Система единиц физических величин. Поверочные схемы

Реферат

1. Поверочные схемы (ГОСТ 8.061-80 ГСИ)

Поверку осуществляют по поверочным схемам, которые устанавливают систему передачи размера единицы физической величины от государственного эталона к рабочим СИ. Поверочная схема — это утвержденный в установленном порядке документ, устанавливающий средства, методы и точность передачи размеров единиц от эталона или исходного образцового СИ рабочим СИ. Требования к содержанию и построению схем установлены ГОСТ 8.061-80. Схемы подразделяются на государственные, ведомственные и локальные. Государственные поверочные схемы разрабатываются Главным центром государственных эталонов, являющимся хранителем государственного эталона единицы данной величины и утверждаются в качестве государственного стандарта. Нижестоящие поверочные схемы разрабатываются субъектами хозяйствования. Поверочная схема должна включать не менее двух ступеней передачи размера единицы. В поверочной схеме должна быть представлена передача размера только одной физической величины. Схемы должны состоять из текстовой части и чертежа. Текстовая часть схемы состоит из вводной части и пояснений к элементам поверочной схемы, несущим дополнительную информацию. Вводная часть охватывает назначение ГПЭ и ГПС, основные МХ эталона и порядок передачи размера единицы физической величины от первичного эталона при помощи вторичных эталонов и образцовых СИ рабочим средствам. В тексте приводится научно-техническое обоснование поверочных схем с позиций оптимальности структуры схемы, т.е. образцовых СИ, числа ступеней передачи размера и др. Это обоснование должно проводится с учетом следующего:

  • Оптимальных соотношений погрешности поверяемого и образцового СИ;
  • Допускаемой вероятности признания годным метрологически неисправного СИ;

-Допускаемого отношения числа метрологически исправных, но забракованных СИ к общему числу метрологически исправных СИ.

Далее в текстовой части приводятся разделы: эталонов, образцовых СИ, рабочих СИ. Каждый раздел начинается с перечня СИ, которые могут быть использованы как эталонные и образцовые. Указываются МХ, доверительные вероятности при определении погрешностей. Приводятся наименования СИ, которые могут быть поверены эталонами или образцовыми СИ с указанием метода поверки и его погрешности.

Графическая часть поверочной схемы должна состоять из нескольких горизонтальных полей, соответствующих ступеням передачи размера единицы физической величины от государственного эталона к рабочим СИ. В левой части чертежа указывается наименование полей (эталоны, образцовые СИ 1 разряда, СИ 2 разряда и т.д., рабочие СИ).

4 стр., 1977 слов

Эталоны основных физических величин. эталоны основных физических ...

... установленных единиц физических величин и передачи их размеров применяемым средствам измерения. Воспроизведение, хранение и передача размеров единиц осуществляется с помощью эталонов и образцовых средств измерения. Высшим звеном в метрологической цепи передачи размеров единиц измерений являются эталоны. Эталон ...

В верхнем поле чертежа поверочной схемы указываются наименования эталонов в порядке их соподчиненности. Под полем эталонов располагается поле образцовых СИ 1 разряда, 2 разряда и т.д. Под полем образцового СИ низшего разряда помещаются поля рабочих СИ, слева направо в порядке убывания точности: наивысшей, высшей, высокой, средней и низшей точности. Наименования эталонов, образцовых и рабочих СИ заключают в прямоугольники с указанием номинальных значений или диапазонов измерений и погрешностей. Наименование методов поверки заключают в круги или горизонтальные овалы, которые располагаются между прямоугольниками с наименованием СИ. Здесь же указывается допускаемая погрешность метода поверки.

Метрологические характеристики средств измерений в схемах должны быть представлены следующим образом:

1. погрешности эталонов по ГОСТ 8.057-80:

  • а) не исключенной систематической погрешностью;
  • б) случайной погрешностью;
  • в) нестабильностью;

1. погрешности образцовых СИ, выраженные:

  • а) пределом допускаемой погрешности ;
  • б) доверительной погрешностью.

1. погрешность рабочих СИ, выражающаяся пределом допускаемой погрешности.

Доверительная вероятность выбирается из ряда: 0,90; 0,95; 0,99.

Наименования средств измерений, их номинальные значения и диапазоны значений физических величин, погрешности в поверочных схемах должны соответствовать стандартам и техническим условиям.

Методы поверки на схемах должны соответствовать одному из следующих общих методов:

1. непосредственное сличение (без средств сравнения);

2. сличение при помощи компаратора или других средств сравнения;

3. поверка СИ по образцовой мере путем измерения им величины, воспроизведенной мерой;

4. прямое измерение образцовым СИ величины воспроизводимой подвергаемой поверке мерой;

5. косвенное измерение величины воспроизводимой мерой или измеряемым прибором, которые подвергаются поверке.

В метрологической практике существует независимая (автономная) поверка, т.е. поверка без применения образцовых средств измерения. Эта поверка возникла при разработке особо точных СИ, которые не могут быть повержены традиционными методами ввиду отсутствия еще более точных СИ с соответствующими пределами измерений. Сущность метода заключается в сравнении величин, воспроизводимых отдельными элементами схемы поверяемого СИ с величиной, выбранной в качестве опорной и конструктивно воспроизводимой в самом поверяемом СИ. Например, при поверке m-ой декады потенциометра необходимо убедиться в равенстве падений напряжений на каждой n-ой степени этой декады. При этом выбрав в качестве опорной величины сопротивление первой ступени декады, можно с помощью компаратора поочередно сравнивать падения напряжения на этом сопротивлении. Соотношение допускаемых погрешностей образцовых и поверяемых средств измерений устанавливается с учетом принятого метода поверки, характера погрешностей и других факторов. Обычно это соотношение принимается равным 1:3 при условии введения поправок на показания образцовых средств измерений. При отсутствии поправок исходят из соотношения 1:5.

4 стр., 1535 слов

Основные физические величины

... основных единиц физических величин для их использования в международных отношениях: метр, килограмм, секунда, ампер, градус Кельвина и свеча. XI Генеральная конференция по мерам и весам в 1960 г. утвердила Международную систему единиц, ...

2. Система единиц физических величин (ГОСТ 8.417-2002 ГСИ)

поверочная схема физическая величина

Основные понятия

Многообразие единиц физических величин на определенной ступени развития общества стало тормозить экономические, торговые и научные связи. Даже отдельные государства и их административные области для одних и тех же величин вводили свои единицы. В разных областях науки и техники появлялись свои, специфические единицы, удобные т олько именно для этой отрасли. В связи с этим возникла тенденция к унификации единиц физических величин, необходимость в системах единиц, которые охватывали бы единицы величин как можно больших разделов науки и техники. Ниже приводятся основные понятия, связанные с единицами физических величин и их системами.

Система единиц физических величин — совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Например, международная система единиц (СИ).

Основная единица системы — единица основной физической величины в данной системе единиц. Основные единицы могут выбираться произвольно, поэтому для одной и той же системы величин может быть образовано несколько систем единиц.

Производная единица системы — единица производной физической величины системы единиц, образованная в соответствии уравнением, связывающим ее с основными единицами или с основными и уже определенными производными.

Системная и внесистемная единицы — единицы, входящие и не входящие в принятые системы единиц. Например, единицы, не входящие в СИ, разделяют на следующие группы:

  • допускаемые к применению наравне с единицами СИ без ограничения срока;
  • допускаемые к применению единицы относительных и логарифмических величин;
  • единицы, временно допускаемые к применению до принятия по ним соответствующих международных решений;
  • внесистемные единицы, применение которых в новых разработках не допускается.

Когерентная производная единица — единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1.

Когерентная система единиц физических величин — система единиц, состоящая из основных единиц и когерентных производных единиц.

Когерентные производные единицы образуются с помощью простейших уравнений между величинами, где числовые коэффициенты равны 1. Преимущества когерентной системы единиц — простота выполнения расчетов и использования системы.

Например, единица скорости [v] в СИ находится из уравнения:

v = s / t

где v — скорость; s — длина пройденного пути; t — время движения.

Если подставить вместо длины пути и времени обозначения их единиц СИ то единица скорости будет:

[ v ] = [s ] / [t ] = 1 m/s.

Для образования единицы энергии может, например, использоваться уравнение с коэффициентом, отличным от единицы, например:

E = 1/ 2 mv2

В этом случае для образования когерентной единицы в правую часть подставляются величины со значениями, дающие после умножения на коэффициент числовое значение, равное единице. Когерентная единица энергии в СИ образуется из выражения:

[E] = Ѕ (2 [m]Ч [v]2) = Ѕ (2 kg)Ч(1 m/s)2 = 1 kg Ч m/s2 Ч m = 1 NЧ m = 1J.

Единицей энергии СИ является джоуль, равный ньютон-метру. В данном примере он равен кинетической энергии тела массой 2 kg , движущегося со скоростью 1m/s .

Кратная и дольная единица величины — это единица, в целое число раз большая или меньшая системной единицы. Например, кратная — 1 километр, дольная — 1 см.

Метрическая система мер

1795 г во Франции был принят Закон о новых мерах и весах, который установил основную

Построение систем единиц физических величин

выбор основных единиц

  • первой должна быть величина, которая выражается только через основные величины;
  • каждая последующая должна быть величиной, которая выражается только через основные и такие производные, которые ей предшествуют.

Например, такая последовательность единиц: площадь, объем, плотность.

удобство

Примеры систем единиц физических величин, Система Гаусса, Система СГС, Относительные и логарифмические величины и единицы

Относительные и логарифмические величины широко распространены в науке и технике, т.к. они характеризуют состав и свойства материалов, отношение энергетических величин, например, относительную плотность, относительную диэлектрическую проницаемость, усиление и ослабление мощности.

Относительная величина

бел (Б

1Б = 2 lg (F2/F1) при F2 = 100,5 F1.

Дольной единицей от бела является децибел, равный 0,1 Б.

Международная система единиц (СИ)

Развитие науки и техники все настойчивее требовало унификации единиц измерений. Требовалась единая система единиц, удобная для практического применения и охватывающая различные области измерений. Кроме того, она должна была быть когерентной. Так как метрическая система мер широко использовалась в Европе с начала 19 века, то она была взята за основу при переходе к единой международной системе единиц.

Международную систему единиц

  • присвоить системе, основанной на шести основных единицах,

наименование «Международная система единиц»;

  • установить международное сокращение для наименования системы — SI;
  • ввести таблицу приставок для образования кратных и дольных

единиц;

  • образовать 27 производных единиц, указав, что могут быть добавлены и другие производные единицы.

В 1971 к СИ была добавлена седьмая основная единица — количества вещества (моль).

основных принципов:

  • система базируется на основных единицах, которые являются независимыми друг от друга;
  • производные единицы образуются по простейшим уравнениям связи и для величины каждого вида устанавливается только одна единица СИ;
  • система является когерентной;
  • допускаются наряду с единицами СИ широко используемые на практике внесистемные единицы;
  • в систему входят десятичные кратные и дольные единицы.

Преимущества

универсальность

унификация

удобны для практического

повышает уровень точности измерений

распространены.

В СССР Международная система (СИ) была введена в действие ГОСТ 8.417-81. По мере дальнейшего развития СИ из нее был исключен класс дополнительных единиц, введено новое определение метра и введен ряд других изменений. В настоящее время в РФ действует межгосударственный стандарт ГОСТ 8.417-2002, который устанавливает единицы физических величин, применяемых в стране. В стандарте указано, что подлежат обязательному применению единицы СИ, а также десятичные кратные и дольные этих единиц. Кроме того, допускается применять некоторые единицы, не входящие в СИ, и их дольные и кратные единицы. В стандарте указаны также внесистемные единицы и единицы относительных величин.

Основные единицы СИ представлены в таблице.

Величина

Единица

Наименование

Размерность

Наименование

Обозначение

русское

международн.

Длина

L

метр

м

m

Масса

M

килограмм

кг

kg

Время

T

секунда

с

s

Электрический ток

I

ампер

А

A

Термодинамическая температура

кельвин

К

K

Количество вещества

N

моль

моль

mol

Сила света

J

кандела

кд

cd

именам ученых

не входящие в СИ .

Внесистемные единицы

относительные и логарифмические величины

  • Внесистемные единицы, временно допускаемые к применению. Например, морская миля, карат (0,2 г), узел, бар.

В отдельном разделе приведены правила написания обозначений единиц, использования обозначений единиц в заголовках граф таблиц и т.п.

приложениях

специальные названия.

сила, вес — ньютон, размерность LMT-2, обозначение единицы Н (международное N);энергия, работа, количество теплоты — джоуль, размерность L2MT-2, обозначение Дж (J).

специальных наименований.

ньютон-метр

Десятичные кратные и дольные единицы

двух и более приставок подряд

числовые значения

В некоторых областях деятельности всегда используют одну и ту же дольную или кратную единицу, например, в чертежах в машиностроении размеры всегда выражаются в миллиметрах. Для снижения вероятности ошибок при расчетах десятичные и кратные дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10.

правила написания

точку как знак сокращения не ставят

произведение

знака деления

буквенные обозначения

с прописной (заглавной) буквы

  • пространство и время;
  • периодические и связанные с ними явления;
  • механика;
  • теплота;
  • электричество и магнетизм;
  • свет и связанные с ним электромагнитные излучения;
  • акустика;
  • физическая химия и молекулярная физика;

— ионизирующие излучения.

СПИСОК ЛИТЕРАТУРЫ

[Электронный ресурс]//URL: https://inzhpro.ru/referat/poverochnyie-shemyi-metrologiya/

1. http://www.stroyoffis.ru/gost_gsi/gost_8_417_2002/gost_8_417_2002.php

2. Тартаковский Д.Ф., Ястребов А.С. Метрология, стандартизация и технические средства измерений. Учебник для вузов. — М.: Высшая школа, 2001.

3. 8.417-81(СТ СЭВ 1052-78)ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ Ю.В. Тарбеев, д-р техн. наук; К.П. Широков, д-р техн. наук; П.Н. Селиванов, канд. техн. наук; Н.А. Ерюхина ВНЕСЕН Государственным комитетом СССР по стандартам Член Госстандарта Л.К. Исаев УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19 марта 1981 г. № 1449