Удельный вес в среднем равен 0,865; содержание серы – 1,47 %; смол – 27 – 37%; парафина – 5,3 %. Средняя вязкость нефти по месторождению составляет 30 мПаЧс. В каменноугольных отложениях промышленно-нефтеносными являются турнейские, визейские, и верей-башкирские отложения. Нефтеносность отложений турнейского яруса C1t отмечается по керну, газокаротажу и по результатам опробования скважины. В визейском ярусе нефтепроявления отложениях бобриковского C1bb, тульского C1tl и алексинского C1alгоризонтов. Промышленные залежи нефти в основном приурочены к терригенным отложениям бобриковского (угленосного) горизонта. В угленосном горизонте Ромашкинского месторождения по комплексу геолого-геофизических данных выделено до 60 залежей. Промышленная нефтеносность верейского горизонта C2vr доказана опробованием скважин на соседнем Ново-Елховском месторождении. В скважинах Ромашкинского месторождения отобран нефтенасыщенный керн из верей-башкирских отложений. Нефтенасыщение пород неравномерное, в виде пятен. Нефть очень густая. В пермских отложениях нефтепроявления на Ромашкинском месторождении относятся к отложениям артинского P1ar и уфимского P1u ярусов. В отложениях артинского яруса встречены скопления густой окисленной нефти в трещиноватых доломитизированных известняках. Темно-коричневые песчаники, насыщенные битумом до 3 — 7 %, Уфимского яруса P1u в ряде пунктов выходят на поверхность. Нефть обоих ярусов густая, тяжелая, нетекучая. Подводя итог рассмотрению нефтепроявлений по разрезу можно констатировать, что на Ромашкинском месторождении, кроме горизонта DI, несомненный промышленный интерес представляют турнейские, бобриковские, тульские и верей-башкирские отложения. В разрезе Ромашкинского месторождения выделяется 8 гидрогеологических комплексов:
- I — элювий кристаллического фундамента и терригенная часть девона;
- II — карбонатная толща верхнего девона и турнейского яруса нижнего карбона;
- III — терригенная часть яснополянских отложений нижнего карбона;
- IV — карбонатная толща верхневизейского подъяруса, намюрского яруса нижнего карбона и башкирского яруса среднего карбона;
- V — верейский горизонт среднего карбона;
- VI — карбонатная толща среднего и верхнего карбона;
- VII — нижнепермские отложения (условно);
- VIII — верхнепермские и четвертичные отложения.
В пределах каждого комплекса характеристика водоносных горизонтов и состав вод близки, благодаря наличию гидродинамической связи. Наблюдаемые закономерности изменения гидрогеологических условий по разрезу палеозоя обусловлены, главным образом, наличием в нем относительных водоупоров, затрудняющих активную гидродинамическую связь между отдельными комплексами. Такими водоупорами являются плотные глинистые, глинисто-карбонатные и, реже, карбонатные породы в кыновском горизонте и среднефранском подъярусе девона, в верхней части яснополянского и нижней части окского надгоризонтов нижнего карбона, в верейском горизонте среднего карбона и в уфимском ярусе верхней перми. Снизу вверх по разрезу палеозоя наблюдается уменьшение величины общей минерализации подземных вод и, соответственно, абсолютного содержания в них хлора (от 420 до 0,3 мг-экв/100 гр), магния (от 40 до 0,5 мг-экв/100 гр), брома (1060 — 0 мг/л), абсолютного и относительного содержания кальция (от 120 до 1,0 – 0,5 мг-экв/100 гр).
Литология и прогноз коллекторов в неогеновых отложениях Таманского полуострова
... Анастасиевско-Троицкого месторождения. Анализ условий формирования залежей нефти и газа. При составлении дипломного проекта использовались производственные фондовые материалы НТЦ Роснефть, ОАО Краснодарнефтегеофизка, Абинского Управления Геофизических работ. Работа ... газа. Попытки вскрыть подмайкопские отложения на Анастасиевском участке пока ... пачка песков в мэотическом ярусе, продуктивная по данным ...
В то же время наблюдается увеличение абсолютного и относительного содержания сульфатов (от 0,2 до 15мг-экв/100гр), относительного содержания натрия (0,6 — 30), хлоробромного коэффициента (от 152 до 475 и более), коэффициента сульфатности (от 0 до 100-7300).
По преобладающим в минеральном составе компонентам смена вод происходит от хлоридно-натриевых в девонских, нижне- и среднекаменноугольных отложениях до сульфатно-натриевых в нижнепермских и до сульфатно-кальциевых, гидрокарбонатно-натриевых и гидрокарбонатно-кальциевых в верхнепермских отложениях. В составе водорастворенного газа вверх по разрезу уменьшается содержание углеводородов (от 70 — 80 % до 10 — 15 % и менее) и увеличивается содержание азота (от 15 — 50 % до 80 — 90 % и более).
Содержание углеводородов и газовый фактор выше в водах пашийского и бобриковского горизонтов. Снизу вверх от терригенной толщи девона к верхнепермским и четвертичным отложениям происходит качественный и количественный рост бактериального населения вод и переход от анаэробных форм к аэробным. Наблюдается по разрезу уменьшение температуры подземных вод от 43 — 44С (пашийский горизонт) до 26С (окский надгоризонт).
Причем происходит неравномерное, скачкообразное изменение геотермической ступени и градиента, что объясняется в основном различными теплопроводящими свойствами горных пород и наличием водоупоров. Наиболее водообильными являются песчаники живетскогоD2gv и франского D3f ярусов девона и бобриковского горизонта C1bb нижнего карбона. В терригенной части девона водоносные горизонты приурочены к песчано-алевролитовым пластам: DI. По минеральному составу воды характеризуются высокой минерализацией (удельный вес 1,176 – 1,93; общая минерализация – до 840 мг-экв/100гр; плотный остаток до 295 г/л), являются хлоридно-натриевыми рассолами со значительным содержанием кальция (до 120 мг-экв/100гр), из микрокомпонентов – брома (до 1060 мг/л) и с ничтожным содержанием сульфатов и гидрокарбонатов; реакция среды кислая. Динамическая (абсолютная) вязкость подземных вод в пластовых условиях составляет 16 -12,6 мПаЧс. В составе водорастворенного газа преобладают углеводороды (до 70- 80 объемных), при этом превалирует метан. Газовый фактор достигает 395см/л, удельный вес газа равен 0,72 – 0,83. Содержание азота составляет 15 — 20 %. В небольших количествах содержатся также углекислый газ, водород, гелий, аргон и другие. Воды недонасыщены растворенным газом, т.к. давление насыщения (4,2 — 8,4 МПа) меньше пластового давления. Естественное движение вод терригенной части девона со средней скоростью 1,0 — 1,3см/год, по данным происходит с севера на юг и с запада на восток (общее направление с северо-запада на юго-восток).
Это направление движения подтверждается изменением по территории Татарии минерального и газового состава вод, наклоном водонефтяного контакта залежей нефти Ромашкинского, Бавлинского и Туймазинского месторождений, а также данными по соседним районам. Промышленная разработка месторождения с применением внутриконтурного и законтурного заводнения привела к существенному изменению его естественного гидрогеологического режима. В процессе разработки, в связи со смешиванием и взаимодействием между собой, а также с нефтью и растворенными в ней газами, происходит изменение минерального, микрокомпонентного, газового состава, физико-химических свойств пластовых и закачиваемых вод. Вместе с закачиваемой водой в горизонт попадают ряд групп бактерий (сульфатовосстанавливающих, псевдомоны, сапрофиты и другие), среди которых особое значение приобретает деятельность бактерий, восстанавливающих сульфаты закачиваемой воды до сероводорода. В связи с закачкой в пласт больших объемов холодной воды геометрические условия его также несколько изменяются в сторону некоторого снижения пластовой температуры. По результатам исследований значение параметров нефти в пластовых условиях по залежи 1:давление насыщения 4,2 МПа, газовый фактор18,6м/т вязкость пластовой нефти 27,3 мПаЧс, а среднее значение дегазирован ной нефти при 20С равно 16,3 мПаЧс, плотность пластовой нефти 873кг/м. Пластовая вода представлена хлорокальциевыми рассолами, общая минерализация которых колеблется от 242,9 до 284,3 г/л. Плотность пластовых вод изменяется 1170 — 1190 кг/м3, вязкость от 1,96 до 1,97 мПаЧс, объемный коэффициент равен 1.
АНАЛИЗ ТЕКУЩЕГО СОСТОЯНИЯ РАЗРАБОТКИ
Анализ фонда скважин, текущих дебитов и обводненности
В 1968 году «ТатНИПИнефть» был составлен проект разработки для разбуренной части Лениногорской площади с выделением Западно-Лениногорской площади в самостоятельный объект разработки.
Последний проектный документ – «Анализ разработки Западно-Лениногорской площади Ромашкинского месторождения» (с уточнением проектных показателей), составленный «ТатНИПИнефть», был утвержден 27.12.2006г.
По состоянию на 1.01.2009 г пробурено 923 скважины, из них 659- эксплуатационных, 220-нагнетательных, 12-специальных и 32-дублера.
В табл. 2.1 представлена характеристика пробуренного фонда скважин.
Добыча нефти
В отчетном году из горизонта Д1 отобрано 263735т нефти. С начала разработки добыто 68760099т, что составляет 90,1% НИЗ и 45,6% НБЗ нефти по Западно -Лениногорской площади. Текущий коэффициент нефтеотдачи-0,456.
Средний дебит действующей скважины составил на конец года 2,7т/сут по нефти и 19,17т/сут по жидкости.
В результате применения циклического и нестационарного заводнения за отчетный год дополнительно добыто 3,3 тыс. т нефти. Продолжались работы, направленные на повышение нефтеотдачи пластов.
Таблица 2.1.1 Характеристика пробуренного фонда скважин
Р а с ш и ф р о в к а ф о н д а | на 1.01.2008г. | на 1.01.2009г. |
1. Дающие нефть, всего/ в т.ч. нагнетательные а) фонтан/ в т.ч. нагнетат. б) ЭЦН/в т.ч. нагнетат. в) СКН/в т.ч. нагнетат. |
310/57 | 307/56 |
-/ — | -/ — | |
21/2 | 22/2 | |
289/55 | 285/54 | |
2. Бездействующий фонд/в т.ч. нагнетатательные. | 49/5 | 51/4 |
3. Осваиваемые и ожид. освоения/ в т.ч. нагнетат. | — | — |
4. Эксплуатационный фонд/ в т.ч. нагнетат. | 359/62 | 358/60 |
5. Дающие техническую воду. | 3 | 3 |
6. Нагнетатательный фонд. а) под закачкой/ в т.ч. остан. по технич. прич. б) в бездействии после закачки. в) в ожидании освоения после бурения. г) в ожид. освоен. после экспл. на нефть. |
213 | 221 |
189/54 | 196/76 | |
23 | 23 | |
— | — | |
1 | 2 | |
7. Контрольные | 5 | 4 |
8. Пьезометрические | 52 | 47 |
9. В консервации | 18 | 16 |
10.В ожидании ликвидации | — | 1 |
11.Ликвидированные/ в т.ч. а) по геологическим причинам б) по техническим причинам |
221 | 221 |
164 | 164 | |
57 | 57 | |
12.Переведено на другие горизонты | 52 | 52 |
13.Всего пробурено | 923 | 923 |
Для изоляции водопритоков широко применялись в отчетном году такие методы, как закачка биополимеров («ксантан») в нагнетательные и добывающие скважины, КПС, СНПХ-9350, ВУС, ГЭР и ГЭС –М (изменение направления фильтрационных потоков) в нагнетательные скважины. Производили закачку МПС в добывающую скважину, низкомодульное жидкое стекло в нагнетательные скважины. В целях повышения коэффициента охвата пласта заводнением, выравнивания профиля приемистости, перераспределения фильтрационных потоков произведена закачка смеси горячего битума и цемента с помощью теплосохраняющих труб «термокейс» в нагнетательную скважину 6009а. Для увеличения притока жидкости использовались методы депрессионной перфорации совместно с ТИМ, производили ГРП, ОПЗ (ГИВ, ИХВ, СНПХ-9030,разглинизация, глинокислота, растворители).
Общая эффективность от применения методов ПНП составила за отчетный год 58780т нефти, от мероприятий данного года – 4700т.
Основные рекомендации авторского надзора выполнены.
Закачка воды
За отчетный 2008 год в разрабатываемые пласты пашийского горизонта Западно-Лениногорской площади закачано 1622,66тыс/м3, что является и общей производительной закачкой по площади.
В течение отчетного года под нагнетание воды в разрабатываемые пласты освоена одна скважина- 6147а. Две скважины не освоились:12415а-отсутствие приемистости;6034а-аварийная.
Нагнетательный фонд составил на конец года 196 скважин. Циклическое воздействие на пласт осуществлялось в 163 скважинах.
Компенсация отборов жидкости в пластовых условиях к закачке за год составила 104,8 %.
Обводненность продукции
Добыча воды
Отбор воды из горизонта ДI Западно-Лениногорской площади составил в отчетном году 1295,5 тыс. т.
Среднегодовая обводненность продукции равна 83,1 %, что на 1,7% выше прошлогоднего показателя.
Таблица 2.1.2 Состояние пластового давления
Блоки | П л а с т о в о е д а в л е н и е |
+- по площади |
+- в зоне отбора |
|||
по площади | в зоне отбора | |||||
на 1.1.08 г. | на 1.1.09 г. | на 1.1.08 г | на 1.1.09 г. | |||
1 2 3 По площ. |
167,7 170,2 172,2 170,2 |
168,4 170,1 173,0 170,7 |
163,8 164,4 165,4 164,6 |
164,4 163,8 166,0 164,8 |
+0,7 -0,1 +0,8 +0,5 |
+0,6 -0,6 +0,6 +0,2 |
Анализ выработки пластов
Пласт «а» содержит 13,3 % нефти от НИЗ по площади. С начала разработки по пласту отобрано 75,1 % от НИЗ нефти по пласту.
произведен в добыващих скважинах: 6372а,39497,39498.
В активную разработку по данному пласту за отчетный год вовлечено 37 тыс. т извлекаемых запасов нефти.
Пласт «б1» содержит 9,6 % от НИЗ нефти по площади, накопленный отбор нефти составляет 77,0 % от НИЗ нефти по пласту.
произвели на добывающей скважине 39528,нагнетательной скважине 39527а.
Отключение пласта произвели на добывающих скважинах 6146 и 12469 в связи с зарезкой боковых стволов.
В активную разработку извлекаемые запасы нефти по пласту в отчетном году не вовлечены.
Пласт «б2» содержит 13,0 % от НИЗ нефти по площади. С начала разработки отобрано 88,8 % от извлекаемых запасов по пласту.
Отключение пласта произвели на добывающей скважине 6146 в связи с зарезкой бокового ствола.
В активную разработку извлекаемые запасы нефти по пласту в отчетном году не вовлечены.
Пласт «б3» содержит 25,6 % от НИЗ нефти по площади. С начала разработки отобрано 93,4 % от извлекаемых запасов по пласту.
произведен в добывающих скважинах:12510в, 1051в.
Отключение пласта в добывающих и нагнетательных скважинах не производили.
В активную разработку за год вовлечено 15 тыс. т нефти.
Пласт «в» содержит 19,5 % НИЗ нефти по площади. Накопленный отбор нефти составил 96,7 % от запасов по пласту.
произведен в добывающих скважинах 6146 (зарезка бокового ствола) и12473а.
Отключение пласта произвели в нагнетательной скважине 6559.
Пласт «г1» содержит 14,9 % НИЗ нефти по площади. С начала разработки отобрано 96,0 % от извлекаемых запасов нефти по пласту.
произведен в добывающей скважине 6146 (зарезка бокового ствола).
Отключение пласта произвели в нагнетательной скважине 6559.
Пласт «г2+3» содержит 4,0 % от НИЗ нефти по площади. Накопленный отбор составляет 99,9 % от запасов по пласту.
и отключений пласта в отчетном году не было.
Динамика основных показателей разработки приведены в табл. 2.2.1 и на рис. 2.2.1.
АНАЛИЗ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ МИКРОБИОЛОГИЧЕСКИХ МЕТОДОВ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ В УСЛОВИЯХ РАССМАТРИВАЕМОГО ОБЪЕКТА РАЗРАБОТКИ
Краткая аннотация технологий увеличения нефтеизвлечения.
Микробиологическое воздействие.
Технология МБВ-М относится к микробиологическим методам увеличения нефтеотдачи пластов и предназначена для повышения нефтеотдачи обводненных пластов за счет внутрипластового синтеза нефтевытесняющих агентов.
Технологический процесс реализуется закачкой микробиологического раствора, содержащего углеводородокисляющие бактерии (УОБ), источники кислорода, азота и фосфора таким образом, чтобы окончание закачки совпало с окончанием цикла закачки воды, проводимого в соответствии с программой заводнения.
В пластовых условиях УОБ способны синтезировать органические растворители, такие как спирты и альдегиды, жирные кислоты поверхностно-активного действия и газы, увеличивающие подвижность нефти. Технология может применяться на участках заводняемых как пресной, так и минерализованной водой, использует доступные реагенты отечественного производства, не требует сложного оборудования для реализации. За счет применения естественных непатогенных микроорганизмов и полностью утилизируемых в природе реагентов технология безопасна для окружающей среды и человека.
Микробиологическое воздействие является третичным методом повышения нефтеотдачи пластов (ПНП), проводимое для создания оторочки с целью увеличения коэффициента охвата и коэффициента вытеснения.
Применение водных дисперсий маслорастворимых НПАВ
Разработку заводненных пластов более эффективно вести с применением маслорастворимых ПАВ.
При закачке водной дисперсии маслорастворимых ПАВ в пласте на фронте вытеснения формируется микроэмульсионная оторочка с низким содержанием нефти, хорошей нефтевытесняющей способностью и вязкостью, близкой к вязкости нефти, что увеличивает коэффициент вытеснения и охват пласта заводнением.
Реализация технологии применения водной дисперсии АФ9-6 осуществляется путем нагнетания в пласт оторочки дисперсии НПАВ продвижения ее технической или сточной водой, подаваемой через систему ППД.
Размер создаваемой в пласте оторочки выбирается по результатам промысловых исследований и в зависимости от конкретных геолого-физических условий уточняется и составляет величину не более 1 % порового объема.
Концентрация АФ9-6 в оторочке составляет 5-10 % мас. В технологическом процессе используются материалы и оборудование, выпускаемое отечественной промышленностью.
Применение водорастворимых поверхностно-активных веществ
Сущность метода применения водорастворимых поверхностно-активных веществ (ПАВ) основана на повышении нефтевытесняющих свойств воды и активизации капиллярных и диффузионных процессов вытеснения за счет снижения межфазного натяжения нефти на контакте с закачиваемой водой и уменьшения краевых углов смачивания.
Применение ПАВ способствует отмыву пленочной нефти, гидрофилизации породы, снижению набухаемости глинистых минералов, ускорению капиллярной пропитки, увеличению фазовой проницаемости для нефти.
Закачка водорастворимых ПАВ осуществляется либо путем долговременной дозированной закачки с КНС больших объемов растворов ПАВ низкой (0,05 %) концентрации, либо путем разовой закачки малых объемов растворов высокой (5-10 %) концентрации ПАВ в отдельные нагнетательные скважины. В качестве водорастворимых ПАВ используются ПАВ типа ОП-10, АФ9-12.
Преимуществами разовой технологии являются высокая эффективность и ускорение работ с учетом постепенного размыва концентрированной оторочки, разрушаемой в пласте закачиваемой водой. Используются 5-10% растворы ПАВ с оторочкой 0,005 — 0,010 порового объема пласта. Увеличение коэффициента нефтеизвлечения при первичном заводнении составляет 4,5%.
Применение капсулированных полимерных систем
Технология предназначена для обеспечения регулирования процесса разработки в неоднородных и многопластовых коллекторах, увеличения нефтеотдачи и сокращения сроков разработки объектов воздействия с выходом на запланированный коэффициент нефтеотдачи.
Разработанная технология предлагает использование полимерной композиции, представляющей собой полимерный раствор с добавлением солей алюминия. Введение солей алюминия в полимерный раствор при оптимальном соотношении позволяет получить на основе гетерофазной сшивки макромолекул капсулированные полимерные системы. Размер полимерных капсул составляет 0.1-10мкм.
Механизм действия модифицированного полимерного заводнения заключется в том, что капсулы сшитого полиакриламида временно закупоривают по глубине пласта высокопроницаемые участки, тем самым изменяют направление движения воды в слабо дренируемые зоны пласта. В результате достигается повышение охвата заводнением.
Для реализации технологии требуется специальная установка для приготовления и закачки полимерной композиции в водоводы высокого давления нагнетательных скважин. В случае отсутсвия установки испытание технологии предполагается осуществить путем использования существующих на промыслах технологических средств.
Применение композиций ДКМ
Технология предназначена для вовлечения в разработку недренируемых запасов нефти за счёт увеличения охвата пластов заводнением, которое достигается путём предварительного блокирования высокопроницаемых обводнившихся зон пластов вязкоупругими сшитыми системами перераспределения фронта заводнения на неохваченные ранее воздействием продуктивные пропластки. Создание блокирующей оторочки в пласт осуществляется закачкой в нагнетательные скважины сшитых полимерных систем на основе эфиров целлюлозы, полимерных реагентов, наполнителей и воды.
Технологию рекомендуется применять при разработке нефтяных месторождений, представленных неоднородными по проницаемости коллекторами. Для сравнения микробиологического воздействия с другими третичными методами ПНП рассмотрим таблицу 3.1.
Таблица 3.1 Сравнение эффективности некоторых МУН на объектах Западно-Лениногорской площади на 1 января 2006 г (отчетность ТатАСУнефть)
2000 г | 2001 г | 2002 г | 2003 г | |||||
наименование мероприятия | кол-во скв. | доп. добыча нефти,т | кол-во скв. | доп. добыча нефти,т | кол-во скв. | доп. добыча нефти,т | кол-во скв. | доп. добыча нефти,т |
ЩСПК + ГОК | 330 | 2 | 265 | 1 | 2522 | 2 | 3099 | |
Микробиологическое воздействие | 1 | 6363 | 23 | 4935 | 12 | 8167 | 3 | 7482 |
Оторочка серной кислотой | 0 | 0 | 0 | 0 | ||||
Оторочка раствора ПAB | 2 | 19 | 0 | |||||
ТатНО-2000-03 (Латекс) | 1 | 15 | 1069 | 893 | ||||
ЩСПК + ГОК | 1077 | 657 | 6 | 10891 | ||||
Микробиологическое воздействие | 2549 | 457 | 71 | 44897 | ||||
Оторочка серной кислотой | 0 | 0 | 1 | 3501 | ||||
Оторочка раствора ПAB | 0 | 0 | 2 | 19 | ||||
ТатНО-2000-03 (Латекс) | 581 | 0 | 1 | 2558 |
Из таблицы видно, что микробиологическое воздействие было проведено в 71 нагнетательных скважинах. В результате суммарная дополнительная добыча за период с 2000 г по 2005 г составила 44897 т, что в среднем на одну скважину – 632 т.
Метод ЩСПК + ГОК принес дополнительную добычу 10891 т, в среднем на одну скважину – 1815 т.
При закачке серной кислоты в одну нагнетательную скважину дополнительная добыча составила 3501 т.
Оторочка раствора ПАВ оказалась наименее эффективным мероприятием, т.к. принесла всего лишь 19 т дополнительной добычи.
Применение мероприятия ТатНО-2000-03 позволило получить дополнительную добычу 2558 т.
В результате проделанного анализа видно, что микробиологическое воздействие мало эффективно и это способствовало отказу НГДУ «Лениногорскнефть» от данного мероприятия на Западно-Лениногорской площади.
4. ОПРЕДЕЛЕНИЕ ТЕХНОЛОГИЧЕСКОЙ ЭФФЕКТИВНОСТИ
4.1 Выбор участка
Технология МБВ-М реализуется на нагнетательных скважинах, находящихся под закачкой как пресных, так и минерализованных вод.
Объект разработки – залежи нефти в терригенных коллекторах, разрабатываемые с использованием заводнения.
Оптимальные геолого-технические условия участков для применения технологии МБВ-М следующие:
- система разработки – внутриконтурное заводнение;
- проницаемость – не менее 0,1 мкм2;
- обводненность добывающих скважин участка воздействия – от 60% до 98%;
- пластовая температура – не более 50 °С;
- нефтенасыщенная толщина пласта – от 2 м до 10 м;
- приемистость нагнетательных скважин (при Р = Рдоп – 25 %) – не менее 100 м3/сут;
- вязкость нефти в пластовых условиях – от 3 до 50 мПаЧс
- плотность закачиваемой воды на участке воздействия – не более 1150кг/м3;
- плотность воды, используемой для получения микробиологического раствора – не более 1065 кг/м3;
— Технологический процесс (ТП) осуществляется через скважину имеющую герметичную эксплуатационную колонну, исправную устьевую арматуру, зумпф не менее 5 м, позволяющий проводить комплекс промысловых геофизических исследований (ПГИ), характеризующуюся отсутствием заколонных перетоков.
Непосредственно перед началом работ (но не позднее, чем за сутки) скважина подключается под закачку воды с целью выхода на установившийся режим работы.
Выбор скважины для технологии МБВ-М осуществляется геологической службой НГДУ совместно с разработчиками технологии исходя из геолого-промысловых данных и критериев применимости технологии и утверждается главным геологом НГДУ.
4.2 По методу «прямого» счета
Эта методика может применяться для экспортной оценки эффекта МУН. Суть методики заключается Таблица 4.2.1 Показатели работы (нагнетательная скважина № 1)
Предыстория | История | ||||
Дата | Добыча за месяц, тыс.т | Дата | Добыча за месяц, тыс.т | ||
нефть | вода | нефть | вода | ||
07.2008 | 345 | 9265 | 07.2009 | 371 | 8670 |
08.2008 | 268 | 9245 | 08.2009 | 359 | 8569 |
09.2008 | 257 | 8600 | 09.2009 | 336 | 8963 |
10.2008 | 249 | 7669 | 10.2009 | 264 | 8863 |
11.2008 | 276 | 10604 | 11.2009 | 255 | 10203 |
12.2008 | 286 | 10887 | 12.2009 | 218 | 10463 |
01.2009 | 323 | 7956 | |||
02.2009 | 281 | 7688 | |||
03.2009 | 321 | 8941 | |||
04.2009 | 354 | 8583 | |||
05.2009 | 363 | 8837 | |||
06.2009 | 319 | 8487 |
В координатах «месячная добыча нефти — календарное время» за нулевой отсчет времени принимаем месяц (07.2008) на 1 год раньше месяца начала воздействия МУН (07.2009), т.е. в качестве ближней предыстории берем 12 месяцев. На график (рисунок 1) наносим точки месячной добычи нефти по месяцам предыстории и истории. Проводим вертикальную прямую через месяц начала воздействия (07.2009).
Далее по эксплуатационным карточкам добывающих скважин определяем добычу нефти за 12 месяцев предыстории (3642 т) и среднемесячную добычу в этот период (303,5 т).
Последнюю величину откладываем на графике в виде горизонтальной прямой до пересечения с месяцем воздействия (07.2009).
Затем период предыстории делим на две равные части вертикальным отрезком прямой. Таким образом, период предыстории превратился в квадратную диаграмму, на которой в первом и четвертом квадратах оказалось по 1 точке, во втором – и в третьем — по 5 точек. Для определения наличия тренда и его надежности рассчитываем коэффициент ассоциации Юла:
(4.2.1)
где а, б, в, г – количество точек в соответствующих квадрантах. Если КаЮл > 0,7, считают тренд установленным и достаточно надежным.
Отсюда коэффициент ассоциации Юла равен:
Поскольку КаЮл больше 0,7, считаем тренд (тенденцию изменения месячной добычи нефти) установленным и достаточно надежным.
Далее определяем количественные показатели тренда. Для этого по эксплуатационным карточкам определяем добычу нефти за первые 6 месяцев (1681 т) и вторые 6 месяцев (1961 т) предыстории. Отсюда вычисляем среднемесячную добычу за первую половину (280,2 т) и вторую половину предыстории (326,8 т).
Через последние две точки и центр квадратной диаграммы проводим наклонную прямую до пересечения границы предыстории и истории (07.2009 – дата начала воздействия).
В этой точке пересечения определяем базовую среднемесячную добычу нефти (323 т) и из нее проводим горизонтальную прямую (параллельную оси времени) на весь период истории (последствия).
Таким образом, считаем, что падение добычи нефти происходит только в период предыстории, а в период после воздействия базовая добыча нефти является постоянной, не падающей, что, естественно, занижает технологический эффект.
По количеству и положению точек после начала воздействия относительно горизонтальной базовой прямой наглядно выявляется качественный эффект (3 из 6 точек расположены выше базовой горизонтали) и его динамика. Для количественной оценки эффективности микробиологического воздействия по эксплуатационным карточкам определяем суммарную добычу нефти после начала воздействия на дату анализа (с 1.07.2009 по 1.01.2010 гг.).
Она оказалась равной 1803 т. Отсюда среднемесячная добыча нефти после воздействия оказалась равной 300,5 т, или на 7,49 % меньше базовой (323 т).
Вычитая из среднемесячной добычи нефти после воздействия (300,5т) базовую среднемесячную добычу нефти (323 т) и умножая полученную разность на число месяцев, получаем величину дополнительно добытой нефти (-405т, т.е. добыча сократилась), ее долю по отношению ко всей добыче нефти после воздействия (22,46 %), а также удельную технологическую эффективность одного кубического метра закачанной микробиологии (-3 т/м3).
Зная среднемесячную добычу воды в период предыстории и истории (цифры в скобках на рис. 4.2.1), можно определить фактическую среднемесячную обводненность в эти два периода времени (96,7 % и 96,87 %), а также, используя расчетную базовую добычу нефти (323 т) и среднемесячную добычу воды в период предыстории (8897 т)