Полимерные органические волокна

Реферат

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х гг. XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

Полимеры и волокна на их основе подчас лучше традиционно используемых природных материалов — они легче, прочнее, более жаростойки, способны работать в агрессивных средах. Поэтому все свои усилия химики и технологи направляют на создание новых полимеров, обладающих высокими эксплуатационными характеристиками, и методов их переработки.

1. Полимеры: понятие, особенности, область применения

Полимер — высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), состоит из большого числа повторяющихся одинаковых или различных по строению атомных группировок — составных звеньев, соединенных между собой химическими или координационными связями в длинные линейные (например целлюлоза) или разветвленные (например амилопектин) цепи, а также пространственные трёхмерные структуры.

Часто в его строении можно выделить мономер — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, называют например поливинилхлорид (—СН2—СНСl—) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат…

7 стр., 3278 слов

Классификация и структура полимеров. Конструкционная прочность ...

... ённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.В строении полимера можно выделить мономерное звено -- повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид ...

Особые механические свойства:

  • эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством — гибкостью.

Довольно часто общую формулу полимеров можно записать в виде

(-Х-) n

где фрагмент -Х- называется элементарное звено, а число n -степень полимеризации. Это число для разных полимеров может изменяться в широком диапазоне, от сотен до десятков тысяч. В отличие от низкомолекулярных веществ, разные молекулы одного и того же полимера могут иметь разное значение n и разную молекулярную массу, поэтому для характеристики полимера используют понятия средней степени полимеризации и средней молекулярной массы.

В зависимости от строения углеродной цепи, различают линейные (неразветвленные), разветвленные и сетчатые (сшитые) полимеры. Линейные и разветвленные полимеры способны образовывать прочные волокна и пленки, эластичны и могут плавиться и растворяться в различных растворителях. Пример линейного полимера — полиэтилен, разветвленного — натуральный каучук. В сетчатых полимерах различные углеродные цепи «сшиты» между собой, и вещество представляет собой одну гигантскую молекулу. Примером могут служить фенолоформальдегидные смолы. Такие вещества неэластичны и нерастворимы.

Полимеры могут иметь регулярное и нерегулярное строение. Если все элементарные звенья в молекуле характеризуются одинаковым пространственным расположением атомов (например, в натуральном каучуке), то говорят о регулярном строении, в противном случае — о нерегулярном. Полимеры с регулярным строением имеют особо ценные физико-химические и механические свойства.

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы).

На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Одна из важных областей применения полимеров — изготовление волокон и тканей.

2. Волокно: понятие, классификация, состав

Волокно — класс материалов, состоящий из непряденых нитей материала или длинных тонких отрезков нити. Волокно используется в природе как животными так и растениями, для удержания тканей (биологических).

6 стр., 2745 слов

Переработка полимеров и полимерных материалов

... Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров – материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Синтетические полимеры получают при переработке ...

Волокно используется человеком для прядения нитей, веревок, как часть композитных материалов, а также для производства таких материалов как бумага или войлок. Классификация волокон приведена ниже на рисунке 1.

Рис.1. Классификация волокон

Волокна, для производства которых используют химические методы, составляют группу химических волокон. Они делятся на искусственные и синтетические. Искусственные волокна получают химической модификацией природных материалов (хлопка, шерсти), тогда как для производства синтетических волокон используются только синтетические материалы — полимеры.

Синтетические волокна очень дешёвы, поэтому используются гораздо шире натуральных.

Органические волокна образуются из полимеров, имеющих в своем составе атомы углерода, непосредственно соединённых друг с другом, или включающие наряду с углеродом атомы других элементов.

Для производства химических волокон из большого числа существующих полимеров применяют лишь волокнообразующие полимеры. Волокнообразующие полимеры состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях.

3. Полимерные органические волокна

Полимерные волокна получаются в результате процессов нефтехимии из полимеров, таких как:

  • o полиамидный нейлон;
  • o полиэфир — полиэстер (PET или PBT);
  • o фенолформальдегид (PF);
  • o поливинилиденфторид PVOH;
  • o поливинилхлорид PVC ПВХ;
  • o полиолефины PP и PE;
  • o акриловые полимеры. Используется как сырье для получения углеволокна в процессе пиролиза без доступа воздуха. Традиционно акриловое волокно используется как замена шерсти;
  • o арамидное волокно, торговые марки Кевлар, Twaron, Армос, Nomex.

Деградирует при высоких температурах не плавясь. Данное волокно прочнее стали на разрыв;

  • o полиэтилен (PE) — волокно с супердлинными молекулами;
  • o полиуретановые волокна.

Раньше полимеры считали лишь дешевыми заменителями дефицитного природного сырья — хлопка, шелка, шерсти. Но вскоре пришло понимание того, что полимеры и волокна на их основе подчас лучше традиционно используемых природных материалов — они легче, прочнее, более жаростойки, способны работать в агрессивных средах. Поэтому все свои усилия химики и технологи направили на создание новых полимеров, обладающих высокими эксплуатационными характеристиками, и методов их переработки. И достигли в этом деле результатов, порой превосходящих результаты аналогичной деятельности известных зарубежных фирм.

В начале 70-х за рубежом появились поражающие воображение своей прочностью волокна кевлар (США), несколько позже — тварон (Нидерланды), технора (Япония) и другие, изготовленные на основе поли-п-фенилентерефталамида и других аналогичных полимеров ароматического ряда, получивших собирательное название арамидов. На основе таких волокон были созданы различные композиционные материалы, которые стали успешно применять для изготовления ответственных деталей самолетов и ракет, а также шинного корда, бронежилетов, огнезащитной одежды, канатов, приводных ремней, транспортерных лент и множества других изделий.

6 стр., 2959 слов

Полиэфирные волокна лавсан

... и светостойкость. К полиэфирным волокнам относится лавсан. В поперечном сечении волокно лавсана имеет форму круга. Относительное разрывное усилие у лавсана несколько ниже, чем у полиамидных волокон. В отличие от ... щелочах. Обработка паром при 100°С из-за частичного гидролиза полимера вызывает снижение прочности волокна (0,12% за 1 ч). Полиэфирные волокна устойчивы к действию ацетон

Эти волокна широко рекламировались в мировой печати. Однако только узкому кругу специалистов известно, что в те же годы российские химики и технологи самостоятельно создали арамидное волокно терлон, не уступающее по своим свойствам зарубежным аналогам. А потом здесь же были разработаны методы получения волокон СВМ и армос, прочность которых превышает прочность кевлара в полтора раза, а удельная прочность (то есть прочность, отнесенная к единице веса) превосходит прочность высоколегированной стали в 10-13 раз! И если прочность стали на разрыв составляет 160-220 кг/мм 2 , то сейчас активно ведутся работы по созданию полимерного волокна с прочностью до 600 кг/мм2 .

Другой класс полимеров, пригодных для получения высокопрочных волокон — жидкокристаллические ароматические полиэфиры, то есть полимеры, обладающие свойствами кристаллов в жидком состоянии. Волокнам на их основе свойственны не только достоинства арамидных волокон, но еще и высокая радиационная стойкость, а также устойчивость к воздействию неорганических кислот и различных органических растворителей. Это идеальный материал для армирования резины и создания высоконаполненных композитов; на его основе созданы образцы световодов, качество которых соответствует высшему мировому уровню. А ближайшая задача — создание так называемых молекулярных композитов, то есть композиционных материалов, в которых армирующими компонентами служат сами молекулы жидкокристаллических полимеров.

Молекулы обычных полимеров содержат, помимо углерода, еще и атомы других элементов — водорода, кислорода, азота. Но сейчас разработаны методы получения волокон, представляющих собой, по сути дела, чистый полимерный углерод. Такие волокна обладают рекордной прочностью (свыше 700 кг/мм 2 ) и жесткостью, а также чрезвычайно малыми коэффициентами термического расширения, высокой стойкостью к износу и коррозии, к воздействию высоких температур и радиации. Это позволяет успешно использовать их для изготовления композиционных материалов — углепластиков, применяемых в самых ответственных конструкционных узлах скоростных самолетов, ракет и космических аппаратов.

Применение углепластика оказывается экономически весьма выгодным. На единицу веса изготовленного из него изделия нужно затратить в 3 раза меньше энергии, чем на изделие из стали, и в 20 раз меньше, чем из титана. Тонна углепластика может заменить 10-20 тонн высоколегированной стали. Турбина насоса, изготовленная из углепластика и пригодная для перекачки минеральных кислот при температурах до 150 о С, оказывается вдвое дешевле и служит в шесть раз дольше. Уменьшается и трудоемкость изготовления деталей сложной конфигурации.

Многие свойства углекомпозитов можно изменять в широчайших пределах. Например, созданы материалы с коэффициентом трения, составляющим всего 0,06, — их можно использовать в подшипниках скольжения. Однако есть и материалы с коэффициентом трения до 0,7, а это значит, что из них можно делать тормозные колодки, не содержащие асбеста.

4 стр., 1943 слов

Материалы на основе полимеров для покрытия полов

... химии рост промышленности полимеров был бы немыслим. Классификация Материалы для полов делят на три группы: рулонные (линолеумы), плиточные и материалы для устройства бесшовных полов. РУЛОННЫЕ МАТЕРИАЛЫ Рулонные материалы для покрытия полов изготовляют на основе различных полимеров и наполнителей. ...

Еще одно замечательное свойство материалов на основе углеродных волокон — их способность хорошо проводить электричество и тепло. Это позволяет делать на их основе сухие безынерционные электронагреватели в виде либо жестких пластин, либо мягких тканей. Они совершенно безопасны в пожарном отношении, так как тепловой поток равномерно распределяется по большой поверхности, и их можно использовать для обогревания помещений или сидений автомобилей и тракторов. Питаются такие нагревательные элементы либо постоянным током с напряжением от 6 до 18 В, либо переменным током с напряжением от 24 до 220 В.

Электропроводность углеродных волокон позволяет бороться и с доставляющим немало хлопот статическим электричеством (кстати, далеко не безвредным для здоровья человека): достаточно ввести в материал (ткань, бумагу) всего 0,02 — 1% углеродного волокна, чтобы электрические заряды полностью «стекали» с этого материала, как после обработки антистатиком.

Углеродные материалы имеют и медицинские области применения: живой организм их не отторгает. Поэтому если скрепить сломанную кость штифтом на основе углепластика, а поврежденное сухожилие заменить легкой и прочной углеродной лентой, то организм не воспримет этот материал как чужеродный. А углеродные материалы, обладающие высокой адсорбционной активностью, с успехом применяют в виде повязок, тампонов и дренажей при лечении открытых ран и ожогов — в том числе и химических. Сорбционные свойства специально приготовленного углеродного волокна в 2,5 раза выше сорбционных свойств активированного угля!

Заключение

Полимеры — это высокомолекулярные соединения состоящие из макромолекул. Макромолекулы большинства высокомолекулярных соединений построены из одинаковых многократно повторяющихся групп атомов, которые называются — элементарными звеньями. А степень полимеризации определяется числом звеньев входящих в состав макромолекулы.

Для полимеров характерны некоторые общие свойства которые позволяют выделить химию высокомолекулярных соединений в самостоятельную науку.

Органические волокна образуются из полимеров, имеющих в своем составе атомы углерода, непосредственно соединённых друг с другом, или включающие наряду с углеродом атомы других элементов.

Для производства полимерных органических волокон из большого числа существующих полимеров применяют лишь волокнообразующие полимеры. Волокнообразующие полимеры состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях.

Полимеры на самом деле встречаются повсюду — это пластиковые предметы быта, это конструкции в строительстве, это органическое стекло, пломбы в зубах, детали и элементы авто- и самолетов, мусорные пакеты, баки, и даже савок для мусора, а главное что все растения в природе из полимеров и конечно же человек это 80% биополимер.

Список использованной литературы

[Электронный ресурс]//URL: https://inzhpro.ru/referat/organicheskie-volokna/

1. Большая Советская энциклопедия.

2. Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие,- Мн.: Выш. шк., 2001- 412с.

3. Ю.Н. Сидоренко, Конструкционные и функциональные волокни-стые композиционные материалы // Конспект лекций. — Томск, 2005, 96 с.

9 стр., 4073 слов

«Технология конструкционных материалов» : «Физические ...

... сопротивление разрушению. Цель настоящей работы – изучить физические основы пластичности и прочности металлов. 1. Физические основы прочности металлов Прочность является фундаментальным свойством твердых, тел. Она определяет способность ... ууп = Руп/F0. Если действующее напряжение в детали (конструкции) меньше ууп, то материал будет работать в области упругих деформаций. Ввиду трудности определения ...

4. А.А Берлин Современные полимерные композиционные материалы// Химия, 2005. — № 1. — С. 59

5. Варнавский Е. Полимерные волокна. Доклад VIII Всероссийской научно-практической конференции «Техника и технология», М.: ЦЭИ Химмаш, 2008, С. 7-12