭО2 начинается при 380 о С (Са), 480 о С (Sr), 790 о С (Ва).

При нагревании ЭО2 с концентрированной перекисью водорода могут быть получены желтые неустойчивые вещества — надпероксиды ЭО4 .

Соли Э как правило бесцветны. Хлориды, бромиды, иодиды и нитраты хорошо растворимы в воде. Фториды, сульфаты, карбонаты и фосфаты плохо растворимы. Ион Ва 2+ — токсичен. Галиды Э делятся на две группы: фториды и все остальные. Фториды почти не растворимы в воде и кислотах, и не образуют кристаллогидратов. Напротив хлориды, бромиды, и иодиды хорошо растворимы в воде и выделяются из растворов в виде кристаллогидратов. Некоторые свойства ЭГ2 представлены ниже:

СаF 2

СаCl 2

СаBr 2

СаI 2

SrF 2

SrCl 2

SrBr 2

SrI 2

BaF 2

BaCl 2

BaBr 2

BaI 2

Тепл. обр-я, ккал\моль.

290

191

164

128

189

198

171

134

286

205

181

145

Е кр. решетки , ккал\моль.

617

525

508

487

580

504

489

467

547

468

463

440

Т пл. , о С

1423

782

760

575

1473

872

643

515

1353

962

853

740

Т кип. , о С

2500

2000

1800

718

2460

2030

2260

1830

D(ЭГ) в парах, нм.

2,1

2,51

2,67

2,88

2,20

2,67

2,82

3,03

2,32

2,82

2,99

3,20

При получении путем обменного разложения в растворе фториды выделяются в виде объемистых слизистых осадков, довольно легко образующих коллоидные растворы. ЭГ 2 можно получить действуя соответствующими галогенами на соответствующие Э. Расплавы ЭГ2 способны растворять до 30% Э. При изучении электропроводности расплавов хлоридов элементов второй группы главной подгруппы было установлено, что их молекулярно-ионный состав очень различен. Степени диссоциации по схеме ЭСl2 = Э2+ + 2Cl- равны: BeCl2 — 0,009%, MgCl2 — 14,6%, CaCl2 — 43,3%, SrCl2 — 60,6%, BaCl2 — 80,2%. Галогениды (кроме фторидов) Э содержат кристаллизационную воду: CaCl2 .2 О, SrCl2 .2 О и ВаCl2 .2 О. Рентгеноструктурным анализом установлено строение Э[(ОН2 )62 для кристаллогидратов Са и Sr. При медленном нагревании кристаллогидратов ЭГ2 можно получить безводные соли. CaCl2 легко образует пересыщенные растворы. Природный СаF2 (флюорит) применяют в керамической промышленности, а также он используется для производства HF и является минералом фтора. Безводный CaCl2 используют как осушитель ввиду его гидроскопичности. Кристаллогидрат хлористого кальция используют для приготовления холодильных смесей. ВаСl2 — используют в с\х и для открытия

SO 4 2- (Ва2+ + SO4 2- = ВаSO4 ).

Сплавлением ЭГ 2 и ЭН2 могут быть получены гидрог а лиды :

ЭГ 2 + ЭН2 = 2ЭНГ.

Эти вещества плавятся без разложения но гидролизуются водой:

2ЭНГ + 2H 2 O = ЭГ2 + 2Н2 + Э(ОН)2 .

Растворимость в воде хлоратов , броматов и иодатов в воде уменьшается по рядам Сa — Sr — Ba и Cl — Br — I. Ba(ClO3 )2 — используется в пиротехнике. Перхлораты Э хорошо растворимы не только в воде но и в органических растворителях. Наиболее важным из Э(ClO4 )2 является Ва(ClO4 )2 .2 О. Безводный перхлорат бария является хорошим осушителем. Его термический распад начинается только при 400 о С. Гипохлорит кальция Са(СlO)2 . nH2 O (n=2,3,4) получают действием хлора на известковое молоко. Он является окислителем и хорошо растворим в воде. Хлорную известь можно получить действуя хлором на твердую гашеную известь. Она разлагается водой и пахнет хлором в присутствии влаги. Реагирует с СО2 воздуха:

СО 2 + 2CaOCl2 = CаСO3 + CaCl2 + Cl2 O.

Хлорная известь применяется как окислитель, отбеливатель и как дезинфицирующее средство.

Для щелочноземельных металлов известны азиды Э(N3 )2 и роданиды Э(CNS)2 .2 О. Азиды по сравнению с азидом свинца гораздо менее взрывоопасны. Роданиды при нагревании легко теряют воду. Они хорошо растворимы в воде и органических растворителях. Ва(N3 )2 и Ba(CNS)2 могут быть использованы для получения азидов и роданидов других металлов из сульфатов обменной реакцией.

Нитраты кальция и стронция существуют обычно в виде кристаллогидратов Са(NO3 )2 . 4H2 O и Sr(NO3 )2 . 4H2 O. Для нитрата бария не свойственно образование кристаллогидрата. При нагревании Са(NO3 )2 . 4H2 O и Sr(NO3 )2 . 4H2 O легко теряю воду. В инертной атмосфере нитраты Э термически устойчивы до 455 o C (Са), 480 o C (Sr), 495 o C (Ba).

Расплав кристаллогидрата нитрата кальция имеет кислую среду при 75 о С. Особенностью нитрата бария является малая скорость растворения его кристаллов в воде. Склонность к комплексообразованию проявляет лишь нитрат бария, для которого известен нестойкий комплекс K2 [Ba(NO3 )4 ]. Нитрат кальция растворим в спиртах, метилацетате, ацетоне. Нитраты стронция и бария там же почти не растворимы. Температуры плавления нитратов Э оцениваются в 600о С, однако при этой же температуре начинается распад:

Э(NO 3 )2 = Э(NO2 )2 + O2 .

Дальнейший распад идет при более высокой температуре:

Э(NO 2 )2 = ЭО + NO2 + NO.

Нитраты Э уже издавна использовались в пиротехнике. Легколетучие соли Э окрашивают пламя в соответствующие цвета: Са — в оранжево-желтый, Sr — в красно-карминовый, Ba — в желто-зеленый. Разберемся в сущности этого на примере Sr: у Sr 2+ есть две ВАО: 5s и 5p или 5s и 4d. Сообщим энергию этой системе — нагреем. Электроны с более близлежащих к ядру орбиталей перейдут на эти ВАО. Но такая система не устойчива и выделит энергию в виде кванта света. Как раз Sr2+ и излучает кванты с частотой, соответствующей длинам красных волн. При получении пиротехнических составов удобно использовать селитру, т.к. она не только окрашивает пламя, но и является окислителем, выделяя кислород при нагревании. Пиротехнические составы состоят из твердого окислителя, твердого восстановителя и некоторых органических веществ, обесцвечивающих пламя восстановителя, и являющихся связывающим агентом. Нитрат кальция используется как удобрение.

Все фосфаты и гидрофосфаты Э плохо растворимы в воде. Их можно получить растворением соответствующего количества СаО или СаСO3 в ортофосфорной килоте. Также они осаждаются при обменных реакциях типа:

(3-х)Са 2+ + 2Hx PO4 -(3-х) = Са(3-х) (Hx PO4 )2 .

суперфосфата.

3 (PO4 )2 + 2H2 SO4 = Ca(H2 PO4 )2 + 2CаSO4

Оксалаты тоже мало растворимы в воде. Практическое значение имеет оксалат кальция, который при 200 о С обезвоживается, а при 430 о С разлагается по схеме:

СаС 2 О4 = СаСО3 + СО.

Ацетаты Э выделяются в виде кристаллогидратов, и хорошо растворимы в воде.

С ульфаты Э — белые, плохо растворимые в воде вещества. Растворимость СaSO4 .2 О на 1000 г. воды при обычной температуре составляет 8. 10-3 моль, SrSO4 — 5. 10-4 моль, ВаSO4 — 1. 10-5 моль, RaSO4 — 6. 10-6 моль. В ряду Са — Ra растворимость сульфатов быстро уменьшается. Ва2+ является реактивом на сульфат-ион. Сульфат кальция содержит кристаллизационную воду. Выше 66 о С из раствора выделяется безводный сульфат кальция, ниже — гипс СаSO4 .2 О. Нагревание гипса выше 170 о С сопровождается выделением гидратной воды. При замешивании гипса с водой эта масса быстро твердеет вследствие образования кристал-логидрата. Это свойство гипса используется в строительстве. Египтяне использовали это знание еще 2000 лет назад. Растворимость ЭSO4 в крепкой серной кислоте намного выше, чем в воде (ВаSO4 до 10%), что свидетельствует о комплексообразовании. Соответствующие комплексы ЭSO4 . Н2 SO4 могут быть получены в свободном состоянии. Двойные соли с сульфатами щелочных металлов и аммония известны только для Са и Sr. (NH4 )2 [Ca(SO4 )2 ] растворим в воде и используется в аналитической химии для отделения Са от Sr, т.к. (NH4 )2 [Sr(SO4 )2 ] мало растворим. Гипс применяют для комбинированного получения серной кислоты и цемента, т.к. при нагревании с восстановителем (углем) гипс разлагается:

СаSO 4 + С = СаО + SO2 + СО.

При более высокой температуре (900 o C) сера еще больше восстанавливается по схеме:

СаSO 4 + 3С = СаS + CO2 + 2СО.

Подобный распад сульфатов Sr и Ва начинается при более высоких температурах. ВаSO 4 нетоксичен и используется в медицине и производстве минеральных красок.

Сульфиды Э представляют собой белые твердые вещества, кристаллизующиеся по типу NaCl. Теплоты их образования и энергии кристаллических решеток равны (ккал\моль): 110 и 722 (Са), 108 и 687 (Sr), 106 и 656 (Ва).

Могут быть получены синтезом из элементов при нагревании или прокаливанием сульфатов с углем:

ЭSO 4 + 3С = ЭS + CO2 + 2СО.

Менее всех растворим СаS (0,2 г\л).

ЭS вступает в следующие реакции при нагревании:

ЭS + H 2 O = ЭO + H2 S; ЭS + Г2 = S + ЭГ2 ; ЭS + 2O2 = ЭSO4 ; ЭS + xS = ЭSx +1 (x=2,3).

Сульфиды щелочноземельных металлов в нейтральном растворе нацело гидролизованы по схеме:

2ЭS + 2Н 2 О = Э(НS)2 + Э(ОН)2 .

Кислые сульфиды

Э(НS) 2 + хS = ЭSx +1 + H2 S (x=2,3,4).

полисульфиды

2СаS + 2О 2 + Н2 О = Са(ОН)2 + СаS2 О3

Он хорошо растворим в воде. В ряду Са — Sr — Ва растворимость тиосульфатов падает. Теллуриды Э мало растворимы в воде и тоже подвержены гидролизу, но в меньшей степени чем сульфиды.

Растворимость хроматов Э в ряду Са — Ва падает также резко, как и в случае с сульфатами. Эти вещества желтого цвета получаются при взаимодействии растворимых солей Э с хроматами (или дихроматами) щелочных металлов:

Э 2+ + СrO4 2- = ЭCrO4.

Хромат кальция выделяется в виде кристаллогидрата — СаCrO 4 . 2H2 O (рПР СаCrO4 = 3,15).

Еще до температуры плавления он теряет воду. SrCrO4 и ВаCrO4 кристаллогидратов не образуют. pПР SrCrO4 = 4,44, рПР ВаCrO4 = 9,93.

Карбонаты Э белые, плохо растворимые в воде вещества. При нагревании ЭСО3 переходят в ЭО, отщепляя СО2 . В ряду Са — Ва термическая устойчивость карбонатов возрастает. Наиболее практически важен из них карбонат кальция (известняк).

Он непосредственно используется в строительстве, а также служит сырьем для получения извести и цемента. Ежегодная мировая добыча извести из известняка исчисляется десятками миллионов тонн. Термическая диссоциация СаСО3 эндотермична:

СаСО 3 = СаО + СО2

и требует затраты 43 ккал на моль известняка. Обжиг СаСО 3 проводят в шахтных печах. Побочным продуктом обжига является ценный углекислый газ. СаО важный строительный материал. При замешивании с водой происходит кристаллизация за счет образования гидроокиси, а затем карбоната по схемам:

СаО + Н 2 О = Са(ОН)2 и Са(ОН)2 + СО2 = СаСО3 + Н2 О.

Колоссально важную практическую роль играет цемент — зеленовато-серый порошок, состоящий из смеси различных силикатов и алюминатов кальция. Будучи замешан с водой он отвердевает за счет гидратации. При его производстве смесь СаСО 3 с глиной обжигают до начала спекания (1400-1500 о С).

Затем смесь перемалывают. Состав цемента можно выразить процентным соотношением компонентов СаО, SiO2 , Al2 O3 , Fe2 O3 , причем СаО представляет основание, а все остальное — ангидриды кислот. Состав силикатного (портладского) цемента слагается в основном из Са3 SiO5 , Ca2 SiO4 , Ca3 (AlO3 )2 и Ca(FeO2 )2 . Его схватывание проходит по схемам:

Са 3 SiO5 + 3Н2 О = Ca2 SiO4 .2 О + Са(ОН)2

Ca 2 SiO4 + 2Н2 О = Ca2 SiO4 .2 О

Ca 3 (AlO3 )2 + 6Н2 О = Ca3 (AlO3 )2 .2 О

Ca(FeO 2 )2 + nH2 O = Ca(FeO2 )2 . nH2 O.

Природный мел вводят в состав различных замазок. Мелкокристаллический, осажденный из раствора СаСО 3 входит в состав зубных порошков. Из ВаСО3 прокаливанием с углем получают ВаО по схеме:

ВаСО 3 + С = ВаО + 2СО.

Если процесс вести при более высокой температуре в токе азота образуется цианид бария:

ВаСО 3 + 4С +N2 = 3CO + Ba(CN)2 .

Гидрокарбонаты

СО 2 + СаСО3 + Н2 О = Са(НСО3 )2 .

Эта реакция обратима и при нагревании смещается влево. Наличие гидрокарбонатов кальция и магния в природных водах обуславливает жесткость воды.

Жёсткос

Растворимые соли кальция и магния обуславливают общую жёсткость воды. Если они присутствуют в воде в небольших количествах, то вода называется мягкой. При большом содержании этих солей (100 — 200 мг солей кальция — в 1 л. в пересчёте на ионы) вода считается жёсткой. В такой воде мыло плохо пенится, так как соли кальция и магния образуют с ним нерастворимые соединения. В жёсткой воде плохо развариваются пищевые продукты, и при кипячении она даёт на стенках бытовой утвари и паровых котлов накипь. Накипь обладает малой теплопроводностью, вызывает увеличение расхода топлива или потребляемой мощности электроприбора и ускоряет изнашивание стенок сосуда для кипячения воды. При нагревании кислые карбонаты кальция и магния разлагаются и переходят в нерастворимые основные карбонаты:

Са(НСО 3 ) = Н2 О + СО2 + СаСО3 v

Растворимость сульфата кальция СаSO 4 при нагревании также снижается, поэтому он входит в состав накипи. Жёсткость, вызванная присутствием в воде кислых карбонатов кальция и магния, называется карбонатной или временной, так как она может быть устранена. Помимо карбонатной жёсткости, различают ещё некарбонатную жёсткость, которая зависит от содержания в воде ЭСl2 и ЭSO4 , где Э — Са, Мg. Эти соли не удаляются при кипячении, и поэтому некарбонатную жёсткость называют также постоянной жёсткостью. Карбонатная и некарбонатная жёсткость в сумме дают общую жёсткость. Для полного ее устранения воду иногда перегоняют. Но это дорого. Для устранения карбонатной жёсткости воду можно прокипятить, но это тоже дорого и образуется накипь. Жёсткость удаляют прибавлением соответствующего количества Са(ОН)2 :

Са(ОН) 2 + Са(НСО3 )2 = СаСО3 v + 2Н2 О.

Общую жёсткость устраняют или добавлением Na 2 CO3 , или при помощи так называемых катионитов. При использовании углекислого натрия растворимые соли кальция и магния тоже переводят в нерастворимые карбонаты:

Са 2+ + Na2 CO3 = 2Na+ + CaCO3 v.

Устранение жёсткости при помощи катионитов — процесс более совершенный. Катиониты — высокомолекулярные натрийсодержащие органические соединения, состав которых можно выразить формулой Na 2 R, где R — сложный кислотный остаток. При фильтровании воды через слой катионита происходит обмен катионов Na+ кристаллической решетки на катионы Са2+ и Mg2+ из раствора по схеме:

Са 2+ + Na2 R = 2Na+ + CaR.

Следовательно, ионы Са из раствора переходят в катионит, а ионы Na + переходят из катионита в раствор. Для восстановления использованного катионита его промывают концентрированным раствором поваренной соли. При этом происходит обратный процесс: ионы Са2+ в кристаллической решетке в катионита заменяются на ионы Na+ из раствора. Регенерированный катионит снова применяют для очистки воды. Подобным образом работают фильтры на основе пермутита:

Na 2 [Al2 Si2 O8 ] + Ca2+ = 2Na+ + Ca[Al2 Si2 O8 ]

Приме

Стронций применяют при выплавке бронз и меди — он связывает серу, фосфор, углерод и повышает текучесть шлака. Таким образом, Sr способствует очистке металла от многочисленных примесей. Кроме того, добавка стронция повышает механические характеристики меди (почти не снижая ее электропроводности), чугуна, стали. Летучие соли стронция применяются в пиротехнике. В электровакуумные трубки стронций вводят, чтобы поглотить остатки кислорода и азота — сделать вакуум более глубоким. Многократно очищенный стронций используют в качестве восстановителя при получении U. Стронций применяют в радиоэлектронике для изготовления фотоэлементов. Также он используется в стекловарении для получения специальных оптических стекол, которые обладают большой химической стойкостью и большим показателем преломления. Соединения стронция входят в состав эмалей, глазурей и керамики. Их широко используют в химической промышленности в качестве наполнителей резины, стабилизаторов пластмасс, а также очистки каустической соды от железа и марганца, в качестве катализаторов в органическом синтезе и при крекинге нефти.

Барий в основном находит применение в связанном состоянии. ВаSO4 хорошо поглощает рентгеновское излучение, поэтому его используют при рентгенодиагностике. Баритовые белила используют в качестве белой краски. ВаСО3 входит в состав смеси для цементации стали. Сплавы Pb-Ba используют в полиграфии, славы Ва-Ni — для изготовления электродов запальных свечей двигателей и в радиолампах. ВаTiO3 один из важнейших сегнетоэлектриков. Алюминат бария используют для изготовления диэлектриков и постоянных магнитов. Барий вводят в антифрикционные сплавы. ВаО2 используется как отбеливатель тканей, служит для получения перекиси водорода и входит в состав запальных смесей, как окислитель. Ва(NO3 )2 находит применение в пиротехнике. Окрашенные соли бария являются пигментами: BaCrO4 — желтый, BaMnO4 — зеленый. ВаF2 применяют для изготовления эмалей и оптических стекол. [ВаPt(CN)6 ] используют для покрытия некоторых фосфоресцирующих экранов.

В последнее время применение радия существенно сократилось т.к. широко используются радиоактивные изотопы. Он сохранил свое назначение как источник радона для радоновых ванн. В небольших количествах в смеси с Ве радий используют для приготовления нейтронных источников, а в смеси с ZnS — при производстве светосоставов. Иногда радий применяют для дефектоскопии литья сварных швов, а также для снятия электростатических зарядов.

В виде чистого металла кальций применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb, Na, K, Ti и некоторых редкоземельных металлов и их соединений. Его используют также для раскисления сталей, бронз и других сплавов, очистки свинца и олова от висмута и сурьмы. Также используют для удаления серы из нефтепродуктов и обезвоживания органических жидкостей; для очистки аргона от примесей азота и в качества поглотителя газов в электровакуумных приборах. Большое применение в технике получили антификционные материалы системы Pb — Na — Ca. Добавка 0,05% кальция к свинцу резко улучшает механические характеристики последнего. Сплавы Pb — Ca, служат для изготовления оболочек электрических кабелей. Сплав Si — Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей. Сплав кальция (до 70%) с цинком применяется для изготовления пенобетона. Широкое применение в стекольной промышленности нашел оксид кальция. Также он применяется для футеровки печей и получения гашеной извести. Гидросульфит кальция применяют в производстве искусственного волокна и для очистки каменноугольного газа. СаOCl2 является хорошим окислителем, и применяется как отбеливатель, а также как дезинфицирующее средство. Перекись кальция используется в приготовлении косметических препаратов и зубной пасты. Ядовитые соединения кальция с мышьяком используют для уничтожения вредителей. Фосфаты кальция применяются как удобрения. Кальций — один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во многих тканях многих животных и растений. Широко его использование в медицине.