Сварка — технологический процесс формирования неразъемного соединения материалов посредством установления между ними межатомных связей при термическом, механическом или термомеханическом воздействии. На сегодняшний день существует более 50 различных технологий сварки. Это дуговая сварка и ее разновидности, плазменная сварка, лазерная сварка, газовая сварка, контактная сварка, диффузионная сварка и многие другие. Рассмотрим более детально процесс плазменной сварки и резки металлов.
1. Плазменная сварка
Плазменная сварка — это сварка с помощью направленного потока плазменной дуги. Имеет много общего с технологией аргонной сварки.
Общепринятые обозначения
PAW — Plasma Arc Welding — сварка плазменной дугой
Технология плазменной сварки
Плазмой называется частично или полностью ионизированный газ, состоящий из нейтральных атомов и молекул, а также электрически заряженных ионов и электронов. В таком определении обычная дуга может быть названа плазмой. Однако по отношению к обычной дуге термин «плазма» практически не применяют, так как обычная дуга имеет относительно невысокую температуру и обладает невысоким запасом энергии по сравнению с традиционным понятием плазмы.
Рисунок. Схема процесса плазменной сварки
Для повышения температуры и мощности обычной дуги и превращения ее в плазменную используются два процесса: сжатие дуги и принудительное вдувание в нее плазмообразующего газа. Схема получения плазменной дуги приведена на рисунке выше. Сжатие дуги осуществляется за счет размещения ее в специальном устройстве — плазмотроне, стенки которого интенсивно охлаждаются водой. В результате сжатия уменьшается поперечное сечение дуги и возрастает ее мощность — количество энергии, приходящееся на единицу площади. Температура в столбе обычной дуги, горящей в среде аргона, и паров железа составляет 5000-7000°С. Температура в плазменной дуге достигает 30 000°С.
Одновременно со сжатием в зону плазменной дуги вдувается плазмообразующий газ, который нагревается дугой, ионизируется и в результате теплового расширения увеличивается в объеме в 50-100 раз. Это заставляет газ истекать из канала сопла плазмотрона с высокой скоростью. Кинетическая энергия движущихся ионизированных частиц плазмообразующего газа дополняет тепловую энергию, выделяющуюся в дуге в результате происходящих электрических процессов. Поэтому плазменная дуга является более мощным источником энергии, чем обычная.
Сварка металлической двери
... зачистка, фиксация деталей). б) плазменная сварка - тепловая энергия сжатой дуги Плазменная сварка представляет собой процесс, при ... и позволяет не только проводить сварку металлических кромок отдельных деталей, но и ... плазменную дугу присадочных металлов (в том числе тугоплавких), возможность сваривания металлов с неметаллами, минимальная зона термического воздействия, возможность проведения работ ...
Основными чертами, отличающими плазменную дугу от обычной, являются:
- более высокая температура;
- меньший диаметр дуги;
- цилиндрическая форма дуги (в отличие от обычной конической);
- давление дуги на металл в 6-10 раз выше, чем у обычной;
- возможность поддерживать дугу на малых токах (0,2-30 А).
Перечисленные отличительные черты делают плазменную дугу по сравнению с обычной более универсальным источником нагрева металла. Она обеспечивает более глубокое проплавление металла при одновременном уменьшении объема его расплавления. На рисунке приведена форма проплавления для обычной дуги и плазменной. Из рисунка видно, что плазменная дуга — более концентрированный источник нагрева и позволяет без разделки кромок сваривать большие толщины металла. Из-за своей цилиндрической формы и возможности существенно увеличить длину такая дуга позволяет вести сварку в труднодоступных местах, а также при колебаниях расстояния от сопла горелки до изделия.
Рисунок. Форма проплавления для обычной и плазменной дуги
Возможны две схемы процесса:
- сварка плазменной дугой, когда дуга горит между неплавящимся электродом и изделием,
- и плазменной струей, когда дуга горит между неплавящимся электродом и соплом плазмотрона и выдувается потоком газа.
Первая схема наиболее распространена.
В качестве плазмообразующего газа при сварке используется обычно аргон, иногда с добавками гелия или водорода. В качестве защитного газа используется чаще всего также аргон. Материал электрода — вольфрам, активированный иттрием, лантаном или торием, а также гафний и медь.
Разновидности
В зависимости от силы тока различают три разновидности плазменной сварки:
- микроплазменная (I св = 0,1-25А);
- на средних токах (I св = 50-150А);
- на больших токах (I св > 150А).
Микроплазменная сварка
Наиболее распространенной является микроплазменная сварка. В связи с достаточно высокой степенью ионизации газа в плазмотроне и при использовании вольфрамовых электродов диаметром 1-2 мм плазменная дуга может гореть при очень малых токах, начиная с 0,1 А.
Рисунок. Схема процесса микроплазменной сварки
Специальный малоамперный источник питания (см. рисунок выше) постоянного тока предназначен для получения дежурной дуги, непрерывно горящей между электродом и медным водоохлаждаемым соплом. При подведении плазмотрона к изделию зажигается основная дуга, которая питается от источника. Плазмообразующий газ подается через сопло плазмотрона, имеющее диаметр 0,5-1,5 мм.
Защитный газ подается через керамическое сопло. Плазменная горелка охлаждается водой. Для зажигания дуги в сварочной установке имеются осцилляторы дежурной и основной дуги.
Микроплазменная сварка является весьма эффективным способом сплавления изделий малой толщины, до 1,5 мм. Диаметр плазменной дуги составляет около 2 мм, что позволяет сконцентрировать тепло на ограниченном участке изделия и нагревать зону сварки, не повреждая соседние участки. Такая дуга имеет цилиндрическую форму, поэтому глубина проплавления и другие параметры шва мало зависят от длины дуги, что позволяет при манипуляциях сварщиком горелкой избежать прожогов, характерных для обычной аргонодуговой сварки тонкого металла.
Электрический ток в металлах, газах и в вакууме
... электрический заряд в различных средах. Электрический ток в металлах. Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, ...
Основным газом, использующимся в качестве плазмообразующего и защитного, является аргон. Однако в зависимости от свариваемого металла к нему могут осуществляться добавки, увеличивающие эффективность процесса сварки. При сварке сталей к защитному аргону целесообразна добавка (8-10%) водорода, что позволяет повысить тепловую эффективность плазменной дуги. Это связано с диссоциацией водорода на периферии столба дуги и последующей его рекомбинацией с выделением тепла на поверхности свариваемого металла. При сварке низкоуглеродистых сталей к аргону возможна добавка углекислого газа, при сварке титана — добавка гелия.
Установки для микроплазменной сварки позволяют осуществлять сварку в различных режимах: непрерывный прямой полярности, импульсный прямой полярности (позволяет регулировать тепловложение), разнополярными импульсами (для алюминия, обеспечивает разрушение оксидной пленки), непрерывный обратной полярности. Наиболее распространенной установкой является МПУ-4у.
К основным параметрам процесса микроплазменной сварки относятся сила тока, напряжение, расход плазмообразующего и защитного газа, диаметр канала сопла, глубина погружения в сопло электрода, диаметр электрода.
Микроплазменная сварка успешно применяется при производстве тонкостенных труб и емкостей, приварке мембран и сильфонов к массивным деталям, соединении фольги, термопар, при изготовлении ювелирных изделий.
Плазменная сварка на средних токах
Плазменная сварка на токах I св = 50-150А имеет много общего с аргонодуговой сваркой вольфрамовым электродом. Однако из-за более высокой мощности дуги и ограниченной площади нагрева она является более эффективной. По энергетическим характеристикам плазменная дуга занимает промежуточное положение между обычной дугой и электронным или лазерным лучом. Она обеспечивает более глубокое проплавление, чем обычная дуга, при меньшей ширине шва. Кроме энергетических характеристик, это связано и с более высоким давлением дуги на сварочную ванну, вследствие чего уменьшается толщина прослойки жидкого металла под дугой и улучшаются условия теплопередачи в глубь основного металла. Сварка может осуществляться с применением присадочной проволоки или без нее.
Плазменная сварка на больших токах
Плазменная сварка на токах более I = 150A оказывает еще большее силовое воздействие на металл (плазменная дуга на токах 150А эквивалентна 300А дуге при сварке неплавящимся электродом).
Сварка сопровождается полным проплавлением с образованием в ванне сквозного отверстия. Происходит как бы разрезание деталей с последующей заваркой
Рисунок. Формирование шва со сквозным проплавлением при плазменной сварке на больших токах
Металл с обратной стороны шва удерживается силами поверхностного натяжения. Диапазон режимов весьма ограничен, поскольку при сварке возможны прожоги.
Плазменная сварка на больших токах используется при сплавлении низкоуглеродистых и легированных сталей, меди, алюминиевых сплавов, титана и других материалов. Во многих случаях она позволяет значительно уменьшить затраты, связанные с разделкой кромок, повысить производительность, улучшить качество швов.
Плазменная сварка требует высокой культуры производства, соблюдения технологии заготовки и сборки, тщательного обеспечения условий охлаждения плазмотронов и правил их эксплуатации. Даже небольшие нарушения режима охлаждения плазмотрона вследствие высоких температур и малого диаметра сопла приводят к его разрушению.
плазменная сварка резка плавление
2. Плазменная резка
Плазменная резка заключается в проплавлении разрезаемого металла за счет теплоты, генерируемой сжатой плазменной дугой, и интенсивном удалении расплава плазменной струей.
Общепринятые обозначения
PAC — Plasma Arc Cutting — резка плазменной дугой
Технология плазменной резки
Плазма представляет собой ионизированный газ с высокой температурой, способный проводить электрический ток. Плазменная дуга получается из обычной в специальном устройстве — плазмотроне — в результате ее сжатия и вдувания в нее плазмообразующего газа. Различают две схемы:
- плазменно-дуговая резка и
- резка плазменной струей.
Рисунок. Схемы плазменной резки
плазменно-дуговой резке
резке плазменной струей
Плазменно-дуговая резка более эффективна и широко применяется для обработки металлов. Резка плазменной струей используется реже и преимущественно для обработки неметаллических материалов, поскольку они не обязательно должны быть электропроводными.
Более подробная схема плазмотрона для плазменно-дуговой резки приведена на рисунке ниже.
Рисунок. Схема режущего плазмотрона
В корпусе плазмотрона находится цилиндрическая дуговая камера небольшого диаметра с выходным каналом, формирующим сжатую плазменную дугу. Электрод обычно расположен в тыльной стороне дуговой камеры. Непосредственное возбуждение плазмогенерирующей дуги между электродом и разрезаемым металлом, как правило, затруднительно. Поэтому вначале между электродом и наконечником плазмотрона зажигается дежурная дуга. Затем она выдувается из сопла, и при касании изделия ее факелом возникает рабочая режущая дуга, а дежурная дуга отключается.
Столб дуги заполняет формирующий канал. В дуговую камеру подается плазмообразующий газ. Он нагревается дугой, ионизируется и за счет теплового расширения увеличивается в объеме в 50-100 раз, что заставляет его истекать из сопла плазмотрона со скоростью до 2-3 км/c и больше. Температура в плазменной дуге может достигать 25000-30000°С.
Фото. Плазменная резка металла
Электроды для плазменной резки изготавливают из меди, гафния, вольфрама (активированного иттрием, лантаном или торием) и других материалов.
Фото. Сопла (в разрезе) для плазменной резки — медное (слева) и медное с вольфрамовой вставкой компании Thermacut (справа)
Количество тепла, необходимое для выплавления реза (эффективная тепловая мощность q р) , поступает из столба плазменной дуги и определяется выражением:
q р = V р ·F·г·c·[(T пл —T 0 )+q]·4,19,
где V р — скорость резки (см/с);
F — площадь поперечного сечения зоны выплавляемого металла (см2 );
г — плотность металла (г/см3 );
с — теплоемкость металла, Дж/(г· °С);
Т пл — температура плавления металла (°С);
T 0 — температура металла до начала резки (°С);
q — скрытая теплота плавления (°С).
Произведение V р ·F·г определяет массу выплавляемого металла за единицу времени (г/с).
Для заданной толщины металла имеется определенное числовое значение эффективной тепловой мощности qр , ниже которого процесс резки невозможен.
Скорость потока плазмы, удаляющего расплавленный металл, возрастает с увеличением расхода плазмообразующего газа и силы тока и уменьшается с увеличением диаметра сопла плазмотрона. Она может достигать около 800 м/с при силе тока 250А.
Плазмообразующие газы
Технологические возможности процесса плазменной резки металла (скорость, качество и др.), а также характеристики основных узлов плазмотронов определяются прежде всего плазмообразующей средой.
Влияние состава плазмообразующей среды на процесс резки:
- за счет изменения состава среды возможно регулирование в широких пределах количества тепловой энергии, выделяющейся в дуге, поскольку при определенной геометрии сопла и данном токе состав среды задает напряженность поля столба дуги внутри и вне сопла;
- состав плазмообразующей среды оказывает наибольшее влияние на максимально допустимое значение отношения тока к диаметру сопла, что позволяет регулировать плотность тока в дуге, величину теплового потока в полости реза и, таким образом, определять ширину реза и скорость резки;
- от состава плазмообразующей смеси зависит ее теплопроводность, определяющая эффективность передачи разрезаемому листу тепловой энергии, выделенной в дуге;
- в ряде случаев весьма значительной оказывается добавка тепловой энергии, выделившейся в результате химического взаимодействия плазмообразующей среды с разрезаемым металлом (она может быть соизмерима с электрической мощностью дуги);
- плазмообразующая среда при взаимодействии с выплавляемым металлом дает возможность изменять его вязкость, химический состав, величину поверхностного напряжения;
- подбирая состав плазмообразующей среды, можно создавать наилучшие условия для удаления расплавленного металла из полости реза, а также предотвратить образование подплывов на нижних кромках разрезаемого листа или делая их легко удаляемыми;
- от состава среды зависит характер физико-химических процессов на стенках реза и глубина газонасыщенного слоя, поэтому для определенных металлов и сплавов некоторые плазмообразующие смеси недопустимы (например, содержащие водород и азот в случае резки титана); диапазон допустимых смесей также сужается с увеличением толщины разрезаемых листов и теплопроводности материала.
От состава плазмообразующей среды зависят и характеристики оборудования:
- материал катода и конструкция катодного узла (способ крепления катода в плазмотроне и интенсивность его охлаждения);
- конструкция системы охлаждения сопел;
- мощность источника питания, а также форма его внешних статических характеристик и динамические свойства;
- схема управления оборудованием, поскольку состав и расход плазмообразующего газа полностью определяют циклограмму формирования рабочей дуги.
При выборе плазмообразующей среды также важно учитывать себестоимость процесса и дефицитность используемых материалов.
Таблица. Наиболее распространенные плазмообразующие газы
Газ |
Обрабатываемый металл |
|||
Алюминий, медь и сплавы на их основе |
Коррозионно-стойкая сталь |
Углеродистая и низколегированная сталь |
||
Сжатый воздух |
Для заготовительной машинной резки |
Для экономичной ручной и машинной резки |
||
Кислород |