Баллистические ракеты подводных лодок
Научно-технические проблемы и результаты их решения, связанные с развитием баллистических ракет подводных лодок, излагаются в статьях генерального конструктора И.И. Величко, Е.М. Кутового и академика Н.А. Семихатова, В.В. Чеботарева, публикуемых в настоящем сборнике. В связи с этим отметим лишь основные этапы решения задачи повышения эффективности морской стратегической ядерной системы в 70-80-х годах.
В первой половине 70-х годов был разработан, испытан и принят на вооружение новых атомных ракетоносцев типа “Мурена” ракетный комплекс Д-9 с баллистической ракетой РМС-40 межконтинентальной дальности стрельбы. Этот комплекс обеспечил возможность действий подводных ракетоносцев в обширных районах Мирового океана, в том числе таких, где не было надобности пересекать зоны, контролируемые глобальной противолодочной системой наблюдения США СОСУС. Стрельба по объектам на удаленных территориях могла производиться из своих защищенных районов и даже из мест базирования. При этом повышались коэффициент оперативного использования подводных ракетоносцев и их боевая устойчивость. Несмотря на огромную дальность стрельбы, обеспечивалась ее высокая точность за счет бортовой инерциальной системы и азимутальной коррекции траектории полета по звездам (астрокоррекции).
Современными РПК СН являются лодки проектов 667 БДРМ и 941.
Со второй половины 70-х годов решалась задача резкого повышения потенциала морских стратегических ядерных сил за счет увеличения числа боеголовок. К этому времени в США твердо обозначился курс на приоритет подводных лодок с баллистическими ракетами в ядерной триаде. К концу 60-х годов только США обладали более чем 650 баллистическими ракетами, установленными на подводных лодках. В 1970 г. США приняли на вооружение ракетный комплекс “Посейдон” с разделяющейся головной частью (с 10 боеголовками индивидуального наведения).
По мере его внедрения начался интенсивный рост числа ядерных боеголовок в ВМС США.
Разработка в Советском Союзе подобной ракеты (РСМ-50) началась в начале 70-х годов, а на вооружение ВМФ она была принята в 1977 г. Разделяющаяся головная часть ее могла оснащаться одной, тремя или семью боеголовками индивидуального наведения с ядерным зарядом различной мощности.
Главными задачами последующих разработок баллистических ракет ПЛ оставались: рост количества боеголовок, повышение точности стрельбы, сокращение времени предстартовой подготовки и выпуска всех ракет с одной лодки за счет автоматизации этих процессов.
Мировой рынок вооружений и военной техники
... закупки вооружения и военной техники - 300 млрд. долл., военные НИОКР - 170,9 млрд. долл. и на строительство военных объектов - 21,2 млрд. долл. Однако фактические военные расходы США в ближайшие годы, по ... свои ведущие позиции на мировых рынках вооружений, которые занимал в 80-е годы Советский Союз, Москва. В девяностые годы, после распада СССР, на рынке вооружений почти полностью доминировали ...
В 1983 г. на вооружение атомных подводных крейсеров проекта 941 был принят ракетный комплекс с трехступенчатой твердотопливной ракетой РСМ-52 с разделяющейся головной частью, несущей 10 боеголовок индивидуального наведения. Ввод в строй каждого такого ракетоносца увеличивал ядерный потенциал ВМФ на 200 боеголовок.
Необходимо отметить, что опыты разработки твердотопливной баллистической ракеты для подводных лодок предпринимались и ранее. В 1980 г. на вооружение ВМФ был принят ракетный комплекс с твердотопливной баллистической ракетой средней дальности. Головным разработчиком его было конструкторское бюро завода “Арсенал” (главный конструктор П.А. Тюрин).
Однако по различным причинам, для ВМФ была построена лишь одна ракетная подводная лодка с этим комплексом.
Наконец, в 1986 г. был принят на вооружение ВМФ ракетный комплекс РСМ-54 с жидкостной баллистической ракетой, несущей 4 боевых блока индивидуального наведения. Отличительная особенность этого комплекса — высокая точность стрельбы, которая достигается сочетанием высокоточной инерциальной системы с двумя системами коррекции — по звездам и навигационным спутникам. Принятые в 80-е годы на вооружение ВМФ комплексы баллистических ракет по техническому совершенству и боевой эффективности не уступают американским ракетам типа “Трайдент”, а их развертывание определило паритет в стратегических ядерных вооружениях СССР и США.
Известно, что, кроме баллистических ракет, для поражения наземных целей в конце 50-х годов был создан и принят на вооружение подводных лодок ВМФ ракетный комплекс с крылатыми ракетами П-5. О том, как создавался этот комплекс, излагается далее в статье Г.А. Ефремова.
В 70-х годах вопрос о создании подобных ракет на новом техническом уровне возник снова. Дело в том, что, несмотря на заключенный еще в 1972 г. между США и СССР Договор об ограничении стратегических наступательных вооружений (ОСВ-1), США продолжили попытки достичь одностороннего ядерного превосходства. В конце 70-х годов в США была разработана, а затем принята на вооружение маловысотная дозвуковая крылатая ракета дальнего действия с ядерным зарядом “Томагавк”. Она не подпадала под действие Договора об ОСВ-1 и в последующем была развернута на многоцелевых подводных лодках, надводных кораблях и тяжелых бомбардировщиках США.
В ответ на воздушную угрозу во второй половине 70-х годов в СССР началась разработка подобного ракетного комплекса. Головной организацией было определено КБ “Новатор” под руководством видного конструктора артиллерийского и ракетного оружия Л.В. Люльева. В кооперацию разработчиков вошли конструкторские коллективы, возглавляемые А.А. Бришем, О.Н. Фаворским, А.С. Абрамовым, И.Ф. Поповым, Г.Н. Чернышевым и другими. В процессе разработки комплекса был разрешен целый ряд сложных технических и научных проблем. Конструкторскому бюро “Новатор” удалось создать крылатую ракету в габаритах штатного торпедного аппарата подводной лодки, стартующую с глубины в несколько десятков метров.
Под руководством академика О.Н. Фаворского разработан экономичный малогабаритный двухконтурный воздушно-реактивный двигатель, обеспечивающий дальность полета более 2000 км. Прецизионная инерциальная система и система коррекции траектории полета по рельефу местности с помощью цифровых карт, разработанные под руководством А.С. Абрамова, обеспечили точность, достаточную для поражения не только площадных, но и защищенных точечных целей.
Ядерные ракеты средней и межконтинентальной дальности
... комплексов с баллистическими ракетами средней дальности Р-12 и Р-5М, способных наносить ядерные удары по объектам, удаленным до 2000 км от места старта. Они поступили на вооружение ... первую дизельную подводную лодку океанской зоны проекта 629 с тремя баллистическими ракетами Р-13 на борту. Годом позже в боевой состав Северного флота вошла первая атомная подводная ...
С принятием в первой половине 80-х годов этого ракетного комплекса возникший дисбаланс с США в этом виде стратегического оружия был восстановлен.
Противокорабельные крылатые ракеты
Разработка и последующее интенсивное
Определенная научно-техническая база в лице авиационной промышленности и ведущихся работ по проектированию реактивных самолетов, созданию систем автопилотирования и телеуправления уже имелась. Тем не менее, предстояло создать специализированные научно-исследовательские и конструкторские организации, опытные и серийные производства нового вида оружия и его комплектующих элементов. Образование ряда таких конструкторских бюро и институтов интенсивно началось во второй половине 40-х годов в соответствии с Постановлением правительства СССР № 1017-419сс. В процессе становления этих организаций военными учеными, специалистами и конструкторами промышленности велись исследования по выбору аэродинамических схем, двигателей, систем управления и пусковых установок. В конце 40-х — начале 50-х годов целому ряду конструкторских бюро были выданы тактико-технические задания на опытно-конструкторские работы по противокорабельным ракетам, в том числе авиационным: “Комета”, “Щука-А”, “Шука-Б” и берегового базирования “Шторм”. Работы начались сразу в нескольких конструкторских бюро, возглавляемых А.И. Микояном, М.В. Орловым, М.Р. Бисноватом, А.А. Викторовым, М.П. Петелиным, М.М. Бондарюком и другими. Эти работы завершились принятием на вооружение Военно-воздушных сил противокорабельной ракеты “Комета”. В качестве самолетов-ракетоносцев использовались тяжелые бомбардировщики Ту-4.
Крылатые ракеты “Щука-А”, “Щука-Б” и “Шторм” прошли этап эскизного проектирования, разработки рабочих чертежей и значительный объем экспериментальной отработки. Однако в 1953 г. работы по этим системам были прекращены, а приоритет отдан ракетной системе “Комета”, на базе которой и был создан первый в ВМФ ракетный комплекс берегового базирования “Стрела”, принятый на вооружение в 1955 г. Следует отметить, что, несмотря на прекращение работ по ракетам “Щука” и “Шторм”, в процессе их проектирования были найдены оригинальные технические решения по различным элементам.
Так, для ракеты “Щука-Б” впервые была спроектирована радиолокационная активная головка самонаведения, для ракеты “Шторм” были разработаны для экспериментальной отработки радиолокационная и телевизионные головки самонаведения. Для авиационных ракет предусматривалась мощная боевая часть с подводным участком траектории перед целью.
Анализ комплекса геодезических работ
В первой главе данной дипломной работы рассмотрены вопросы проектирования и строительства инженерных сооружений. Раскрыт состав геодезических работ. На примере данного объекта рассмотрен комплекс инженерно-геодезических изысканий. Затронут вопрос геодезического контроля и ...
Оригинальной была конструктивная схема ракеты “Шторм” — в камере сгорания маршевого прямоточного дозвукового воздушно-реактивного двигателя располагался стартово-разгонный двигатель, который после завершения своей работы выбрасывался и сразу начинал работать маршевый (главные конструкторы М.М. Бондарюк и И.И. Картуков).
Более чем 20 лет спустя эта компоновочная схема была повторена на новом техническом уровне для сверхзвуковых ракет с прямоточными двигателями.
В середине 50-х годов на основе накопленного опыта проектирования и отработки первых образцов ракет были развернуты опытно-конструкторские работы по нескольким комплексам противокорабельных крылатых ракет с различными тактико-техническими характеристиками.
Для вооружения модернизируемых эскадренных миноносцев проекта 56М и первых ракетных кораблей проекта 57-бис в 1953-1957 гг. был разработан, испытан и принят на вооружение ракетный комплекс с крылатой ракетой КСЩ. Корабельный комплекс с ракетой КСЩ был создан под руководством М.В. Орлова и явился первым серийным комплексом, известным не только у нас, но и за рубежом. Ракета имела самолетную схему, маршевый турбореактивный и твердотопливный стартово-разгонный двигатели. Конструктивная особенность ракеты — ее отделяемая боевая часть, имеющая обтекаемую гидродинамическую форму, которая приводнялась за 10-20 м до цели и далее двигалась по инерции под водой до встречи с ней. Старт ракеты производился с наводящейся пусковой установки с удлиненными направляющими. Управление ракетой на траектории осуществлялось автопилотом до момента обнаружения цели бортовой активной радиолокационной головкой, после чего ракета переходила в режим самонаведения на цель.
В конструкторском бюро, возглавляемом Генеральным конструктором, будущим академиком В.Н. Челомеем (ОКБ-52. позднее НПО “Машиностроение”), началась разработка сразу двух комплексов противокорабельных ракет большой дальности, обеспечивающих загоризонтное положение целей: П-6 — для вооружения атомных и дизельных подводных лодок и П-35 -для вооружения ракетных крейсеров проекта 58 “Грозный”, а затем и береговых стационарных и подвижных установок. Необходимо заметить, что вооруженные именно этими ракетами подводные лодки и надводные корабли ВМФ стали в 60-х годах той реальной силой, которая была противопоставлена угрозе со стороны авианосных ударных группировок США и других стран НАТО.
В машиностроительном конструкторском бюро “Радуга” в 1955-1960 гг. был создан комплекс для ракетных катеров П-15 ближнего действия (главный конструктор А.Я. Березняк, главный конструктор комплекса ракетных катеров проектов 183 и 205, известный судостроитель Е.И. Юхнин).
Крылатая ракета П-15 отличалась сравнительно небольшими массогабаритными характеристиками, что и позволило разместить ее на кораблях малого водоизмещения. На ракете использовался жидкостно-реактивный двигатель конструкции А.М. Исаева, работающий на углеводородном горючем ТГ-02 и окислителе — азотной кислоте. Впервые был осуществлен старт ракеты с “нулевых” направляющих, длина которых не превышала стартовую длину ракеты.
Автономная система управления включала автопилот, высотомер и активную радиолокационную головку самонаведения, разработанную в ОКБ-41 под руководством Н.Е. Наумова; радиовысотомер создавался в КБ “Деталь” главным конструктором В.С. Фоминым, который впоследствии возглавлял разработку радиовысотомеров для всех морских ракет. Ракета имела мощную фугасную боевую часть, достаточную для поражения даже крупного корабля при одном попадании. Высокие боевые и эксплуатационные качества, а также надежность ракет П-15 послужили основанием для их широкого внедрения не только в отечественном ВМФ, но и на флотах стран Варшавского Договора и других стран. Дальнейшая модификация этих катеров — катер проекта 205.
Реферат ракетные системы
... КР, размещением на носителе самих ракет и их автоматизированной системы управления и т.д. Проектирование комплекса П-5 базировалось на ... И.Ю. Кривцов). Основные этапы функционирования системы управления сводились к следующему. По данным целеуказания о координатах цели и ПЛ ... “Машиностроение” для ВМФ была поручена разработка двух первых ракетных комплексов загоризонтного поражения целей - П-6 и П-35. ...
На базе ракеты П-15 в конце 60-х годов был разработан модернизированный пакетный комплекс. Ракеты П-15(У) этого комплекса имели более совершенную бортовую систему управления (другой диапазон частот, скрытое сканирование).
Была разработана новая радиолокационная станция (РЛС) целеуказания и введен автоматический предстартовый контроль ракет. Кроме того, был разработан вариант ракеты с головкой самонаведения, которая создавалась в ЦНИИ “Альтаир” под руководством М.П. Петелина. Применение на ракете складывающегося крыла позволило уменьшить габариты пусковых установок, увеличить боекомплект и улучшить размещение ракет на носителях.
В 1971-1978 гг. на базе ракет П-15 был создан мобильный береговой ракетный комплекс “Рубеж”. Спаренная пусковая установка с аппаратурой предстартовой подготовки и радиолокационной станцией обнаружения надводных целей размещалась на автомобильном шасси, на таком же шасси располагались обеспечивающие системы и системы управления. Это придавало полную автономность береговым ракетным частям с комплексом “Рубеж” на необорудованном побережье. Комплекс также пользовался спросом на международном рынке вооружений и поставлялся в дружественные развивающиеся страны. Активное участие в отработке комплексов с ракетами П-15 принимали специалисты Института вооружения С.Н. Бирон, Р.В. Тихановский, В.М. Егоров.
Выдающиеся научно-технические достижения кооперации разработчиков во главе с КБ “Радуга” — создание во второй половине 70-х — начале 80-х годов сверхзвуковой низковысотной противокорабельной ракеты “Москит”. Главным конструктором комплекса был видный конструктор ракетной техники И.С. Селезнев. На этой противокорабельной ракете впервые применен малообъемный прямоточный воздушно-реактивный двигатель, который обеспечил высокую сверхзвуковую скорость полета (>2М) на низких высотах. Разработан он под руководством главного конструктора В.Г. Степанова. Двухканальная активно-пассивная радиолокационная головка самонаведения и система приборов управления были созданы в НПО “Альтаир” под руководством главного конструктора С.А. Климова и Ю.В. Молодыка. В создании, испытаниях и освоении комплекса “Москит” активное участие принимали конструкторские коллективы Н.К. Цикунова, И.И. Картукова, ведущие специалисты от промышленности и флота — Д.А. Асеев, И.А. Артеменко, Ю.Д. Новиков, В.А. Бирулин, П.И. Сухов и другие.
В начале 80-х годов комплекс “Москит” был принят на вооружение эскадренных миноносцев типа “Современный”, малых ракетных кораблей, кораблей экранопланов. По своим боевым и техническим характеристикам он превосходит все известные противокорабельные ракеты средней дальности.
Противокорабельные ракеты обладают большой разрушительной силой, которая достигается, прежде всего, мощной боевой частью и в меньшей степени кинетической энергией, высвобождаемой в момент встречи ракеты с целью. В решении этих проблем участвовали академики М.А. Лаврентьев, М.А. Садовский, В.А. Легасов. В конструкторских и исследовательских организациях, таких, как ЦНИИХМ, НИИМАШ, НПО “Алтай”, НПО “Поиск” и др., под руководством И.П. Кучеренко, И.И. Томашевича, Ю.Г. Витковского, А.А. Нерченко, В.А. Авеняна, Д.И. Мацукова, В.С. Волкова и других конструкторов были созданы оригинальные боевые части с использованием мощных взрывчатых составов — фугасные, фугасно-кумулятивные, проникающие и др. В их отработке, испытаниях и освоении активное участие принимали М.К. Агапов, И.И. Томилов, И.А. Никольский, А.Г. Пронозов, М.Д. Яковлев и другие специалисты.
Радиолокационные системы и средства помехозащиты
... помех могут устанавливаться на самолетах, воздушных шарах, ракетах, кораблях, на земле, а также могут выбрасываться на поплавках в море или на парашютах на территорию противника ... несколько принятых в радиолокации систем координат. В зависимости от выбора системы координат, будут ставиться задачи об определении тех или иных параметров цели. Например, в земной сферической системе координат параметрами ...
В настоящее время Российский флот обладает противокорабельными ракетами большой, средней и малой дальности, надводным и подводным стартом. Вооружаются ими корабли различных классов — от ракетных катеров до надводных и подводных ракетных крейсеров.
Системы целеуказания противокорабельным ракетам
Для обеспечения боевого применения ракет важное значение имеют обеспечивающие системы, и, прежде всего системы разведки и целеуказания. Разработка таких систем требует решения очень сложных научно-технических
Уже на первых этапах создания противокорабельных ракет разрабатывались и системы целеуказания. Для дистанций в пределах радиогоризонта это были собственные корабельные радиолокационные и радиотехнические станции, гидроакустические системы подводных лодок. На больших же расстояниях стали применяться выносные — прежде всего самолеты и вертолеты разведки и целеуказания.
В начале 60-х годов на базе самолетов разведчиков Ту-95РЦ и Ту-16РЦ была создана морская радиолокационная система разведки и целеуказания — МРСЦ-1 “Успех” для обеспечения стрельбы ракетами П-6 и П-35. Головным разработчиком системы был Киевский НИИ “Квант”, главный конструктор И.В. Кудрявцев. В системе были применены оригинальные технические решения по авиационной радиолокационной станции кругового обзора, системе трансляции информации на приемные корабельные пункты, системе привязки координат разведчика и носителя ракет и др. Позднее подобная аппаратура была установлена на вертолетах, в том числе и корабельного базирования Ка-25РЦ. Система МРСЦ-1 могла обеспечить данными целеуказания для стрельбы на дальность несколько сот километров. Более подробно о возможностях этой системы излагается в разделе VII.
Одновременно была начата разработка еще более смелого проекта — системы разведки и целеуказания с использованием искусственных спутников Земли. В середине 70-х годов она была успешно завершена, и на вооружение ВМФ была принята система морской космической разведки и целеуказания (МКРЦ) “Легенда”.
По существу ракетные подводные лодки и надводные корабли с комплексами противокорабельных ракет П-6 и П-35, объединенные информационно-техническими связями и единым управлением с системами целеуказания МРСЦ-1 “Успех” и МКРЦ “Легенда”, представляли собой первые разведывательно-ударные системы ВМФ.
Зенитное ракетное вооружение
Увеличение скорости и маневренности самолетов
Формирование целей системы управление персоналом
... формирование целей системы управления персоналом» Таким образом, целью данной работы является исследование целей системы управления персоналом и ... управления персоналом, - это системное, планомерно организованное воздействие с помощью взаимосвязанных организационно-экономических и социальных мер на процесс формирования, распределения, перераспределения рабочей силы на уровне предприятия, на создание ...
Обоснование тактико-технических требований и практических путей создания корабельных зенитных ракетных комплексов было выполнено специалистами ВНИИ № 10 (впоследствии научно-производственное объединение “Альтаир”) Министерства судостроительной промышленности и НИИ № 4 Военно-Морского Флота (впоследствии Институт вооружения ВМФ).
Разработка первого в стране зенитного ракетного комплекса (ЗРК), получившего наименование “Волна”, была поручена НИИ-10. Работы по его созданию возглавил И.А. Игнатьев (главный конструктор), имевший к тому времени большой опыт разработки радиолокационной аппаратуры. Для создания комплекса была сформирована кооперация научных и проектно-конструкторских организаций и построен испытательный полигон ВМФ.
В процессе создания комплекса было найдено немало оригинальных решений сложных технических проблем: генерирования, приема и канализации радиоволн сантиметрового диапазона по длинным волноводам; обеспечения устойчивости работы генераторов СВЧ-сигналов и радиолокационной аппаратуры в условиях корабельной вибрации и качки; обработки радиолокационных сигналов и использования их для решения задач стрельбы. Это потребовало разработки новых ферритовых циркуляторов, волноводных переключателей, вращающихся переходов и волноводных поворотных устройств.
Большую сложность представляла разработка антенного поста, который с помощью размещенных на общем основании пяти антенн должен был обеспечить одновременное сопровождение цели, визирование двух ракет в вертикальной и горизонтальной плоскостях и передачу на ракеты радиокоманд. Основной вклад в разработку антенного поста внесли А.А. Романов и Л.С. Мильман.
Впервые в приемных устройствах комплекса “Волна” специалисты НИИ-10 В.С. Острецов, Е.Е. Сарбукова, Г.А. Пасюков применили пакетирование постоянными магнитами в лампах бегущей волны. Это обеспечило высокую, равномерную по всему частотному диапазону чувствительность приемных устройств и их эксплуатационную надежность.
Особое внимание при разработке было уделено точностным характеристикам комплекса и обеспечению надежности автоматического сопровождения низколетящих целей, что представляло сложную научную и техническую проблему. Эту проблему успешно решили А.М. Скоробогачев, Ю.М. Бабкин, С.Г. Шойхет. Группой специалистов под руководством доктора технических наук В.И. Тумаркина были разработаны новые методы наведения ракет. Зенитная управляемая ракета (ЗУР) для комплекса “Волна” разработана ОКБ-2 (впоследствии МКБ “Факел” Министерства авиационной промышленности СССР) под руководством академика П.Д. Грушина и ведущего конструктора И.П. Петровичева. Ракета, созданная для комплекса “Волна”, явилась первой ЗУР на твердом топливе. Созданием двигательных установок ракеты руководил В.Г. Светлев (позднее генеральный конструктор предприятия).
Оперативно-технические ракетные комплексы или полевая ракетная артиллерия
... машина 9В819, машина технического обслуживания 9В844. Ракета комплекса «Точка» («Точка-У») представляет собой управляемую на всём протяжении полёта одноступенчатую твердотопливную баллистическую ракету, состоящую из ракетной части 9М79 ... осколков — 14,5 тыс. Площадь поражения — 2−3 га. При подлёте к цели ракета совершает доворот (по углу тангажа), чтобы обеспечить угол встречи заряда с ...
Ракета обладала высокой маневренностью, управляемостью и устойчивостью, в чем несомненная заслуга специалистов по аэродинамике и баллистике Б.Д. Пупкова, Е.Н. Панкова. В.А. Егорова, И.М. Фомичева, И.И. Архангельского, Е.С. Иофинова.
Корабельная пусковая установка разработана ЦКБ-7 Министерства общего машиностроения СССР под руководством главного конструктора П.А. Тюрина. Она представляла собой спаренную стабилизированную установку тумбового типа с нижней подвеской ракет на направляющих балках и с барабанной системой их хранения. Стабилизация пусковой установки осуществлялась разработчиками впервые в морской практике.
Всесторонние испытания комплекса подтвердили его высокую эффективность поражения одиночных самолетов и крылатых ракет на дальностях до 15 км и высотах полета до 10000 м. В последующие годы под руководством главного конструктора С.А. Фадеева комплекс “Волна” неоднократно модернизировался, что позволило увеличить дальность и высоту стрельбы в 1,5 раза, повысить помехозащищенность комплекса и обеспечить поражение целей, летящих на предельно малых высотах. Принципы построения, научные и технические решения, реализованные в комплексе “Волна”, стали основополагающими и впоследствии неоднократно использовались при разработке других стрельбовых комплексов для ВМФ.
Комплекс “Волна”, хотя и отвечал основным требованиям, предъявляемым к зенитному оружию ближнего действия, тем не менее, имел недостаточные дальность и высоту поражения для обеспечения эффективной зональной обороны надводных кораблей. Наряду с возрастанием скорости и маневренности средств воздушного нападения (СВН) к концу 60-х годов произошло существенное повышение высоты их полета. Поэтому по тактико-техническому заданию ВМФ ВНИИ “Альтаир” был разработан новый ЗРК, получивший наименование “Шторм”. Коллектив разработчиков комплекса возглавил главный конструктор Г.Н. Волгин. Для выполнения более высоких требований по дальности и помехозащищенности разработчикам комплекса “Шторм” пришлось изыскивать новые технические решения. Были разработаны генераторы СВЧ большой мощности в импульсе и применен моноимпульсный метод пеленгации целей в каналах сопровождения, работающих в различных диапазонах волн, что обеспечило невозможность одновременного подавления двух целевых каналов прицельной и скользящей импульсной помехой большой мощности.
Большие технические трудности преодолены разработчиками при создании бортовой аппаратуры ракеты. Был проведен целый ряд исследований по определению затухания радиосигналов в факеле работающего двигателя и связанных с этим нежелательных флюктуаций сигналов. Исследования проводились на специально разработанной для этого аппаратуре — при отжигах двигателей на земле и при пусках ракет. Основной вклад в создание комплекса “Шторм” внесли ведущие специалисты ВНИИ “Альтаир”: Ю.П. Гусев, В.Д. Немцов, Н.И. Морозов, И.Л. Черняк, К.Л. Грабовецкий, А.П. Виленский, А.С. Евстигнеев, Е.Ф. Глаголев, Н.А. Макарова и др.
С принятием на вооружение Военно-Морского Флота зенитного ракетного комплекса “Волна”, а затем и более совершенного комплекса — «Шторм”, с повышенной дальностью стрельбы, эффективность противовоздушной обороны и боевая устойчивость корабельных соединений в море существенно повысились. Однако при групповых налетах средств воздушного нападения возможность прорыва самолетов и ракет через систему противовоздушной обороны соединения к отдельным кораблям все же не исключалась. В этих условиях каждому кораблю для своей защиты требовалось иметь свое оружие самообороны. Это оружие должно было обладать высокими тактико-техническими характеристиками, быть автономным в использовании (иметь в своем составе собственные радиолокационные и оптические средства обнаружения), обладать высокой готовностью к открытию огня и приемлемыми массогабаритными характеристиками для размещения на кораблях различного водоизмещения.
Проект твердотопливной ракеты
... от требований, предъявляемых к ракетному комплексу в целом. Поэтому необходимо определить понятие ракетного комплекса. В дипломной работе под ракетным комплексом понимается совокупность ракет, пусковых установок, наземной аппаратуры ... борта корабля, а при исследовании штатных пусковых сооружений и подводных лодок — из-под Земли или из-под воды. Целями при пуске управляемых баллистических ракет ...
В связи с тем, что задача отражения средств воздушного нападения в ближайшей зоне стояла и перед противовоздушной обороной войсковых объектов армии, тактико-технические требования на разработку первого зенитного ракетного комплекса самообороны были выданы единые — от Сухопутных войск и Военно-Морского Флота.
Кооперацию научно-исследовательских и проектно-конструкторских предприятий возглавил Научно-исследовательский электромеханический институт (НИИЭИ) под руководством В.П. Ефремова, а по морскому варианту комплекса — КБ завода “Радуга”, возглавляемое Н.И. Ермоловым. При создании комплекса самообороны, получившего наименование “Оса” (морской вариант “Оса-М”), были реализованы новейшие достижения науки и техники. По своим характеристикам он не уступал лучшим зарубежным образцам. Большой вклад в разработку комплекса внесли Б.3. Белокриницкий, А.К. Ботвинов, Г.И. Банников, И.М. Дризе, Г.А. Карш, В.В. Курбесов, М.А. Липатов, О.А. Перфильев, А.М. Старковский и др.
Принятием на вооружение Военно-Морского Флота комплекса самообороны “Оса-М” завершился цикл работ по созданию первого поколения зенитного ракетного оружия кораблей. В создании этого оружия и проверке его соответствия требованиям тактико-технических заданий активное участие принимали специалисты НИИ и НИЦ ВМФ: О.К. Воронин, Д.П. Козлов, Е.И. Мревлов, В.М. Курлянец, В.А. Токмачев, Н.А. Черненко, Е.Л. Бартель, В.М. Горюнов, Е.С. Сергеев, Г.П. Андреев, Г.И. Берлин, В.С. Краснокутский, В.Г. Марьин и др.
К началу 70-х годов резко возрастают возможности СВН по осуществлению массированных ударов по кораблям в море в широком диапазоне высот и скоростей полета. Находящиеся в то время на вооружении надводных кораблей Военно-Морского Флота зенитные ракетные комплексы “Волна”, “Шторм” и “Оса-М” могли обеспечить достаточно высокую боевую устойчивость кораблей только при отражении атак одиночных или небольших групп самолетов и управляемых ракет. К тому же эффективность их при отражении атак воздушных целей, имеющих сверхзвуковую скорость, а также летящих на предельно малых высотах, резко падала. Необходимо было решить целый комплекс новых задач по точному определению координат воздушной цели в условиях интенсивного отражения радиолокационных сигналов от поверхности воды. Указанные обстоятельства обусловили необходимость разработки новых огневых средств противовоздушной обороны кораблей и, прежде всего ее основы — зенитного ракетного вооружения. Перед коллективом “Альтаир” была поставлена задача создания принципиально нового универсального ЗРК, способного отражать массированные удары различных СВН на предельно малых высотах с любого направления, а также поражать и надводные цели.
Исследования специалистов НИИ ВМФ и промышленности В.А. Ивченко, П.А. Танина, Н.В. Чурилина, Б.В. Дьякова, Б.М. Палладина, Б.Д. Пупкова, В.И. Тумаркина, В.Л. Ришина и др. показали, что высокоэффективная противовоздушная оборона соединения надводных кораблей может быть достигнута путем создания системы ЗРВ, включающей зенитные ракетные комплексы коллективной обороны (большой и средней дальности) и самообороны (малой дальности и ближайшего рубежа), которые должны быть многоканальными, т.е. обеспечивать одновременный обстрел нескольких целей. Разработка теории многоканальных корабельных ЗРК проводилась в различных направлениях. Развитие этих направлений и их реализация завершились созданием комплексов “Штиль” и “Клинок” и зенитного ракетно-артиллерийского комплекса “Каштан”.
Многие принципиально новые решения были получены благодаря усилиям таких организаций, как Институт вооружения ВМФ, обосновавший требования к основным элементам комплекса; ОКБ-2, обосновавшее возможность создания новой ракеты; ОКБ завода “Большевик”, обосновавшее возможность построения корабельных пусковых установок с вертикальным подпалубным стартом ракет, и были положены в основу создания отечественного корабельного многоканального зенитного ракетного комплекса “Риф”. В процессе создания этого комплекса коллективом разработчиков сделан ряд изобретений, опередивших зарубежные конструкторские решения. По своим характеристикам созданный комплекс превосходит известные зарубежные системы аналогичного назначения.
Комплекс принят на вооружение атомных крейсеров проекта 1144, а также установлен на кораблях проекта 1164 и успешно эксплуатируется в ВМФ. В создании комплекса большую роль сыграли заместители главного конструктора Б.М. Палладии, О.М. Гиндлин, а также Н.Д. Горман, О.Я. Чивилев, Е.А. Титов, В.М. Колосов, А.В. Давыдов, Г.И. Молчанов и другие специалисты, возглавлявшие технические направления. За корабельный универсальный комплекс “Риф” в 1984 г. главному конструктору В.А. Букатову присуждена Ленинская премия. Отработкой и всеми видами испытаний комплекса на кораблях руководили Б.М. Палладии, А.П. Ежов, Л.Б. Масленников, В.Ф. Измайлов.
В ЗРК “Риф” впервые в морской практике создания корабельного зенитного ракетного оружия были разработаны и внедрены пусковые установки с вертикальным подпалубным стартом ракет с помощью катапультных устройств из герметичных транспортно-пусковых контейнеров с последующим запуском двигателей в полете. Благодаря использованию вертикального старта обеспечивается высокая огневая производительность комплексов и исключаются ограничения по обстрелу целей в любом направлении, накладываемые взаимным расположением пусковых установок и корабельных
ЗРК “Клинок” (главный конструктор С.А. Фадеев) по основным принципам построения аналогичен ЗРК “Риф”. Для его создания понадобилось провести большой объем теоретических исследований, позволивших принять неординарные решения. Для сопровождения целей, захвата ракет в непосредственной близости от корабля и их последующего сопровождения была создана оригинальная антенная система из комбинации антенных решеток: основная фазированная антенная решетка (ФАР) обеспечивает допоиск и сопровождение целей и наведение на них ракет, две другие фазированные антенные решетки предназначены для захвата ответного сигнала стартовавшей ракеты на начальном участке полета и вывода ее на кинематическую траекторию. Отличительной особенностью передающего устройства ЗРК “Клинок” является его поочередная работа в целевом и ракетных каналах. В зависимости от режима работы меняются частоты посылок и длительность импульсов. Ряд оригинальных решений найден при создании моноимпульсных приемных устройств в целевых каналах и квазимоноимпульсных — в ракетных комплексах. Для поражения целей, летящих на предельно малых высотах, т.е. в условиях мешающего влияния водной поверхности, разработчиками ЗРК “Клинок” приняты специальные меры. Схема построения ЗРК “Клинок” обеспечивает (с помощью собственного цифрового вычислительного комплекса) работу в различных режимах, в том числе в полностью автоматическом режиме. В последнем после обнаружения цели все операции — взятие целей на сопровождение стрельбовыми каналами, выработка данных для стрельбы, пуск и наведение ЗУР, оценка результатов стрельбы и перенос огня на другие цели — производятся автоматически.
Общее руководство всем процессом разработки комплекса “Клинок” в организационно-техническом плане осуществляли генеральный конструктор ЗРК надводных кораблей Л.Б. Масленников и генеральный директор НПО “Альтаир” В.Ф. Измайлов. Основной вклад в идеологию построения комплекса и реализацию его характеристик внес главный конструктор С.А. Фадеев. В создании комплекса принимали участие ведущие специалисты ВНИИ “Альтаир”: В.И. Тумаркин, В.Д. Немцов — по методам наведения ракеты; М.А. Липатов — по методам обработки радиолокационных сигналов; Е.Л. Назаров — по конструкции антенного поста; Э.В. Романова — по математическому обеспечению; М.Ф. Виноградов и Г.А. Пасюков — по приемным устройствам сигналов и ракет; В.П. Каменев — по передающим устройствам; В.И. Алексеев — по устройствам отображения информации и др.
Зенитные управляемые ракеты для комплексов “Риф” и “Клинок” разработаны Машиностроительным конструкторским бюро (МКБ) “Факел” под руководством академика П.Д. Грушина. В создании и отработке ракет участвовал большой коллектив специалистов МКБ “Факел”: И.И. Архангельский, Е.С. Иофинов, В.М. Грищук, В.Я. Мизрохи, Е.И. Афанасьев, Ю.В. Крестешников, М.Ф. Коняшин, В.В. Курбесов, Г.П. Банников, Л.Ф. Тютин и др.
Поиск других путей создания корабельных многоканальных ЗРК завершился созданием комплексов “Штиль” (главный конструктор Г.Н. Волгин) и “Каштан” (главный конструктор А.Г. Шипунов).
Основными преимуществами многоканального ЗРК “Штиль” являются:
- способность комплекса выполнять все операции по обстрелу целей (наведение пусковых установок, выдача ракетам полетных заданий, выработка пуска ракет, наведение антенн подсвета целей), получая информацию о положении целей непосредственно от общекорабельных трехкоординатных РЛС обнаружения и целеуказания;
- организация работы всех каналов подсвета целей от общего задающего генератора, что обеспечило принципиальную возможность реализации многоканальной структуры комплекса и полное решение проблемы электромагнитной совместимости большого количества комплекса при плотном размещении его оборудования на корабле;
- регулируемая ширина диаграммы направленности антенн подсвета целей, что позволило обеспечить устойчивый подсвет целей и достигнуть высокой надежности и точности полуактивного самонаведения ракет.
Наряду с этим при создании комплекса “Штиль” был реализован ряд других новых технических решений, к которым относятся:
- модульное построение комплекса в целом и его основных устройств, позволившее иметь различные комплектации на кораблях (в зависимости от проекта) и максимально использовать боевые возможности комплекса;
- генерирование направленного излучения непрерывного когерентного радиолокационного сигнала подсвета целей в корабельных условиях с помощью компактных антенных постов.
В создании комплекса “Штиль” принимали участие А.С. Евстигнеев, Ю.И. Захаров, Н.А. Макарова, Е.Ф. Глаголев, Н.М. Грязнов, В.С. Баранов, Н.В. Алексеев, Н.И. Кузнецов и др. В ЗРК “Штиль”, установленном на эсминце проекта 956, использована унифицированная для Сухопутных войск и Военно-Морского флота ракета, разработанная Свердловским машиностроительным конструкторским бюро “Новатор” под руководством главного конструктора Л.В. Люльева. В разработке ракеты принимали участие П.И. Камнев, А.Н. Афанасьев, И.Г. Акопян (главный конструктор головки самонаведения), Г.Ф. Дубовой и другие.
Принятое структурное построение комплекса “Штиль” в целом и техническая реализация его составных элементов обеспечивают возможность (по мере роста характеристик средств нападения) наращивать боевые возможности комплекса либо путем поэтапной модернизации информационных систем и отдельных модулей, либо вводом в состав комплекса дополнительных модулей.
Созданием зенитного ракетно-артиллерийского комплекса ближайшего рубежа “Каштан” завершились поисковые работы по третьему направлению исследований возможных принципов построения многоканальных ЗРК и технических путей его реализации. Комплекс “Каштан” разработан Конструкторским бюро приборостроения под руководством видного ученого члена-корреспондента А.Г. Шипунова (позднее академика РАН).
Разработчики комплекса “Каштан” выбрали модульный принцип построения, при котором один командный модуль может сопрягаться с несколькими боевыми модулями. Количество последних определяется требуемой боевой устойчивостью корабля и возможностями размещения того или иного состава боевых модулей на нем.
В командном модуле совмещены автономный режим работы по данным собственной радиолокационной станции обнаружения с приемом информации от различных источников, которые позволили повысить эффективность решения задачи целераспределения в сложных условиях боевой обстановки.
Разработчиками успешно решена также задача эффективного взаимодействия ракетного и артиллерийского вооружения от единой интегрированной системы управления. Ракетную и артиллерийскую установки, антенный пост радиолокатора и устройства телевизионно-оптического визира удалось конструктивно объединить в единую башенную установку боевого модуля.
Сочетание радиолокационной (разработчик ВНИИ “Альтаир”) и телевизионно-оптической (разработчик КБ приборостроения) систем позволяет полностью дублировать процесс управления, что существенно повышает живучесть и помехозащищенность комплекса в целом, а также использовать преимущества каждой системы в отдельности. Радиолокационная система обеспечивает работу независимо от времени суток в широком диапазоне метеоусловий. Телевизионно-оптическая система позволяет получить более высокую точность измерения координат целей, особенно низколетящих, что повышает вероятность их поражения.
Высокие точностные характеристики радиолокационных средств в сочетании с жесткими требованиями к массогабаритным характеристикам, как показали исследования, могли быть реализованы только при использовании малоосвоенного диапазона миллиметровых волн. Выбор этого диапазона требовал освоения в электронной промышленности целого ряда СВЧ-приборов, в том числе разработки нового высокостабильного магнетрона коаксиального типа. В разработку комплекса “Каштан” большой вклад внесли Л.Б. Битман, П.С. Комонов, С.А. Климов, О.В. Гудков, В.И. Гузь, А.И. Емец, А.Г. Жуков, А.О. Королев и другие.
Принятием на вооружение Военно-Морского флота комплекса самообороны “Клинок” и комплекса ближайшего рубежа “Каштан” завершился цикл работы по созданию второго поколения зенитного ракетного оружия надводных кораблей, в которых активное участие принимали специалисты ВМФ: В.Т. Ященко, Г.И. Берлин, В.М. Евгеньев, В.Ф. Варганов, Г.А. Полозов, В.М. Курлянец, В.С. Краснокуцкий, А.П. Семенюк, Г.А. Павлов, Ю.П. Беляев, Н.П. Сечкарев, А.Л. Валюженич, В.Л. Дымнич, А.А. Кондратьев, В.А. Кулик, А.П. Шаронов и другие.
Создание высокоэффективных корабельных комплексов зенитного ракетного вооружения, не уступающих по своим боевым возможностям лучшим зарубежным образцам, стало возможным только благодаря достижениям нашей отечественной науки и непосредственному участию в разработках видных ученых и деятелей науки П.Д. Грушина, Б.В. Бункина, В.П. Ефремова, А.Г. Шипунова и других.
Интересы защиты кораблей ВМФ от перспективных средств воздушного нападения требуют постоянного совершенствования оружия их поражения, что предопределяет необходимость дальнейших фундаментальных исследований и прикладных разработок для создания научно-технического задела, использование которого смогло бы обеспечить своевременную разработку новых образцов зенитных ракетных систем.
Противолодочные ракеты
Появление в составе флотов ведущих мировых держав подводных лодок с атомной энергетикой, быстрый рост их тактико-технических характеристик (скорости, глубины погружения, скрытности, эффективности наступательного и оборонительного оружия) обусловило расширение поисковых работ по совершенствованию противолодочного оружия. В ВМФ в начале 50-х годов была создана первая противолодочная самонаводящаяся торпеда СЭТ-53, предназначенная для вооружения подводных лодок и надводных кораблей.
В начале 60-х годов завершилась разработка новых реактивных установок РБУ-6000 и РБУ-1000 системы “Смерч” для надводных кораблей различных классов. В то же время происходило развитие гидроакустических средств обнаружения подводных и надводных целей, возрастали дальности взаимного их обнаружения. Это обусловило тенденцию значительного увеличения дистанции противолодочных атак. Задачу поражения подводных лодок на больших расстояниях и в кратчайшее время могли обеспечить специальные противолодочные ракеты.
Первый комплекс противолодочных ракет РПК-1, поступивший на вооружение противолодочных авианесущих крейсеров “Москва” и “Ленинград”, был с неуправляемой баллистической твердотопливной ракетой. В него входили спаренная пусковая установка и система управления, которая вырабатывала исходные данные для стрельбы по целеуказанию от собственной корабельной гидроакустической станции или от противолодочных вертолетов. Поражение подводных лодок обеспечивалось специальной боевой частью на дистанциях от 10 до 28 км и на любых глубинах. Главным конструктором комплекса был Н.П. Мазуров.
В 60-е годы для вооружения многоцелевых и ракетных подводных лодок был создан противолодочный ракетный комплекс РПК-2. Головным разработчиком комплекса являлось Свердловское машиностроительное конструкторское бюро “Новатор”, которое возглавлял Л.В. Люльев.
Твердотопливная баллистическая ракета стартовала из торпедных аппаратов калибра 534 мм с глубины до 50 м двигалась на подводном участке и в воздухе под маршевым двигателем. В конце воздушного активного участка производилось “обнуление” тяги маршевого двигателя и далее, после пассивного участка траектории, ракета вместе со специальной боевой частью заглублялась и на заданной глубине происходил взрыв.
Систему управления разрабатывал конструкторский коллектив под руководством А.С. Абрамова. Автономная инерциальная система управления осуществляла стабилизацию и движения ракеты по заданной траектории на всех ее участках.
Оригинальными были на ракете решетчатые рули-стабилизаторы, раскрывающиеся после вы хода ракеты из торпедного аппарата. Дальность стрельбы РПК-2 составляла от 10 до 40 км. Целеуказание обеспечивалось от гидроакустического комплекса подводной лодки.
В 70-80-е годы этой же кооперацией разработчиков был создан более совершенный комплекс с противолодочными ракетами, также стартующими из-под воды из торпедных аппаратов подводной лодки. Вскоре такой комплекс стал устанавливаться на надводных кораблях. В процессе создания таких комплексов разработчикам пришлось решать сложные научно-технические проблемы, связанные с ударостойкостью аппаратуры и управлением на столь сложной траектории: подводный участок — активный воздушный участок — отделение торпеды — парашютирование — приводнение — заглубление — поиск целей по программе — захват цели и самонаведение.
В качестве головной части в них использовалась малогабаритная самонаводящаяся торпеда разработки НПО “Уран” под руководством Главного конструктора В.А. Левина, с активно-пассивной гидроакустической системой самонаведения. Разнообразие условий движения, ударных и вибрационных перегрузок предопределил увеличенный объем экспериментальных работ и опытных пусков ракет, прежде чем комплекс был принят на вооружение ВМФ.
В начале 70-х годов на вооружение больших противолодочных кораблей был принят ракетный комплекс УРПК-З с крылатой ракетой, несущей в качестве боевой части также малогабаритную противолодочную самонаводящуюся торпеду.
Ракета этого комплекса после старта с помощью радиокоманд в режиме телеуправления выводилась в точку прицеливания над отслеживаемой целью, где и производилось отделение торпеды. В последующем на ракете была установлена и радиолокационная система самонаведения для поражения надводных целей без отделения торпеды.
Головным разработчиком этих комплексов было машиностроительное КБ “Радуга” (главные конструкторы А.Я. Березняк, И.С. Селезнев).
Система управления создавалась в ВНИИ “Альтаир” — главный конструктор Г.Н. Волгин, торпеды — в НПО “Уран” — главный конструктор В.С. Осипов. Активное участие в отработке, испытаниях и освоении ракетных противолодочных комплексов принимали участие специалисты ВМФ А.Г. Побережский, В.И. Леонов, Ю.С. Митяков, В.Н. Панферов и др.
Стремление обеспечить преимущество в борьбе за первый поражающий залп привело к еще одному уникальному техническому направлению в подводном оружии: в 70-х годах на вооружение многоцелевых подводных лодок ВМФ была принята подводная ракета, или, как ее называли вначале, ракетоторпеда, с невиданной доселе скоростью — 200 уз (100 м/с).