Термодинамические процессы

Реферат

Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.

Компонентами любой тепловой машины являются рабочее тело, нагреватель и холодильник (с помощью которых меняется состояние рабочего тела).

термодинамический КПД водяной пар газ

Обратимым

термодинамические циклы

Для того, чтобы управлять состоянием рабочего тела, в тепловую машину входят нагреватель и холодильник. В каждом цикле рабочее тело забирает некоторое количество теплоты () у нагревателя и отдаёт количество теплоты холодильнику. Работа, совершённая тепловой машиной в цикле, равна, таким образом,

так как изменение внутренней энергии в круговом процессе равно нулю (это функция состояния).

Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.

При этом нагреватель потратил энергию . Поэтому тепловой, или, как его ещё называют, термический или термодинамический коэффициент полезного действия тепловой машины (отношение полезной работы к затраченной тепловой энергии) равен

Вычисление работы и КПД в термодинамическом цикле

Работа в термодинамическом цикле, по определению, равна

где — контур цикла.

C другой стороны, в соответствии с первым началом термодинамики, можно записать

Аналогичным образом, количество теплоты, переданное нагревателем рабочему телу, равно

Отсюда видно, что наиболее удобными параметрами для описания состояния рабочего тела в термодинамическом цикле служат температура и энтропия.

Цикл Карно и максимальный КПД тепловой машины

Цикл Карно в координатах T и S

Представим себе следующий цикл:

  • Фаза А>Б

Фаза Б>В

Фаза В>Г

Фаза Г>А

Его КПД равен, таким образом,

то есть, зависит только от температур холодильника и нагревателя. Видно, что 100%-ный КПД можно получить только в том случае, если температура холодильника есть абсолютный нуль, что недостижимо.

Можно показать, что КПД тепловой машины Карно максимален в том смысле, что никакая тепловая машина с теми же температурами нагревателя и холодильника не может обладать большим КПД.

Заметим, что мощность тепловой машины Карно равна нулю, так как передача тепла в отсутствие разности температур идёт бесконечно медленно.

Рабочее тело, Рабочее тело

На практике рабочим телом тепловых двигателей являются продукты сгорания углеводородного топлива (бензина, дизельного топлива и др.), или водяной пар, имеющие высокие термодинамические параметры (начальные: температура, давление, скорость и т. д.)

7 стр., 3189 слов

Холодильно компрессорные машины и установки

... выбор подшипников. Расчет производительности машины. Область применения холодильных установок. Обслуживание оборудования, холодильно-компрессорных машин и установок в соответствии с ... рабочего вещества: температуры, давления, удельного объема, энтальпии. Холодильные машины работают по принципу теплового насоса — отнимают теплоту от охлаждаемого тела и с затратой энергии (механической, тепловой ...

В холодильных машинах в качестве рабочего тела используются фреоны, аммиак, гелий, водород, азот. (См. Хладагенты)

ракетостроении

В лазерной технике, Схема анализа изменения состояния рабочего тела

При исследовании термодинамических процессов используются уравнение состояния идеальных газов и математическое выражение первого закона термодинамики.

При изучении термодинамических процессов идеальных газов требуется:

1) определить уравнение кривой процесса в pv-диаграмме;

2) установить связь между термодинамическими параметрами;

3) определить изменение внутренней энергии рабочего тела по формуле, справедливой для всех процессов идеального газа,

4) определить величину внешней (термодинамической) удельной работы по формуле

5) определить количество теплоты, участвующей в термодинамическом процессе, по формуле

где c x — теплоёмкость процесса;

6) определить изменение энтальпии в термодинамическом процессе по формуле

7) определить изменение энтропии в термодинамическом процессе по формуле, справедливой для всех процессов идеального газа,

В общем случае любые два термодинамических параметра из трех могут изменяться произвольно. Изучение работы тепловых машин показывает, что наибольший интерес для практики представляют следующие основные процессы: при постоянном объеме ( V=const ); при постоянном давлении (р=const ); при постоянной температуре (Т=const ); при dq=0 (процесс, протекающий без теплообмена рабочего тела с окружающей средой); политропный процесс, который при определенных условиях можно рассматривать в качестве обобщающего по отношению ко всем основным процессам.

Чтобы получить обобщенные и простые формулы, уравнения первого закона термодинамики рассматриваются для 1 кг идеального газа.

Термодинамические процессы в реальных газах и парах. Влажный воздух

Реальные газы отличаются от идеальных газов тем, что молекулы этих газов имеют объемы и связаны между собой силами взаимодействия, которые уменьшаются с увеличением расстояния между молекулами. При практических расчетах различных свойств реальных газов наряду с уравнением состояния применяется отношение P·х/(R·T) = е.

Так как для идеальных газов при любых условиях P х = R·T, то для этих газов е = 1. Следовательно, величина коэффициента е выражает отклонение свойств реального газа от свойств идеального. Величина е для реальных газов в зависимости от давления и температуры может принимать значения больше или меньше единицы и только при малых давлениях и высоких температурах она практически равна единице. Тогда реальные газы можно рассматривать как идеальные.

В связи с отличием свойств реального газа от свойств идеального газа нужно иметь новые уравнения состояния, которые связывали бы значения P, v, T и давали бы возможность рассчитывать некоторые свойства газов для разных условий. Были предложены различные уравнения состояния реальных газов, но ни одно из них не решает проблему для общего случая. Наиболее простое расчетное уравнение имеет вид:

5 стр., 2465 слов

Анализаторы газов и жидкостей

... анализаторы жидкости потенциометрические; анализаторы жидкости - солемеры; анализаторы жидкости амперометрические; анализаторы жидкости кулонометрические; анализаторы жидкости полярографические; анализаторы жидкости механические, звуковые и ультразвуковые; анализаторы жидкости гидромеханические; анализаторы жидкости ротационные; анализаторы жидкости вибрационные; анализаторы жидкости звуковые и ...

х = R·(1 — А/ х — B/ х 2), (1)

где А и В — первый и второй (вириальные) коэффициенты, являющиеся функцией только температуры.

При расчете свойств многих реальных газов уравнения такого типа получили большое распространение. Так, наиболее простым и качественно верно отображающим поведение реального газа, является уравнение, предложенное Ван-дер-Ваальсом:

(P + a/ х 2)·(х — b) = R·T (2),

а, b — постоянные величины, первая учитывает силы взаимодействия, вторая учитывает размер молекул / х 2 — (3)

(3) характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами и называется внутренним давлением. Для жидких тел это давление имеет большие значения (например, для воды при 200С составляет 1050 МПа), а для газов из-за малых сил сцепления молекул оно очень мало. Поэтому внешнее давление, под которым находится жидкость, оказывает ничтожное влияние на её объем, и жидкость считают несжимаемой. В газах в виду малости значения a/ х 2 внешнее давление легко изменяет их объем.

Уравнение Ван-дер-Ваальса качественно верно отображает поведение жидких и газообразных веществ, для двухфазных состояний оно неприменимо.

Одним из наиболее распространенных рабочих тел в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках является водяной пар.

Пар — газообразное тело в состоянии, близком к кипящей жидкости. Парообразование — процесс превращения вещества из жидкого состояния в парообразное.

Испарение — парообразование, происходящее всегда при любой температуре с поверхности жидкости.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Обратный процесс парообразования называется конденсацией. Она также протекает при постоянной температуре.

Процесс перехода твердого вещества непосредственно в пар называется сублимацией. Обратный процесс перехода пара в твердое состояние называется десублимацией.

При испарении жидкости в ограниченном пространстве (в паровых котлах) одновременно происходит обратное явление — конденсация пара. Если скорость конденсации станет равной скорости испарения, то наступает динамическое равновесие. Пар в этом случае имеет максимальную плотность и называется насыщенным паром.

Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым. Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрева. Так как удельный объем перегретого пара больше удельного объема насыщенного пара, то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным паром.

В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуется сухой насыщенный пар. Состояние такого пара определяется одним параметром — давлением.

Механическая смесь сухого пара и мельчайших капелек жидкости называется влажным паром.

8 стр., 3590 слов

Реальные рабочие тела – вода и водяной пар. Параметры и функции ...

... давление пара в перегревателе Р = 130 бар. Выразить Q в МВт и в ккал/ч. Изобразить процесс в T – S и h – S координатах. Задача № 1.1-10. В целях регулирования температуры перегретого пара в смеситель впрыскивается холодная вода. ...

Массовая доля сухого пара во влажном паре называется степенью сухости

х: х = mсп / mвп, (4)

сп — масса сухого пара во влажном; mвп — масса влажного пара. Масса влажного пара состоит из массы сухого пара и массы капелек воды:

вп = mсп + mв (5)

Когда испарятся последние капельки воды, влажный пар становится сухим насыщенным. Согласно последним формулам степень сухости такого пара становится равной единице (х=1).

Изобразим процесс перехода воды в пар на диаграмме P-V (рис 1).

На этой диаграмме каждая точка изображает одно состояние вещества с определенными параметрами Р; V; Т. Пусть точка А определяет начальное состояние воды (удельный объем Vo, давление Ро, температуру То).

Так как вода практически не сжимаема, то увеличение давления в жидкости до Ра практически не изменит её удельный объём (прямая А-а-в).

Подведём теплоту q к объёму воды V, (напр. 1 кг воды, находящийся в закрытом сосуде).

Температура её начнёт повышаться, объём увеличиваться (Ра = const).

При достижении температуры кипения (при данном давлении) вода переходит в пар (прямая а’- а»).

(При давлении Ра = 0,1 Мпа Та =1000 С и т.п.).

Все точки прямой а’ — а» определяют состояние так называемого влажного пара (пар с капельками воды).

В точке а’ х = 0, в точке а» х=1; между ними х возрастает от 0 до 1. При повышении давления растет температура кипения (в точке в давление Рв = Р1кип; Рс = Р2кип в точке с).

Удельный объём воды также возрастает (точки в’ и с’ располагаются правее точки а).

Для каждого вещества существует так называемое критическое состояние (точка к).

Оно характеризуется Ркр, Vкр, Ткр (для воды Ркр = 22. 1 Мпа, Ткр = 647.3 °К и Vкр = 0.0031 м3 /кг; для ртути Ркр =100 МПа, Ткр = 1673°К, и т. д.).

Рис. 1. Диаграмма P-V для водяного пара.

В этом состоянии вещество находится в виде так называемых молекулярных пучков. Они сильно рассеивают свет и прозрачный сосуд становится непрозрачным для проходящего через него пучка света, если в нём находится вещество в критическом состоянии. Таким образом можно определить критическое состояние вещества, находящегося в сосуде. Кривая а’ в’ с’ k называется нижней пограничной кривой, она даёт зависимость удельного объёма кипящей воды от давления. Кривая k c» в» а» называется верхней пограничной кривой, она описывает зависимость удельного объёма сухого насыщенного пара от давления. Слева от нижней пограничной кривой вещество находится в жидком состоянии, справа от верхней пограничной кривой — в газообразном состоянии (перегретый пар), область под пограничной кривой определяет влажный пар. Диаграмма P-V для воды и водяного пара, построенная в определённом масштабе на основании экспериментальных данных, позволяет найти P и V для различных состояний. Для перегретого пара, играющего очень важную роль в теплоэнергетике, на диаграмме P-V строятся изотермы (Т1 = Та= const; T2 = const; Т3 = const и т.д).

Они начинаются на кривой x = 1 (верхняя пограничная кривая).

Наличие на диаграмме P-V изотерм позволяет легко найти температуру пара. Изобары в области перегретого пара изображаются прямыми, параллельными оси 0-V, изохоры — прямыми, параллельными оси 0-Р, адиабаты — кривыми, идущими более круто, чем изотермы. В области влажного пара изотерма совпадает с изобарой. Более удобной для теплотехнических расчётов является i-s диаграмма. Она позволяет определить такие важные термодинамические величины для сухого и влажного паров, как температура, удельный объём, давление, удельная энтальпия, удельная энтропия, удельная внутренняя энергия Если известен процесс, который совершает пар, то можно также определить удельную работу и теплоту.

15 стр., 7319 слов

Вода в пищевой промышленности

... не растворены» – в значительной степени справедливо. Человек и животные могут в своем организме синтезировать первичную ("ювенильную") воду, образовывать ее при сгорании пищевых продуктов и самих ... у кислородных пар электронов и два положительных - вследствие недостатка электронной плотности у ядер водорода - протонов. Такая ассиметричность распределения электрических зарядов воды обладает ярко ...

i

Рис. 2. Диаграмма i-s водяного пара.

На этой диаграмме сухой пар находится выше пограничной кривой х=1, влажный под кривой х=1. Изобары идут из правого верхнего угла в левый нижний. В области влажного пара изотермы совпадают с изобарами, на кривой х=1 они начинают расходиться, изотермы идут направо (N, M, C — точки расхождения изобар и изотерм).

Изохоры (на диаграмме не показаны) идут аналогично изобарам, но круче. Адиабаты (изоэнтропы s= const) -вертикальные линии. Зная начальные параметры пара, можно определить точку на диаграмме i-s. Например, если задано начальное давление и начальная температура, то точка лежит на пересечении изобары и изотермы. Опуская из неё перпендикуляры на оси i и s находят начальные значения энтальпии и энтропии. Начальное значение удельного объёма находится по значению ближайшей к точке изохоры. Внутренняя энергия определяется из формулы для удельной энтальпии:

  • i = u + p·v;
  • отсюда u = i — p·v;
  • (6)

Вывод

Если известен термодинамический процесс, который совершает перегретый пар, и один из конечных параметров (например, давление), то легко можно определить вторую точку на диаграмме, найти конечные значения всех нужных термодинамических параметров и функций состояния, а затем рассчитать удельные энергию и теплоту процесса. Атмосферный воздух, в основном состоящий из кислорода, азота, углекислого газа, содержит всегда некоторое количество водяного пара. Смесь сухого воздуха и водяного пара называется влажным воздухом.

Влажный воздух при данном давлении и температуре может содержать разное количество водяного пара. Если смесь состоит из сухого воздуха и насыщенного водяного пара, то его называют насыщенным влажным воздухом. В этом случае во влажном воздухе находится максимально возможное для данной температуры количество водяного пара. При охлаждении этого воздуха, будет происходить конденсация водяного пара.

Если влажный воздух содержит при данной температуре водяной пар в перегретом состоянии, то он будет называться ненасыщенным. Так как в нем находится не максимально возможное для данной температуры количество водяного пара, то он способен к дальнейшему увлажнению. Поэтому такой воздух используют в качестве сушильного агента в различных сушильных установках.

Литература

[Электронный ресурс]//URL: https://inzhpro.ru/referat/termodinamicheskie-protsessyi-idealnyih-gazov/

1. Кудрявцев, 1956, с. 396—399

2. Савельев, 2001, с. 33-34

3. Ландау, Лифшиц V, 1976, с. 55

9 стр., 4238 слов

ИЗУЧЕНИЕ СВОЙСТВА ВЛАЖНОГО ВОЗДУХА

... при данном температуре количество пара увеличивается, парциальное давление растет, удельный объем уменьшается, а плотность увеличивается. Рис.2. Состояние влажного воздуха в РV–диаграмме Максимально возможное содержание водяного пара в воздухе при температуре t ...

4. Кудрявцев, 1956, с. 185—186

5. Савельев, 2001, с. 17

6. Сивухин, 1975, с. 54

7. Ландау Л.Д., Ахиезер А.И., 1965, с. 196—198