Дуговая сварка в среде защитных газов

Реферат

Замечательный русский изобретатель Н.Г.Славянов был по образованию инженером, металлургом.

Последняя четверть прошлого века явилась периодом становления электротехники-науки о процессах, связанных с практическим применением электрических явлений. 30-летний руководитель орудийных и механических производств на одном из крупнейших в России пушечных заводов в Перми, Н.Г.Славянов увидел в электротехнике будущее металлургии, обработки металлов. Он глубоко изучил эту область науки.

Через шесть лет после открытия Н.Н.Бенардосом дуговой сварки, в 1888 году Н.Г.Славянов творчески развил эту идею, разработав и применив сварку металлическим электродом. Впервые в мире этот способ был внедрен Славяновым на Пермском заводе.

Он сконструировал и опробовал автоматическое приспособление для регулировки длины дуги. Это был прообраз современных сварочных аппаратов. Изобретение обессмертило его имя и имеет огромное значение и по сей день.

Так Славяновым была написана одна из страниц истории важнейшей области техники — дуговой сварки металлов, находящей самое широкое применение в современной промышленности и строительстве.

1. Сущность дуговой сварки

При сварке в зону дуги 1 через сопло 2 непрерывно подается защитный газ 3. Теплотой дуги расплавляется основной металл 4 и, если сварку выполняют плавящимся электродом, расплавляется и электродная проволока. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. При сварке неплавящимся электродом электрод не расплавляется, а его расход вызван испарением металла или частичным оплавлением при повышенном допустимом сварочном токе.

Образование шва происходит за счет расплавления кромок основного металла или дополнительно вводимого присадочного металла. В качестве защитных газов применяют инертные: аргон (бесцветный газ, в 1,38 раза тяжелее воздуха, нерастворим в жидких и твердых металлах. Аргон выпускают высшего и первого сортов. Поставляют и хранят аргон в стальных баллонах в сжатом газообразном состоянии под давлением 15 МПа) и гелий и активные: углекислый газ (бесцветный, со слабым запахом, в 1,52 раза тяжелее воздуха, нерастворим в твердых и жидких металлах. Выпускают углекислый газ сварочный, пищевой и технический. Для сварки газ поставляют и хранят в стальных баллонах в сжиженном состоянии под давлением 7 МПа) , водород, кислород и азот, газы, а также их смеси (Аг + Не, Аг + СО2, Аг + О2, СО2 + О2 и др.).

4 стр., 1856 слов

Технология дуговой наплавки металлов

... наплавки Дуговая наплавка под флюсом. Нагрев и расплавление металла, так же как при сварке, осуществляются теплом дуги, горящей между плавящимся электродом и основным металлом под слоем флюса. Наплавка ... металл расплавляется и перемешивается с электродным металлом, а в хвостовой части происходят кристаллизация расплава и образование металла шва. Наплавлять можно слои металла ... аргоне или гелии. Наплавка ...

По отношению к электроду защитный газ можно подавать центрально или сбоку. Сбоку газ подают при больших скоростях сварки плавящимся электродом, когда при центральной защите надежность защиты нарушается из-за обдувания газа неподвижным воздухом. Сквозняки или ветер при сварке, сдувая струю защитного газа, могут резко ухудшить качество сварного шва или соединения. В некоторых случаях, особенно при сварке вольфрамовым электродом, для получения необходимых технологических свойств дуги, а также с целью экономии дефицитных и дорогих инертных газов используют защиту двумя концентрическими потоками газа.

Сварку в защитных газах отличают следующие преимущества:

  • Ш высокая производительность (в 2-3 раза выше обычной дуговой сварки);
  • Ш возможность сварки в любых пространственных положениях, хорошая защита зоны сварки от кислорода и азота атмосферы, отсутствие необходимости очистки шва от шлаков и зачистки шва при многослойной сварке;
  • Ш малая зона термического влияния;
  • Ш относительно малые деформации изделий;
  • Ш возможность наблюдения за процессом формирования шва;
  • Ш доступность механизации и автоматизации.

Недостатками этого способа сварки являются необходимость принятия мер, предотвращающих сдувание струи защитного газа в процессе сварки, применение газовой аппаратуры, а в некоторых случаях и применение относительно дорогих защитных газов.

2. Технологические параметры процессы

Свойства защитных газов оказывают большое влияние на технологические свойства дуги и форму швов. Например, по сравнению с аргоном гелий имеет более высокий потенциал ионизации и большую теплопроводность при температурах плазмы. Поэтому дуга в гелии более «мягкая». При равных условиях дуга в гелии имеет более высокое напряжение, а образующийся шов имеет меньшую глубину проплавления и большую ширину. Поэтому гелий целесообразно использовать при сварке тонколистового металла. Кроме того, он легче воздуха и аргона, что требует для хорошей защиты зоны сварки повышенного его расхода (1,5-3 раза).

Углекислый газ по влиянию на форму шва занимает промежуточное положение.

Широкий диапазон используемых защитных газов, обладающих значительно различающимися теплофизическими свойствами, обусловливает большие технологические возможности этого способа как в отношении свариваемых металлов (практически всех), так и их толщин (от 0,1 мм до десятков миллиметров).

Сварку можно выполнять, используя также неплавящийся (угольный, вольфрамовый) или плавящийся электрод.

По сравнению с другими способами сварка в защитных газах обладает рядом преимуществ:

  • Ш высокое качество сварных соединений на разнообразных металлах и сплавах различной толщины;
  • Ш возможность сварки в различных пространственных положениях;
  • Ш возможность визуального наблюдения за образованием шва, что особенно важно при полуавтоматической сварке;
  • Ш отсутствие операций по засыпке и уборке флюса и удалению шлака;
  • Ш высокая производительность и легкость механизации и автоматизации;
  • Ш низкая стоимость при использовании активных защитных газов.

К недостаткам способа по сравнению со сваркой под флюсом относится необходимость применения защитных мер против световой и тепловой радиации дуги.

11 стр., 5010 слов

Курсовая работа сварка в защитном газе

... окисления в зону горения дуги под небольшим давлением подают защитный газ. Общий вид рабочего поста для сварки алюминия аргонодуговой сваркой представлен на рисунке ... работе с ним с использованием обычной электродуговой сварки. Для предотвращения взаимодействия нагретого алюминия с содержащимся в воздухе кислородом применяют один из инертных газов, а именно Для сварки применяют тугоплавкие электроды ...

При сварке в среде защитных газов различают следующие основные способы: сварка постоянной дугой, импульсной дугой; плавящимся электродом и неплавящимся электродом.

Наиболее широко применяется сварка в среде защитных газов плавящимся и неплавящимся электродами.

Сварка неплавящимся электродом в защитных газах — это процесс, в котором в качестве источника теплоты применяется дуга, возбуждаемая между вольфрамовым или угольным (графитовым) электродом и изделием.

Сварка постоянным током прямой полярности позволяет получать максимальное проплавление свариваемого металла.

При сварке плавящимся электродом в среде защитных газов различают следующие две основные разновидности процесса: сварка короткой дугой и сварка длинной дугой.

Сварка неплавящимся электродом

Условием стабильного горения дуги при дуговой сварке в защитной среде инертных газов на переменном токе является регулярное восстановление разряда при смене полярности. Потенциал возбуждения и ионизации инертных газов аргона и гелия выше, чем у кислорода, азота и паров металла, поэтому для возбуждения дуги переменного тока требуется источник питания с повышенным напряжением холостого хода. Сварочная дуга в среде инертных газов (аргона или гелия) отличается высокой стабильностью и для ее поддержания требуется небольшое напряжение. Высокая подвижность электронов обеспечивает достаточное возбуждение и ионизацию нейтральных атомов при столкновении с ними электронов.

В том случае, когда катодом является вольфрам, дуговой разряд происходит главным образом за счет термоэлектронной эмиссии благодаря высокой температуре плавления и относительно низкой теплопроводности вольфрама, что обусловливает неодинаковые условия горения дуги при прямой и обратной полярности. При обратной полярности (изделие является катодом — минус) напряжение при возбуждении дуги должно быть больше, чем при прямой полярности. Поэтому из-за значительной разницы в свойствах вольфрамового электрода и свариваемого металла кривая напряжения дуги имеет не симметричную форму, а в ней появляется постоянная составляющая, которая вызывает появление в сварочной цепи постоянной составляющей тока. Постоянная составляющая тока в свою очередь создает постоянное магнитное поле в сердечнике трансформатора и дросселя, что приводит к уменьшению мощности сварочной дуги и ее устойчивости. Появление в цепи постоянной составляющей тока не обеспечивает нормального ведения процесса сварки и особенно при сварке алюминиевых сплавов, так как сварочная ванна даже при небольшом содержании кислорода и азота покрывается тугоплавкой пленкой окислов и нитридов, которые препятствуют сплавлению кромок и формированию шва.

Очищающее действие сварочной дуги при сварке переменным током проявляется в те полупериоды, когда катодом является изделие благодаря катодному распылению, так как в этом случае происходит разрушение окисной и нитридной пленок.

16 стр., 7664 слов

Технологические основы процесса сварки металлов и сплавов (её ...

... свой век. До практического применения дуги для целей сварки прошло 80 лет. Н.Н.Бенардос впервые применил электрическую дугу между угольным электродом и металлом для сварки. Он применил созданный им ... тогда впервые в мире были разработаны новые высокопроизводительные виды сварки, это электрошлаковая, в углекислом газе, диффузная и другие. Фундаментальные исследования по разработке новых процессов ...

При обратной полярности применяют низкие плотности тока, а практически такая дуга не применяется. При прямой полярности тепла выделяется меньше на электроде, так как его значительная часть расходуется на плавление свариваемого металла.

Сварка плавящимся электродом

При дуговой сварке плавящимся электродом в среде защитных газов геометрическая форма сварного шва и его размеры зависят от мощности сварочной дуги, характера переноса металла через дуговой промежуток, а также от взаимодействия газового потока и частиц металла, пересекающих дуговой промежуток, с ванной расплавленного металла.

В процессе сварки на поверхность сварочной ванны оказывает давление столб дуги за счет потока газов, паров и капель металла, вследствие чего столб дуги погружается в основной металл, увеличивая глубину проплавления. Поток газов и паров металла, направляемый от электрода в сварочную ванну, создается благодаря сжимающему действию электромагнитных сил. Сила воздействия сварочной дуги на ванну расплавленного металла характеризуется ее давлением, которое будет тем больше, чем концентрированнее поток газа и металла. Концентрация потока металла увеличивается с уменьшением размера капель, который определяется составом металла, защитного газа, а также направлением и величиной сварочного тока.

Сварочная дуга, образованная в результате плавления электрода в среде инертных газов, имеет форму конуса, столб которой состоит из внутренней и внешней зоны. Внутренняя зона имеет яркий свет и большую температуру.

Во внутренней зоне происходит перенос металла, и ее атмосфера заполнена святящимися парами металла. Внешняя зона имеет менее яркий свет и представляет собой ионизированный газ.

3. Область применения

электрод флюс шлак сварка

Области применения сварки в защитных газах охватывают широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.).

Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.

В углекислом газе сваривают конструкции из углеродистой и низколегированной сталей (газо- и нефтепроводы, корпуса судов и т. д.).

Преимущество полуавтоматической сварки в СО 2 с точки зрения ее стоимости и производительности часто приводит к замене ею ручной дуговой сварки покрытыми электродами.

Заключение

Сварку в среде защитных газов различают на следующие основные способы: сварка постоянной дугой, импульсной дугой; плавящимся электродом (сварка короткой дугой и сварка длинной дугой) и неплавящимся электродом.

Так как дуговую сварку в среде защитных газов можно использовать разными способами сваривания, то данная сварка нашла большое применение в сфере строительства. При такой сварке получается шов высококачественного сварочного соединения на разнообразных металлах и сплавах различной толщины. В таких швах отсутствует необходимость очистки шва от шлаков и зачистки шва при многослойной сварке.

Библиографический список

[Электронный ресурс]//URL: https://inzhpro.ru/referat/na-temu-zaschitnyie-gazyi/

1. Виноградов В.С. Электрическая дуговая сварка: учеб. пособие для нач. проф. образования. — М.: Издательский центр «Академия», 2007. — 320с.

22 стр., 10690 слов

УДК 625. Полосин М. Д. П52 Машинист дорожных и строительных машин ...

... 2,6...11,9 назад 4,1...8,4 4,1...8,4 4,1...8,4 3,4...6,1 4,1 ...7,8 Дорожный просвет, мм 380 330 380 330 330 Объем ... необходимости эк­стренного вмешательства в работу такой системы машинист буль­дозера вручную включает соответствующую секцию гидрораспре­делителя. ... разрыхлены. Отвал соединен с базовым трактором дву­мя брусьями и винтовыми раскосами. Благодаря изменению дли­ны раскосов, вручную можно ...

2. Ганенко А.П. и др. Оформление текстовых и графических материалов при подготовке дипломных проектов, курсовых и письменных экзаменационных работ (требования ЕСКД): Учеб. для нач. проф. образования: Учебник для сред. Проф. образования. — М.: ПрофОбрИздат, 2001. — 352с.

3. Казаков Ю.В. и др. Сварка и резка материалов: Учебное пособие для нач. проф. образования. — М.: Издательский центр «Академия», 2004. — 400с.

4. Куликов О.Н., Ролин Е.И. Охрана труда при производстве сварочных работ: Учеб. пособие для нач. проф. образования. — М.: Издательский центр «Академия», 2006. — 176с.

5. Чернышов Г.Г. Сварочное дело: Сварка и резка металлов: Учебник для нач. проф. образования. — М.: Издательский центр «Академия», 2004. — 496с.