Анализ эффективности проведения гидравлического разрыва пласта на Ельниковском месторождении (3)

Реферат
Содержание скрыть

1.1. Общие сведения о месторождении

1.2. Геолого-физическая характеристика месторождения

1.3.Физико-гидродинамическая характеристика месторождения продуктивных коллекторов, вмещающих пород и покрышек

1.4. Свойства и состав нефти, газа, конденсата и воды

1.5. Запасы нефти и газа

2.ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1. Текущее состояние разработки Ельниковского месторождения

2.2. Технико-эксплуатационные характеристики фонда скважин

2.3. Анализ текущего состояния разработки Ельниковского месторождения

2.4. Выбор и обоснование применения гидравлического разрыва пласта для условий Ельниковского местородения

2.4.1. Анализ проведения гидравлического разрыва пласта на скважинах Ельниковского месторождения в 2004-2005гг

2.4.2. Литературный обзор известных технических решений по теме проекта.

2.4.3. Патентный обзор известных технических решений по теме проекта

2.4.4. Анализ применения гидравлического разрыва пласта на других месторождениях

2.5. Проектирование гидравлического разрыва пласта

2.5.1. Подбор скважин для осуществления программы по проведению гидравлического разрыва пласта на Ельниковском месторождении

2.5.2. Выбор скважин-кандидатов

2.5.3. Технология проведения ГРП гидравлического разрыва пласта

2.5.4. Проведение перфорации

2.5.5. Дизайн гидравлического разрыва пласта

2.5.6. Заключительные работы

2.5.7. Техника для гидравлического разрыва пласта

2.5.8. Материалы, применяемые при гидравлического разрыва пласта

2.5.9. Факторы, определяющие эффективность гидроразрыва пласта

2.6. Расчет параметров гидравлического разрыва пласта

2.6.1. Расчет прогнозируемых показателей после проведения гидроразрыва пласта

2.7. Сравнение текущих и прогнозируемых показателей до и после проведения гидроразрыва пласта

3. ОХРАНА ТРУДА, ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ, БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

3.1. Нормативно-правовая база

3.2. Промышленная безопасность

3.2.1. Требования при подготовительных работах на скважине

3.2.2. Правила безопасности при проведении работ по гидроразрыву пласта..104

3.2.3. Правила безопасности при закачке химреагентов

3.2.4. Правила безопасности при прострелочно-взрывных работах

3.3. Санитарно-гигиенические требования

3.4. Пожарная безопасность

28 стр., 13511 слов

Тема работы «Методы повышения нефтеотдачи пластов на П.месторождении ...

... 27%. Актуальным является применение на месторождении методов увеличения нефтеотдачи, в том числе и термогазовое воздействие, которые позволят увеличить коэффициент ... пластов. В данной работе будет более подробно рассмотрен метод термогазового воздействия, изучены его особенности, принцип действия и критерии применимости, а также проанализированы лабораторные исследования на П.. месторождении ...

3.5. Безопасность жизнедеятельности в чрезвычайных ситуациях

3.6. Затраты на мероприятия для обеспечения безопасности при проведении гидравлического разрыва пласта

4. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ И ОХРАНА НЕДР

4.1. Нормативно-правовая база в области охраны окружающей среды и недр

4.3. Оценка воздействия на окружающую среду

4.4. Мероприятия, обеспечивающие выполнение нормативных документов по охране окружающей среды при осуществлении гидроразрыва пласта

4.4.1. Природоохранная деятельность. Производственный мониторинг

4.5. Расчёт затрат от воздействия на атмосферу, гидросферу, литосферу.

5.ЭКОНОМИЧЕСКИЙ РАЗДЕЛ

5.1. Обоснование показателей экономической эффективности

5.2. Исходные данные и нормативная база для расчета экономических показателей проекта

5.2.1. Выручка от реализации

5.2.2. Эксплуатационные затраты

5.2.3. Капитальные вложения

5.2.4. Платежи и налоги

5.2.5. Прибыль от реализации

5.3. Расчет экономических показателей проекта

5.3.1. Поток денежной наличности

5.3.2. Индекс доходности

5.3.3. Период окупаемости вложенных средств

5.4. Экономическая оценка проекта

5.5. Сравнение технико-экономических показателей базового варианта без проведения ГРП и варианта с проведением ГРП

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[Электронный ресурс]//URL: https://inzhpro.ru/referat/gidrorazryiv-plasta/

ПЕРЕЧЕНЬ ГРАФИЧЕСКОГО МАТЕРИАЛА

ВВЕДЕНИЕ

В течение последних лет в нефтяной промышленности наблюдается устойчивая тенденция к ухудшению структуры запасов нефти, что проявляется в увеличении количества вводимых месторождений с осложненными геолого-физическими условиями, повышении доли карбонатных коллекторов с высокой вязкостью нефти. Это обуславливает необходимость поиска, создания и промышленного внедрения новых технологий воздействия на пласт и призабойную зону пласта.

При разработке низкопроницаемых коллекторов все большее применение находят технологии, связанные с применением гидравлического разрыва пласта (ГРП).

ГРП является одним из мощных средств повышения технико-экономических показателей разработки месторождений. В результате ГРП при правильном выборе скважин и технологии можно существенно увеличить дебиты нефти обработанных скважин. ГРП в настоящее время является наиболее эффективным способом интенсификации нефти из низкопроницаемых коллекторов.

Выполнив анализ проведения ГРП на Ельниковском месторождении в течении ряда лет, показатели работы этих скважин, а также соседних с ними мы увидим насколько эффективно их применение.

Целью дипломного проекта является подбор скважин Ельниковского месторождения для осуществления программы по ГРП с наиболее большим эффектом по сравнению с другими методами опираясь также на опыт других месторождений. Экономический эффект мы должны получить при соблюдении законов Российской Федерации, требований техники безопасности и охраны окружающей среды.

1. ГЕОЛОГИЧЕСКИЙ РАЗДЕЛ

1.1. Общие сведения о месторождении

Ельниковское нефтяное месторождение нефти наряду с другими место­рождениями (Ончугинское, Котовское, Кырыкмасское, Заборское, Ломов­ское, Прикам­ское) разрабатывается силами НГДУ «Сарапул» ОАО «Удмурт­нефть». Ме­сторождение расположено на территории Каракулинского и Сарапуль­ского районов Удмуртской республики, в 100 километрах от го­рода Ижевска, в 35 километрах от города Сарапула (рис.1).

Вдоль восточной границы месторождения проходит железнодорожная линия Москва — Казань — Екатеринбург.

Сеть автомобильных дорог в пределах месторождения представлена асфальтовым шоссе Ижевск – Сарапул – Камбарка, проходящим по терри­тории месторождения. Асфальтированное шоссе связывает Ельниковское, Вятское, Ончугинское, Котовское, Кырыкмасское, Ломовское месторожде­ния.

По территории месторождения протекает река Кама, отделяющая При­камский участок от Ельниковского месторождения. С другими действую­щими нефтепромыслами месторождение связано нефтепроводами. Также на территории месторождения расположены производственные базы сервисных организаций.

Электроснабжение обеспечивается ЛЭП-110 Воткинская ГЭС – Сара­пул и ЛЭП-35 Сарапул – Мостовое – Каракулино.

К наиболее крупным населенным пунктам относятся с.Мазунино, д.Соколовка, с.Тарасово. В 35 километрах от центра нефтяной площади располо­жен город Сарапул. Он является крупной железнодорожной стан­цией, важным речным портом и культурным историческим центром Удмур­тии. В орогидрографическом отношении Ельниковское месторождение рас­положено на Сарапульской возвышенности, служащей водоразделом между Камой и ее правым притоком реки Иж. С того же водораздела берет начало река Кырыкмасс (левый приток реки Иж), пересекающая месторождение с востока на запад. Местность представлена холмистой, глубоко изрезанной сетью ручьев и оврагов. Отметки рельефа в пределах рассматриваемой тер­ритории колеблются относительно уровня моря от 70 до 250 метров.

Климат района умеренно-континентальный с продолжительной (до 5 месяцев) зимой. Среднегодовая температура +2 о С, морозы в январе-феврале иногда достигают -40-45 о С. Средняя глубина промерзания грунта – 1,2-1,5м, толщина снежного покрова в марте достигает 60-80 см. Среднее годовое ко­личество осадков около 500мм.

Территория района в основном занята пашнями и небольшими лес­ными массивами. В экономике района месторождения большое значение имеет сельскохозяйственное производство. Под посевом занято примерно 70% его территории.

Из полезных ископаемых, кроме нефти, следует отметить аллювиально-деллювиальные суглинки, конгломераты и галечники татарского возраста, небольшие месторождения гравия, используемого для дорожного строитель­ства, и пресные воды с хорошими питьевыми качествами. Последние исполь­зуются для бытовых нужд, как работниками предприятия, так и местными жителями.

Рис. 1.

 общие сведения о месторождении 1

 общие сведения о месторождении 2

Геолого-физическая характеристика месторождения

По тектоническому строению Ельниковское месторождение является ти­пичным для месторождений, расположенных в прибортовой части Камско-Ки­нельской системы прогибов. Для них характерно наличие относительно боль­шой по площади приподнятой зоны, объединяющей целый ряд неболь­ших под­нятий, к которым приурочена основная залежь нефти. Контур залежи охваты­вает практически всю приподнятую зону.

Структурное строение месторождения и прилегающей территории наи­бо­лее полно изучено по пермским отложениям. По кровле стерлитамакского го­ризонта в пределах изогипсы минус 280м. Ельниковское месторождение пред­ставляет собой приподнятую зону северо-восточного простирания и включает ряд мелких поднятий с амплитудами 15-20м. В структурном плане на месторо­ждении выделяется три крупных поднятия: Соколовское, Ельни­ковское, Апа­лихинское.

Апалихинское и Ельниковское поднятия не отделяются друг от друга более или менее значительным прогибом. В пределах названных поднятий по изо­гипсе минус 280 четко прослеживается 7 небольших структур.

Соколовское поднятие также представляет собой сеть небольших струк­тур, разделенных узкими прогибами на три зоны.

В целом по разрезу наблюдается хорошее соответствие структурных пла­нов по пермским, средне и нижне-каменноугольным отложениям (рис. 2).

Сводный литолого-стратиграфический разрез

Рис.2

Геолого физическая характеристика месторождения 1

Структурный план месторождения представлен тремя поднятиями: собст­венно, Ельниковским, Апалихинским и Соколовским, причем следует отметить, что границей Ельниковского и Апалихинского поднятий служит не резко вы­раженный прогиб. На общем фоне поднятий выделяется целый ряд осложняю­щих их средних и мелких куполов, контролирующих самостоятельные залежи нефти в пластах карбонатной толщи турнейского яруса, визейской терригенной толщи нижнего карбона и карбонатной толщи каширо-подольских отложений среднего карбона. Все поднятия имеют тектоно‑седиментационное происхож­дение, как уже говорилось выше, характеризуются соответствием структурных планов по пермским и каменноугольным отложениям, приобретая с глубиной более резкие черты. Основу поднятий составляют рифогенные образования верхнетурнейско-франско-фаменского возраста.

В отложениях терригенной пачки нижнего карбона отмечается наличие большого количества врезов, в связи, с чем по скважинным данным отмечается резкое несоответствие по толщине структурных этажей в разрезе рядом стоя­щих скважин. Эрозионному разрушению подвергались карбонатные породы, подстилающие визейские терригенные отложения. Ширина врезов составляет 150-500 м, длина — несколько километров.

Врезы выполнены терригенными породами визейского возраста, которые облегают их борта. Как правило, нумерация пластов аргиллитов и песчаников во врезе и во вне его одинакова, но толщина пластов во врезе значительно воз­растает, и увеличение толщины тем больше, чем глубже залегает пласт. Из по­род визейского возраста, которые встречаются только во врезах и отсутствуют на прилегающих участках, следует отметить угленосные отложения, залегаю­щие в подошве терригенной пачки (пласта С-VI).

Промышленно нефтеносными на Ельниковском месторождении явля­ются карбонатные отложения турнейского яруса, терригенные отложения

горизонтальный

Геологический профиль Ельниковского месторождения

вертикальный 1:25000

Геологический профиль ельниковского месторождения 1 Геологический профиль ельниковского месторождения 2

Рис.3

яс­нопо­лянского и малиновского надгоризонтов нижнего карбона и карбонат­ные отло­жения каширо-подольского горизонта среднего карбона.

Общие, по месторождению, геолого-физические характеристики продуктивных пластов представлены в табл. 1.

Нефтяные залежи визейского яруса: залежи нефти терригенной толщи нижнего карбона имеют довольно слож­ное строение, они включают отложения тульского (пласты С II-C-IV), бобри­ковского (пласт С-V) горизонтов и малиновского (пласт С-VI) надгоризонта.

Однако на территории Удмуртии в визейском ярусе выделяются нижний подъярус в объеме кожимского надгоризонта и верхний в объеме окского над­горизонта. На территории Удмуртии кожимский надгоризонт представлен косьвинским, радаевским и бобриковским горизонтами. Ранее интерпретируе­мый в подсчете запасов нефти Малиновский надгоризонт отсутствует. Окский надгоризонт состоит из тульского, алексинского, михайловского и веневского горизонтов, которые сложены пачками песчаников, алевролитов и аргиллитов с тонкими прослоями каменных углей. В основании алексинского горизонта прослеживается пачка терригенных пород, которая не выдержана по толщине, распространены литологические замещения. Залежи нефти контролируются структурами тектоно-седиментационного и седиментационного генезиса, обле­кающие органогенные постройки франско-фаменско- турнейского возраста и в плане совпадающие с останцами карбонатных пород турнейского яруса.

Продуктивные пласты визейского яруса на Ельниковском месторождении приурочены к терригенным отложениям косьвинского (пласт С-VIII), радаев­ского (С-VII), бобриковского (пласты С-V, С-VI) горизонтов кожимского над­горизонта и тульского горизонта окского надгоризонта (пласты С-II, C-III, C-IV).

Таблица 1

Геолого-физические характеристики продуктивных пластов

Параметры

Поднятия

Соколовское

Ельниковское

Апалихинское

Средняя глубина залегания, м.

1380

1380

1380

Тип залежи

пласт.

пласт.

пласт.

Тип кллектора

терригенный

терригенный

терригенный

Площадь нефтеносности, тыс.м²

39014

21923

22094

Средняя общяя толщина, м.

32,7

32,6

25

Средняя нефтенасыщенная толщина, м.

4,3

4,9

3,6

Пористость, %

20,4

21

19,4

Средняя нефтенасыщенность ЧНЗ, д. ед.

0,79

0,86

0,73

Проницаемость, мкм²

0,315

0,415

0,445

Коэффициент песчанистости, д. ед.

0,67

0,68

0,54

Коэффициент расчлененности, д. ед.

5,1

4,3

3,8

Начальная пластовая температура, ºС

29

29

29

Начальное пластовое давление, МПа

12,6

13,9

13,2

Вязкость нефти в пластовых условиях, мПа·с

16,3

17,2

20

Плотность нефти в пластовых условиях, т/м³

0,879

0,897

0,886

Абсолютная отметка ВНК, м.

-1198

-1198

-1198

Объёмный коэффициент нефти, д. ед.

1,033

1,032

1,03

Содержание серы в нефти, %

2,33

2,48

2,66

Содержание парафина в нефти, %

4,21

4,32

4,45

Давление насыщения нефти газом, мПа·с

7,1

8,95

7,23

Газосодержание нефти, м³/т

13,4

15,42

12,35

Содержание стабильного конденсата, г/см³

Вязкость воды в пластовых условиях, мПа·с

1,5

1,5

1,5

Плотность воды в пластовых условиях, т/м³

1,117

1,117

1,117

Средняя продуктивность, м³/сут. МПа

1,17

1,17

1,17

Пласты визейской залежи отличаются значительной неоднородностью как по вертикали, так и по латерали и нередко сливаются, образуя единую песчано-алевролитовую пачку, к которой приурочены основные запасы нефти Ельни­ковского месторождения. Региональной покрышкой для толщи являются пачки аргиллитов и плотных известняков верхней части тульского горизонта.

Нефтеносность пластов С-VII и С-VIII вскрыта единичными скважинами.

Пласт

Нефтеносность месторождения определена по керну, материалам ГИС, опробованию и эксплуатации скважин. Пласт раздельно не испытан и нахо­дится в совместной эксплуатации с пластами С-II-C-V. Наибольшее распро­странение и толщины пласт имеет в пределах Ельниковского и Соколовского поднятий, в пределах Апалихинского купола развиты единичные линзы коллек­тора. По разрезу по материалам ГИС в пласте С-VI четко прослеживаются два -три продуктивных пропластка, которые, в свою очередь, состоят из 2 – 6 более мелких линз толщиной от 0,4 до 1,2 м, чаще всего не коррелируемых друг с другом даже по соседним скважинам. Пропластки разделены перемычками, сложенными аргиллитами, толщина перемычек составляет 0,0-5,6 м. Местами пропластки имеют окна слияния.

Уровень ВНК установлен по материалам ГИС и эксплуатации скважин и гипсометрически залегает по поднятиям и залежам на абсолютных отметках минус 1198 – 1269,3 м.

Коэффициент песчанистости для пласта С-VI в целом по месторождению составляет 0,38, изменяясь по поднятиям от 0,31 (Соколовское поднятие) до 0,44 (Ельниковское поднятие), коэффициент расчлененности в среднем равен 2,8 , изменяясь от 1,94 (Апалихинское поднятие) до 4,89 (Ельниковское подня­тие).

Коэффициент пористости по поднятиям изменяется от 0,14 д.ед. до 0,20 д.ед., в среднем по месторождению составляя 0,19 (ГИС).

Следует отметить, что керн по пласту С-VI отобран лишь в одной скважине Ельниковского подня­тия. Среднее значение коэффициента пористости по 15 образцам составляет 0,24 д.ед..

VI

Пласт С

Пласт С-V развит повсеместно и также же как и пласт С-VI литологически не выдержан как по разрезу, так и по простиранию, имеет линзовидное строе­ние. Пласты песчаников и алевролитов повсеместно замещаются глинистыми породами. Причем, на Соколовском поднятии пласт представлен 1-3 пропласт­ками, на Ельниковском и Апалихинском – 1-2 пропластками. Общая толщина пласта составляет 2,4 – 23,1 м, в среднем составляя 4,2 м. Эф­фективная нефтенасыщенная толщина изменяется от 1,6 м на Апалихинском поднятии до 2,5 на Соколовском поднятии, в среднем по месторождению со­ставляет 1,9 м.

Коэффициент расчлененности по поднятиям изменяется в широких преде­лах: 2,11 – на Соколовском, 1,67 – на Ельниковском, 1,39 – на Апалихинском. Наименее расчленен пласт С-V на Апалихинском поднятии. Практически во всех скважинах он представлен одним или двумя пропластками. Коэффициент песчанистости изменяется по поднятиям незначительно (0,46-0,55), что говорит о его более высокой однородности по площади, по сравнению с пластом С-VI.

По результатам исследований керна коэффициент пористости по подня­тиям изменяется от 0,20 д.ед. (Соколовское и Ельниковское поднятия) до 0,23 д.ед. (Апалихинское поднятие), по результатам интерпретации ГИС коэффици­ент пористости варьирует от 0,19 (Соколовское и Апалихинское поднятия) до 0,20 (Ельниковское поднятие).

Проницаемость определена по керну и ее значения по отдельным образцам варьируют в широких пределах: от 0,013 мкм 2 до 3,550 мкм2 .

Уровень ВНК залежей нефти пласта С-V при пересчете запасов принят по результатам интерпретации материалов ГИС, опробования скважин и данных эксплуатации на абсолютных отметках минус 1193,2 – 1205 м.

Пласт

Пласт С-IV характеризуется фациальной неоднородностью, имеет много­численные зоны замещения пластов коллекторов, представленных песчано-алевролитовыми фракциями на глинистые разности. На Соколовском поднятии в 44% скважин пласт-коллектор замещен плотными породами, на Ельников­ском и Апалихинском поднятиях в – 81% скважин пласт-коллектор замещен плотными породами.

Общая толщина пласта составляет 0,7-15,2 м, в среднем по месторождению составляя 5,2 м. Эффективная нефтенасыщенная толщина изменяется от 1,8 м на Соколовском до 1,4 м на Ельниковском поднятии и 1,65 м на Апалихинском, в среднем составляя 1,74 м.

Коэффициент песчанистости в среднем по месторождению равен 0,32, варьируя по поднятиям от 0,3 (Соколовское поднятие), до 0,35 (Ельниковское и Апалихинское поднятия).

Коэффициент расчлененности при этом колеблется от 1,6 (Ельниковское поднятие) до 1,7 (Соколовское поднятие).

Коэффициент по­ристости по керну определен лишь на Соколовском и Ельниковском поднятиях и равен, соответственно, 0,22 д.ед. и 0,19 д.ед. По результатам интерпретации материалов ГИС по всем поднятиям коэффициент пористости равен 0,19 д.ед., проницаемость определена по керну и изменяется от 0,193 мкм 2 до 0,416 мкм2 . Следует отметить, что керн отобран лишь в пяти скважинах на Соколовском поднятии и в двух скважинах на Ельниковском поднятии.

При пересчете запасов нефти для пласта С-IV, согласно материалам ГИС, опробования и эксплуатации скважин, принят уровень ВНК, гипсометрически залегающий на абсолютной отметке минус 1198,0 м. Хотя в отдельных сква­жинах по данным ГИС уровень ВНК отмечен как на более высоких, так и более низких отметках.

Пласт

Общая толщина пласта изменяется по отдельным поднятиям от 5,4 до 7,0 м, в среднем по месторождению составляя 6,5 м. Эффективная нефтенасыщен­ная толщина изменяется от 2,1 м на Апалихинском поднятии, до 2,9 м на Ель­никовском, в среднем по месторождению составляя 2,5 м. Коэффициент песчанистости по пласту С-III в среднем равен 0,41, изменяясь по поднятиям от 0,38 (Соколовское поднятие) до 0,44 (Ельниковское поднятие).

Пласт С-III достаточно однороден как по площади, так и по разрезу, пласт коллектор представлен одним – четырьмя пропластками, лишь в отдельных скважинах – шестью – восьмью пропластками. Коэффициент расчлененности для поднятий варьирует от 1,22 (Апалихинское поднятие) до 1,5 (Соколовское поднятие).

Коэффициент пористости по материалам ГИС на поднятиях изменяется от 0,19 до 0,20, в среднем по месторождению составляя 0,19, по данным керна ко­эффициент пористости изменяется от 0,19 (Апалихинское поднятие) до 0,24 (Соколовское поднятие), в среднем по месторождению соствляя 0,21. Прони­цаемость определена по керну и варьирует по поднятиям от 0,310 мкм 2 до 0,522 мкм2 . Коэффициент нефтенасыщенности коллектора по керну определен лишь на Ельниковском и Апалихинском поднятиях, причем образцы исследованы по керну, отобранному из четырех скважин, коэффициент нефтенасыщенности изменяется в пределах 0,79 – 0,84; по данным ГИС коэффициент нефтенасы­щенности изменяется а пределах 0,7 – 0,77.

При пересчете запасов нефти уровень ВНК обоснован по данным ГИС, оп­робованию и эксплуатации скважин единым для всех залежей, гипсометриче­ски залегающим на абсолютной отметке минус 1198,0м. Пласт С-III в большинстве скважин опробован отдельно, но разрабатывается совместно с пластами С-II-C-VI. Пласты C-III , C-IV, С-V, С-VI практически по всей площади месторождения имеют окна слияния, образуя единую гидроди­намическую систему.

Пласт С

Общая толщина пласта изменяется от 1,9 м (Апалихинское поднятие) до 3,6 м (Ельниковское поднятие).

Эффективная нефтенасыщенная толщина изме­няется от от 1,0 м на Соколовском и Ельниковском поднятиях до 1,3 м на Апалихинском поднятии, в среднем по месторождению составляя 1,1 м.

Коэффициент песчанистости пласта С-II в среднем по месторождению из­меняется от 0,3 (Соколовское поднятие) до 0,53 (Апалихинское поднятие).

Ко­эффициент расчлененности по поднятиям месторождения колеблется от 1,0 (Соколовское и Апалихинское поднятия) до 1,4 (Ельниковское поднятие).

Коэффициент пористости по керну изменяется от 0,16 до 0,20 д.ед., в среднем составляя 0,18 д.ед.; по результатам интерпретации материалов ГИС – от 0,17 до 0,18, в среднем составляя 0,17. Проницаемость определена по керну и изме­няется в широких пределах: от 0,037 мкм 2 (Апалихинское поднятие) до 0,368 мкм2 (Ельниковское поднятие).

Коэффициент нефтенасыщенности по керну оп­ределен лишь по Соколовскому поднятию и составляет 0,91; по результатам интерпретации ГИС коэффициент нефтенасыщенности колеблется в пределах от 0,61 (Соколовское поднятие) до 0,69 (Апалихинское поднятие), по месторо­ждению в целом составляя 0,62.

Для пласта С-II уровень ВНК принят на абсолютной отметке минус 1198,0 м. В целом по месторождению визейские залежи имеют общую толщину от 25,0 м до 119,2 м, в среднем составляя 31,5 м.

Эффективная нефтенасыщенная толщина при этом колеблется от 3,6 м до 17,3 м, в среднем составляя 4,2 м.

Коэффициент песчанистости в целом по визейской залежи варьирует от 0,54 (Апалихинское поднятие) до 0,679 (Ельниковское поднятие), в среднем по месторождению коэффициент песчанистости визейской залежи равен 0,629. Коэффициент расчлененности по поднятиям колеблется в пределах 3,8 – 5,1, в среднем составляя 4,6. Коэффициент пористости в среднем по визейским зале­жам равен 0,20; проницаемость по керну составила 0,488 мкм 2 ; по результатам ГДИ скважин – 0,396 мкм2 . Начальные дебиты варьировали в достаточно широ­ком диапазоне, колебания по отдельным скважинам составляли 2,8 – 70,0 м3 /сут. /1/.

1.3. Физико-гидродинамическая характеристика месторождения продуктивных коллекторов, вмещающих пород и покрышек

Коллекторские свойства продуктивных пластов изучены по керну, геофи­зи­ческим и промысловым данным. Для характеристики коллекторских свойств пород учитывались образцы с проницаемостью выше 0,0001 мкм 2 .

Визейский ярус: породы визейского яруса имеют преимущественно мономинеральный кварцевый состав и отличаются значительной неоднородностью литолого-фи­зических свойств по разрезу и по площади. Количество цементирующего мате­риала и размеры кварцевых зерен колеблются в широких пределах. Породы представляют собой преимущественно мелкозернистые песчаники и крупно- и среднезернистые алевролиты с разной степенью глинистости, не превышающей 10%, что характеризует породы продуктивных пластов как слабоглинистые.

Пласты С II , СIII , СIV сложены мелкозернистыми, кварцевыми песчаниками и разнозернистыми алевролитами. Примеси полевых шпатов и акцессорных ма­териалов составляют менее 1%. По данным гранулометрического анализа вы­деляются песчаники с незначительным содержанием алевритовой и пелитовой составляющей, песчаники алевритистые, хорошо отсортированные. Карбонат­ность пород низкая и в среднем для отдельных пластов не превышает 6%. Це­ментация пород осуществляется, в основном, посредством уплотнения. Участ­ками песчаники цементируются мелко- и крупнозернистым кальцитом. Тип це­мента – поровый. Поры угловатые. Цементация обломочного материала осуще­ствляется в результате уплотнения. Поры межзерновые, угловатые.

Алевролиты представлены крупнозернистыми разностями с различной примесью песчаного и глинистого материала. Состав их преимущественно кварцевый. В качестве примесей (до 1%) присутствуют акцессорные материалы (цирконий, турмалин, титан) и полевые шпаты. В небольшом количестве при­сутствует тонкочешуйчатое глинистое вещество. Цементация также осуществ­ляется путем уплотнения зерен, поры угловатые.

Нижний предел значения пористости принят на уровне 14,0 %. Нижний предел значения проницаемости для пород визейского яруса принят на уровне 0,0075мкм 2 .

В среднем карбоне продуктивные отложения представлены известня­ками, доломита-ми и переходными между ними разностями каширского и по­доль­ского горизонтов. Доломитизация проявляется в виде крупных кристаллов до­ломита размером 0,04-0,1 мм. Вторичная карбонатизация привела к залечива­нию порового пространства, формированию закрытых водонасыщенных линз, возникновению микрокавернозности и микротрещиноватости. В связи отсутст­вием исследований по керну с определением процентного содержания доломи­тов, а также отсутствием разрешающей способности методов ГИС для опреде­ления доломитизации – достоверность определения параметров Кп и Кпр по доломитизированным разностям известняков достаточно низка.

Таблица 2

Характеристика вытеснения нефти водой

Объект, продук­тивные пласты

Прони-цае-мость,

мкм 2

Вяз-кость нефти, мПа×с

Соде-ржание свя­занной воды, д.ед.

Начальная нефтенасы-щенность, д.ед.

Коэффи-циент остаточной нефтенасы­щенности, д.ед.

Коэффи-ци­ент

вытесне-ния нефти, д.ед.

Относительная про­ницаемость, д.ед.

для воды при оста­т нефтена­сыщ

для нефти при оста­т водона­сыщен-ности

Визейский ярус

(Апалихин-ское и Ельнико-вское под­нятия)

0,776

16,3

0,104

0,896

0,351

0,608

0,0330

0,4367

Визейский ярус

(Соколовс-кое под­нятие)

0,856

16,3

0,101

0,899

0,348

0,613

0,0335

0,4403

Сравнение экспериментальных и расчетных значений коэффициента вытеснения

Месторожде-ние

Возраст

Продук­тивный пласт

Прони­цаемость по газу, мкм 2

Вязкость нефти, мПа∙с

К вт экс­пер., д.ед.

К вт расч., д.ед.

Отклоне­ние от Квт экс­пер., %

Ельниковское

C 1 v

С II – CVI

0,269

22,2

0,577

0,537

-7,0

0,0424

22,2

0,443

0,440

-0,7

0,886

23,5

0,587

0,596

1,6

0,877

21

0,587

0,601

2,5

C 1 t

C 1 t

0,08

23

0,467

0,491

5,2

Таблица 4

Характеристики смачиваемости поверхности каналов фильтрации пород по лабораторным данным

Возраст

Пласт

Количество

определений

Диапазон изменения значения

индекс

Амотта-Гервея

Краевой угол

смачи­вания

С 2 pd

1

0,265

74,6

С 2 ks

К 1 , K2

3

0,096 … 0,133

82,3 … 84,5

K 4

4

0,361 … 0,765

40,1 … 68,8

С 1 v

C IV , CVI

32

-0,033 … 0,288

73,3 … 91,9

C II , CIII

12

-0,03 … 0,089

84,9 … 91,7

С 1 t

С1t

10

0,138 … 0,227

76,9 … 82,1

1.4. Свойства и состав нефти, газа, конденсата и воды

Для оценки физико-химических характеристик нефти и газа из продуктив­ных отложений среднего и нижнего карбона отобраны пробы нефти, и газа.

По общепринятым классификациям нефти каширо-подольской залежи в целом по месторождению характеризуются как тяжелые по плотности (0,8797 г/см3), высокосернистые (> 2%), парафинистые (< 6%), смолистые (< 15%), вяз­кие в пластовых условиях (10,3 мПа∙с).

На визейских и турнейских отложениях нефти битуминозные (плотность > 0,895 г/см3), имеют повышенную вязкость (16,85 мПа∙с и 21,41 мПа∙с, соответственно), высокосернистые, парафинистые, высокосмолистые.

Товарная характеристика нефти изучена в лаборатории предприятия. Для анализа были отобраны пробы из отложений турнейского яруса и тульского горизонта. Бензиновые дистилляты исследованных нефтей имеют повышенное содержание серы. Прямой перегонкой из нефтей турнейского яруса и тульского горизонта Ельниковского месторождения могут быть получены высокосернистые компоненты автомобильных бензинов в коли­честве соответственно 15,9% и 18,1%, а также высокосернистые компоненты дизельных топлив летних марок в количестве от 18% до 25% на нефть. После проведения карбомидной депарафинизации можно получить из исследуемых нефтей компоненты дизтоплив зимних марок. Для данных нефтей потенциал масел определен по ГОСТ 912-66 путем анализа остатков нефтей после отбора светлых фракций до 350 о С. В результате проведенного анализа было установ­лено, что выход газовых масел с индексом вязкости 85 составляет 10,2% и 18,0%, соответственно, для турнейской и тульской нефтей. Кроме того, нефть Ельниковского месторождения может быть использована для производства би­тумов. По ГОСТ 912-66 нефти присвоен шифр технологической классифика­ции: турнейского пласта – III Т2 М4 И2 П3 , тульского – III Т2 М3 И1 П3 , каширо-по­дольского пластов – III Т1 М2 И1 П2 .

Газ по всем залежам и поднятиям по своему составу является углеводо­родно-азотным (содержание азота < 50%), с высоким содержанием этана, про­пана и нормального бутана.

По химическому составу подошвенные воды визейских отложений по трем поднятиям месторождения представляют рассолы, по классификации В.А. Су­лина эти воды относятся к хлоркальциевому типу. Степень минерализации и плотность в среднем по пробам изменяется незначительно, соответственно, на Ельниковском – 275,1 г/л и 1,178 г/см 3 , на Апалихинском – 272,7 г/л и 1,177 г/см3 и на Соколовском – 245,4 г/л и 1,161 г/см3 . /1/.

1.5. Запасы нефти и газа

Первоначально подсчет запасов нефти и попутных компонентов выполнен Удмуртским трестом разведочного бурения в 1977 году по состоянию изучен­ности месторождения на 01.01.1977 г. Запасы утверждены ГКЗ СССР (протокол № 7980 от 23.12. 77).

После разбуривания месторождения институтом ТатНИПИнефть в 1989 году выполнен пересчет запасов нефти Ельниковского месторождения (прото­кол №10819 ГКЗ СССР от 28.03.1990 г).

Оценка категорийности запасов каждой из залежей была проведена с уче­том состояния достигнутой геолого-геофизической изученности месторожде­ния, распределение запасов нефти по категориям представлено на рисунке.

Запасы нефти категории С 2 сосредоточены лишь в продуктивных пластах каширо-подольских залежей, причем 67% запасов категории приурочены к пла­сту К2+3 и 20% – к пласту К4 . По поднятиям запасы категории С2 среднего кар­бона распределены примерно равномерно.

Всего начальные извлекаемые запасы по категориям В+С 1 на момент ут­верждения составили 38,0 млн. т, по категории С2 – 6,5 млн. т. /1/.

Распределение геологических запасов нефти по категориям на Ельниковском месторождении в целом

 запасы нефти и газа 1

Распределение геологических запасов нефти по поднятиям

на Ельниковском месторождении

 запасы нефти и газа 2

Рис.5

Распределение геологических запасов нефти по объектам

на Ельниковском месторождении

 запасы нефти и газа 3

Рис.6

Таблица 5

Распределение геологических запасов категории С 2 по пластам и

поднятиям Ельниковского месторождения

Запасы по пластам

Поднятия

Всего по пластам

Соколовское

Ельниковское

Апалихинское

П1, тыс.т.

45

45

П2, тыс.т.

34

125

159

П3, тыс.т.

П4, тыс.т.

181

279

460

К1, тыс.т.

1178

2112

3290

К2 + 3, тыс.т.

9366

3653

7714

20733

К4, тыс.т.

1985

4280

6265

Всего, тыс.т.

10804

8154

11994

30952

Всего, %

34,90

26,30

38,80

В нижнем карбоне основные запасы приурочены к пластам C III (50,2%) и CV (28,1%) визейского яруса, причем 49,8% запасов нефти – на Соколовском поднятии, 28,3% и 21,9% — на Ельниковском и Апалихинском поднятиях, соответственно. /1/.

Распределение запасов нефти по продуктивным пластам

визейского яруса на Ельниковском месторождении

 запасы нефти и газа 4

Рис.7

В среднем карбоне основные запасы промышленных категорий сосредото­чены в пластах П 3 подольского горизонта и пласте К4 каширского горизонта.

На 01.01.2005 года остаточные извлекаемые запасы по объектам разра­ботки распределены : каширо-подольский — 14 845 тыс. т., визейский – 7 453 тыс. т, турнейский – 1 220 тыс. т. /1/.

Распределение запасов нефти по продуктивным пластам

каширо-подольского горизонта на Ельниковском месторождении

 запасы нефти и газа 5

Рис.8

Сравнение начальных извлекаемых запасов по объектам Ельниковского месторождения с остаточными извлекаемыми запасами на 01.01.2006 г.

 запасы нефти и газа 6

Рис.9

Накопленная добыча нефти по объектам на 01.01.2006 г. составила: турнейский объект — 45,0 тыс. т; визейский объект – 20928,0 тыс. т; каширо-подольский – 99,0 тыс. т. /1/.

Таблица 6

Запасы нефти по объектам

Пласт

Категория

Начальные запасы нефти, тыс. т

Остаточные запасы нефти, тыс. т

балансовые

извлекаемые

балансовые

извлекаемые

Турнейский объект

С 1 t-I

С 1

7830

1271

7785

1226

Визейский объект

С-II, III, IV,

V, VI

В+С 1

68004

28302

47076

7374

Каширо-подольский объект

П 1234 + К13+24

С 1

35447

8471

35365

8389

С 2

30952

6463

30936

6447

2. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1. Текущее состояние разработки Ельниковского месторождения

Ельниковское месторождение введено в разработку в 1977 году в соответ­ствии с «Проектом опытно-промышленной эксплуатации Ельниковского ме­сторождения. С 1991 года разработка ведется на основании технологической схемы, составленной УКО ТатНИПИнефть. Месторождение многопластовое, промышленная нефтеносность выявлена в турнейских, визейских (пласты С-II, С-III, C-IV, С-V и С-VI) отложениях нижнего карбона, а также в каширо-по­дольских отложениях (пласты К1-4, KS-V и Р1-Р4) среднего карбона. Нефти всех пластов характеризуются повышенной вязкостью. Эти объективные фак­торы влияют на развитие процессов разработки и отрицательно влияют на сте­пень выработки запасов нефти.

В промышленной эксплуатации находится визейский (по существовавшей ранее номенклатуре – яснополянский) объект, и каширо-подольский объект. Турнейский объект разрабатывается единичными скважинами.

На 01.01.06 г. отобрано 21072,3 тыс. т нефти и 67287,7 тыс. т жидкости. Среднегодовая обводненность добываемой продукции составила 82,4 %. Среднесуточный дебит по нефти – 4,6 т/сут, по жидкости – 26,2 т/сут. Текущий коэффициент извлечения нефти составляет 0,189.

Распределение добычи нефти по объектам разработки следующее: каширо-подольский – 99,4 тыс.т; визейский – 20927,7 тыс.т; турнейский – 45,2 тыс.т.

Разработка визейского объекта ведется с поддержанием пластового давления, каширо-подольского и турнейского — на естественном режиме./1/

2.2 . Технико-экплуатационная характеристика фонда скважин

На конец 2006 года по месторождению пробурено всего 615 скважин. Ос­новной пробуренный фонд скважин приходится на визейский объект разра­ботки. Следующим по значимости является каширо-подольский объект, весь фонд скважин этого объекта был возвращен с нижележащих объектов. В про­цессе разработки месторождения скважины с визейского объекта переводились и на турнейский объект, но, ввиду низких дебитов, практически, все были пере­ведены на каширо-подольский объект.

По способу эксплуатации все скважины являются механизированными. Скважины визейского объекта оборудованы ШГН и ЭЦН, каширо-подольский объект, характеризующийся более низкими дебитами по жидкости, эксплуати­руется только ШГН. Средний дебит действующих скважин по месторождению составляет: по нефти – 4,6 т/сут, по жидкости – 26,1 т/сут; средняя обводнен­ность – 82,4%; максимальный дебит по нефти 47,0 т/сут (скв. 3782), по жидко­сти – 383,8 т/сут (скв. 3606).

Средняя приемистость нагнетательных скважин – 59,1 м 3 /сут, максимальная приемистость – 200 м3 /сут (скв. 3696 и 3702).

На основании проведенного анализа текущего состояния разработки каширо-подольского объекта следует:

1) скважины эксплуатируются с забойными давлениями значительно ниже давления насыщения;

2) при массовом переводе скважин на объект (что происходит в настоящее время) и увеличении отборов нефти без внедрения системы ППД будет происходить значительное снижение пластового давления и ухудшение условий разработки объекта;

3) высокие депрессии на пласт при эксплуатации скважин объекта, разрабатываемого на естественном режиме, могут приводить к преждевременному росту обводненности за счет подстилающей и краевой воды, а также к обводнению скважин из-за перетоков воды вдоль эксплуатационной колонны при некачественном цементировании;

4) при переводе скважин на каширо-подольский объект рекомендуется проводить раздельное исследование пластов для оценки их продуктивности и гидродинамических свойств и возможности в дальнейшем контролировать и регулировать выработку запасов.

Разработка визейского объекта осуществляется с 1977 года. В соответствии с утвержденными проектными решениями реализована площадная семиточечная система заводнения. Объект находится в III стадии разработки. Отмечается снижение количества действующих добывающих скважин, связанное с переводом на возвратные объекты, в основном – каширо-подольский. Основными видами ГТМ, поддерживающими отборы нефти, являются ОПЗ, оптимизация работы ГНО, вывод скважин из временного бездействия, РИР. Проведение ГТМ на нагнетательном фонде (пенокислотная обработка, ОПЗ полисилом и растворителем, ПГКО + УОС, ДПСКО, ИДВ, гидроимпульсная обработка, селективно-кислотное воздействие и др.) позволяет поддерживать приемистость нагнетательных скважин на необходимом уровне. Проведенный анализ текущего состояния разработки визейского объекта позволяет сделать следующие выводы:

1) состояние разработки визейского объекта оценивается удовлетворительно;

2) запроектированная система разработки реализована в проектных объемах и обеспечивает темпы нефтедобычи на уровне проектных;

3) довыработка запасов БГС эффективна, особенно пласта С-III;

4) рекомендуется проведение мероприятий по установлению наличия гидродинамической связи нагнетательных и добывающих скважин (закачка жидкостей-трассеров, гидропрослушивание).

Турнейский объект предусматривалось эксплуатировать возвратным фондом скважин. На дату составления отчета объект находится в пробной эксплуатации и эксплуатируется единичными возвратными скважинами. Всего с начала разработки в эксплуатации на этом объекте перебывало 32 скважины, из них 2 БГС, пробуренные из обводнившихся скважин визейского объекта. В связи с низкой продуктивностью большинство скважин после периода пробной эксплуатации были переведены на визейский объект. В целях получения дополнительной добычи нефти применяются вывод из бездействия и ОПЗ. На основании проведенного анализа текущего состояния разработки турнейского объекта можно сделать следующие выводы:

1) около 70 % выработанных запасов турнейского объекта приходится на небольшой купол Соколовского поднятия (скв. № 3752);

2) окончательный вывод об активности водонапорных систем сделать сложно ввиду небольшого количества специальных исследований и малого фонда скважин;

3) необходимо проведение периодических замеров пластового давления в добывающих скважинах, снятие КВД, проведение гидродинамических и специальных исследований, предусмотренных РД 153-39.0-109-01;

4) рекомендуется увеличение плотности сетки скважин путем перевода с визейского объекта и проведение многократных кислотных обработок скважин, кислотных и локальных ГРП;

5) эффективность бурения БГС оценить трудно, так как пробурено всего две скважины. В целом по Ельниковскому месторождению, при падающей базовой добыче нефти и отсутствии ввода новых скважин, отмечается поддержание уровня добычи нефти за счёт проведения ГТМ.

2.3.Анализ текущего состояния разработки Ельниковского месторождения

Сопоставление фактических показателей с проектными уровнями за 2001-2006 гг. визейскому объектам разработки приведено в табл..

Визейский объект – объект разбурен в проектных объемах и реализована площадная 7-точечная система заводнения. По состоянию на 1.01.2006 г. на визейском объекте числится 264 добывающие скважины (на 25 % меньше проектного показателя технологической схемы и на 3,6 % меньше проектного показателя последнего авторского надзора), в эксплуатации находится 222 скважин (на 33,6% и 13,9% меньше, чем по технологической схеме и авторскому надзору соответственно).

Фактический фонд нагнетательных скважин составляет 197 скважин, что превышает проектный фонд технологической схемы на 8,2 % и соответствует фонду по авторскому надзору, однако действующий фонд нагнетательных скважин (120 скважин) значительно меньше проектного (на 32,6% и 37,2% соответственно).

За 2004 год добыто 399,7 тыс. т нефти, что на 4,6% превышает проектный уровень технологической схемы. По состоянию на 01.01.2005 г. накопленная добыча нефти ниже проектной на 3,5% (20927,7 тыс. т против 21686 тыс. т по технологической схеме) и составляет 73,9% от НИЗ, текущий КИН составил 0,308 при утвержденном значении 0,416. В сравнении с «Авторским надзором» (2001г.) добыча нефти осуществляется более высокими темпами — за 2004 год добыто на 19,1% больше запроектированного (399,7 тыс. т против 335,5 тыс. т), при этом накопленная добыча нефти по состоянию на 01.01.2006г. находится на уровне проектной.

Таблица 7

Сравнение проектных и фактических показателей

разработки визейского объекта

Показатели

2001 год

2002 год

2003 год

Проект

ТС

Факт

Проект

ТС

Факт

Проект

ТС

Факт

Добыча нефти всего, тыс. т

447

382,4

424

369,1

402

383,5

Накопленная добыча нефти, тыс.т

20478

19775,3

20902

20144,5

21304

20527,9

Коэффициент нефтеизвлечения, доли ед.

0,301

0,29

0,307

0,295

0,313

0,301

Темп отбора от начальных извлекаемых запасов, %

1,6

1,4

1,5

1,3

1,4

1,4

Отбор от НИЗ, %

72,4

69,9

73,9

71,2

75,3

72,5

Обводненность среднегодовая

по (массе), %

88,2

80,9

88,8

81,9

89,3

82,4

Добыча жидкости всего,

тыс. т/год

3786

2003,6

3778

2043,5

3771

2176,6

Накопленная добыча жидкости, тыс. т

71113

60298,3

74891

62341,7

78661

64518,3

Закачка рабочего агента, тыс. м3

4329

2145.2

4313

2414

4298

2399

Компенсация отборов жидкости в пл. усл., %

124

107,1

124

126,1

124

117,3

Пластовое давление, МПа

13,9

13,0

13,9

13,1

13,9

13,1

Газовый фактор, м 3

9,1

9,1

9,1

9,1

9,1

9,1

Плотность сетки добывающих и нагнет-х скв. 10 4 м2 /га

15

17,4

15,2

17,3

15,3

17,5

Среднесуточный дебит одной добыв-х скважины, т/сут

по нефти,

3,6

3,8

3,5

3,9

3,3

4,2

по жидкости

30,6

20

30,9

21,8

31,1

24

Среднесуточная приемистость нагнет-х скважины, м 3 /сут

66,9

42,7

67,6

54,8

68,3

58,8

Среднее давление на забоях добыв-х скважин, МПа

5-8

7,1

5-8

6,7

5-8

6,2

Таблица 7 (продолжение)

Показатели

2004 год

2005 год

2006 год

Проект

ТС

Факт

Проект

ТС

Факт

Проект

ТС

Факт

Добыча нефти всего, тыс. т

382

399,7

362

452,7

342

431,2

Накопленная добыча нефти, тыс.т

21686

20927,7

22048

21380,4

22390

21811,7

Коэффициент нефтеизвлечения, доли ед.

0,319

0,308

0,324

0,314

0,328

0,321

Темп отбора от начальных извлекаемых запасов, %

1,4

1,4

1,3

1,6

1,1

1,52

Отбор от НИЗ, %

76,6

73,9

77,9

75,5

78,6

77,1

Обводненность среднегодовая

по (массе), %

89,9

83,2

90,3

82,8

90,8

84,6

Добыча жидкости всего,

тыс. т/год

3761

2381,0

3746

2637,2

3689

2805,2

Накопленная добыча жидкости, тыс. т

82422

66898,7

86168

69535,9

88645

72341,1

Закачка рабочего агента, тыс. м3

4281

2402,9

4259

2662,8

41432

2862,1

Компенсация отборов жидкости в пл. усл., %

124

107,6

124

111,6

124

113,2

Пластовое давление, МПа

13,9

13,1

13,9

12,8

13,9

13,1

Газовый фактор, м 3

9,1

9,1

9,1

9,1

9,1

9,1

Плотность сетки добывающих и нагнет-х скв. 10 4 м2 /га

15,6

18,0

15,7

18,5

15,9

18,7

Среднесуточный дебит одной добыв-х скважины, т/сут

по нефти,

3,2

4,8

3

5,6

2,8

5,9

по жидкости

31,3

28,3

31,4

32,5

30,8

38,1

Среднесуточная приемистость нагнет-х скважины, м 3 /сут

69

59,1

69,6

37,7

70,3

42,1

Среднее давление на забоях добыв-х скважин, МПа

5-8

5,9

5-8

5,8

5-8

6,1

2.4. Выбор и обоснование применения гидравлического разрыва пласта для условий Ельниковского месторождения

ГРП – это одно из геолого-технических мероприятий (ГТМ) на добывающем фонде, направленное на восстановление производительности скважин и интенсификацию добычи нефти, а также на устранение притока воды в добывающие скважины. Исходя из этого, эффективность ГТМ оценивается по трём основным характеристикам:

1) прирост дебита нефти после мероприятия;

2) рост обводнённости продукции скважины после мероприятия;

3) длительность эффекта прироста дебита нефти после мероприятия.

С целью определения эффективности ГТМ, проведённых на Ельниковском месторождении за последние годы, выполнена статистическая обработка дебитов скважин по нефти и жидкости до и после мероприятий. Наиболее востребованными ГТМ являются различные виды воздействия на ПЗП. В силу высокой расчленённости продуктивного разреза при различии фильтрационных характеристик продуктивных пластов рекомендуется продолжение работ по селективному воздействию на пласты с целью увеличения притока в добывающих скважинах (интенсификация притока из отдельных пропластков и вовлечение в работу ранее не дренируемых пропластков с низкими фильтрационными характеристиками).

Для условий Ельниковского месторождения с высоковязкой нефтью и низкими коллекторскими свойствами метод ГРП наиболее применим. Мы опираемся также на опыт применения ГРП на месторождениях Западной Сибири.

Таблица 8

Эффективность ГТМ на добывающем фонде визейского объекта за 2001-2006 г.

Группи-ровка ГТМ

Название ГТМ

Количест-во операций

Дебит нефти до ГТМ, т/сут

Дебит жидкости до ГТМ, т/сут

Прирост дебита нефти за 3 месяца, т/сут

Ввод БГС

12

0,6

5,4

4,1

Ввод из бездействия

7

0,3

39,9

1,2

Ввод бокового пологого ствола

1

0,7

Исслед-ования

Чистка забоя

1

2,6

16,1

0,5

ОПЗ

ГРП

21

2,1

3,0

3,6

ОПЗ СБС

2

5,3

31,7

3,3

ВПП ПАА

1

0,4

15,0

2,4

Компрессирование

8

0,8

8,2

2,3

Перестрел + ПСКО

1

0,8

1,5

1,9

КСПЭО-2

1

1,1

2,3

1,9

ГКО в динамическом режиме

1

1,1

1,6

1,8

ОПЗ РТ-1

18

4,0

17,4

1,6

Перестрел + УОС + ГКО

4

0,3

2,4

1,6

ОПЗ растворителем

14

2,9

29,0

1,4

ГКО

1

4,3

10,7

1,3

ПГКО

12

2,8

7,7

1,3

Дострел

2

6,4

134,1

1,3

ПГКО + УОС

7

2,3

27,8

1,2

Перестрел

10

0,6

2,3

1,0

Растворитель + УОС

19

2,4

16,1

0,8

Компрессирование + ГКО

2

0,4

1,4

0,7

СКО с щелочными металлами

1

1,3

15,0

0,6

Группи-ровка ГТМ

Название ГТМ

Количест-во операций

Дебит нефти до ГТМ, т/сут

Дебит жидкости до ГТМ, т/сут

Прирост дебита нефти за 3 месяца, т/сут

ОПЗ

Термобарохимическая обработка

4

1,1

2,1

0,4

ИДВ

3

1,7

2,6

0,4

Акустическо-химическое воздействие

4

3,8

11,4

-0,5

ТГХВ в кислоте

4

5,1

10,6

-0,7

Акустическое воздействие

2

3,1

3,8

-1,6

Оптимизация

Перевод с ШГН на ЭЦН

4

23,2

54,6

1,9

Увеличение подвески насоса

2

7,9

25,5

1,2

Увеличение диаметра ШГН

23

4,8

15,6

1,1

Увеличение диаметра ЭЦН

11

13,1

44,5

0,9

Увеличение параметров откачки

123

6,0

17,8

0,2

Перевод с УЭДН на ШГН

1

2,7

15,9

0,0

Пере-вод

Переход на новый горизонт

3

0,7

1,4

2,9

Перевод из нагнетательной скважины в добывающие

2

0,3

РИР

РИР ЭМКО

4

1,4

99,0

9,1

Изоляция башмака

1

0,1

2,3

4,3

РИР с ПАА

2

0,4

14,6

2,3

Изоляция пластовой воды

19

0,8

15,9

1,6

Отключение пласта С-V, C-VI

1

0,3

39,9

1,2

Изоляция закачиваемых вод

4

0,7

42,1

0,8

Отключение пласта

2

0,3

16,5

0,7

РИР водонабухающим полимером

2

1,2

21,7

0,6

ОВЦ цементом

2

0,2

14,6

0,3

Изоляция затрубных перетоков

1

0,1

10,0

0,2

Группи-ровка ГТМ

Название ГТМ

Прирост дебита нефти за 3 месяца, %

Рост обводнённости за

3 месяца

Прирост дебита нефти за 6 месяцев, т/сут

Прирост дебита нефти

за 6 месяцев, %

Ввод БГС

639,5

-10,7

4,1

639,5

Ввод из бездействия

384,4

-2,1

1,2

384,4

Ввод бокового пологого ствола

69,2

0,7

Исслед-ования

Чистка забоя

18,4

-3,4

0,5

18,4

ОПЗ

ГРП

169,9

9,9

3,6

169,9

ОПЗ СБС

61,9

-5,4

3,3

61,9

ВПП ПАА

591,2

-14,6

2,4

591,2

Компрессирование

286,5

-20,9

2,3

286,5

Перестрел + ПСКО

235,1

-16,3

1,9

235,1

КСПЭО-2

169,1

-8,1

1,9

169,1

ГКО в динамическом режиме

164,0

-3,2

1,8

164,0

ОПЗ РТ-1

40,9

-1,3

1,6

40,9

Перестрел + УОС + ГКО

520,2

-4,2

1,6

520,2

ОПЗ растворителем

47,7

-11,3

1,4

46,7

ГКО

30,4

-1,9

ПГКО

46,6

-7,1

1,3

45,9

Дострел

19,4

-0,1

1,3

19,4

ПГКО + УОС

53,7

-3,8

1,2

53,7

Перестрел

165,2

13,9

1,0

165,2

Растворитель + УОС

34,5

-12,1

0,8

34,5

Компрессирование + ГКО

194,8

4,8

0,7

194,8

СКО с щелочными металлами

42,7

-4,6

0,6

42,7

Группи-ровка ГТМ

Название ГТМ

Прирост дебита нефти за 3 месяца, %

Рост обводнённости за

3 месяца

Прирост дебита нефти за 6 месяцев, т/сут

Прирост дебита нефти

за 6 месяцев, %

ОПЗ

Термобарохимическая обработка

36,5

15,1

0,4

36,5

ИДВ

20,9

-6,8

0,4

20,9

Акустическо-химическое воздействие

-13,6

4,8

-0,5

-13,6

ТГХВ в кислоте

-13,6

0,7

-0,7

-13,6

Акустическое воздействие

-50,1

16,7

-1,6

-50,1

Оптимизация

Перевод с ШГН на ЭЦН

8,2

16,9

0,5

2,2

Увеличение подвески насоса

14,7

0,9

1,2

14,7

Увеличение диаметра ШГН

22,9

6,0

1,1

22,9

Увеличение диаметра ЭЦН

6,5

14,7

0,8

6,0

Увеличение параметров откачки

3,8

5,4

0,2

3,8

Перевод с УЭДН на ШГН

-0,7

6,7

0,0

-0,7

Пере-вод

Переход на новый горизонт

417,4

20,8

2,9

417,4

Перевод из нагнетательной скважины в добывающие

94,0

0,3

РИР

РИР ЭМКО

652,3

-13,8

9,1

652,3

Изоляция башмака

4 297,3

-54,2

4,3

4 297,3

РИР с ПАА

605,8

-13,8

2,3

605,8

Изоляция пластовой воды

199,9

-12,7

1,6

200,4

Отключение пласта С-V, C-VI

403,4

-5,7

1,2

403,4

Изоляция закачиваемых вод

120,4

-4,0

0,8

120,4

Отключение пласта

224,7

-5,8

0,7

224,7

РИР водонабухающим полимером

51,0

-19,1

0,6

51,0

ОВЦ цементом

134,2

-4,5

0,3

134,2

Группи-ровка ГТМ

Название ГТМ

Рост обводнённости за 6 месяцев

Прирост дебита нефти за 12 месяцев, т/сут

Прирост дебита нефти за 12 месяцев, %

Рост обводнённости за 12 месяцев

Ввод БГС

-10,7

4,1

639,5

-10,7

Ввод из бездействия

-2,1

1,2

384,4

-2,1

Ввод бокового пологого ствола

69,2

0,7

69,2

Исслед-ования

Чистка забоя

-3,4

0,5

18,4

-3,4

ОПЗ

ГРП

9,9

3,6

169,9

9,9

ОПЗ СБС

-5,4

3,3

61,9

-5,4

ВПП ПАА

-14,6

2,4

591,2

-14,6

Компрессирование

-20,9

2,3

286,5

-20,9

Перестрел + ПСКО

-16,3

1,9

235,1

-16,3

КСПЭО-2

-8,1

1,9

169,1

-8,1

ГКО в динамическом режиме

-3,2

1,8

164,0

-3,2

ОПЗ РТ-1

-1,3

1,6

40,9

-1,3

Перестрел + УОС + ГКО

-4,2

1,6

520,2

-4,2

ОПЗ растворителем

-12,0

1,4

46,7

-12,0

ГКО

ПГКО

-6,8

1,4

49,5

-6,4

Дострел

-0,1

1,3

19,8

-0,1

ПГКО + УОС

-3,8

1,3

55,1

-3,9

Перестрел

13,9

1,0

165,2

13,9

Растворитель + УОС

-12,1

0,8

34,5

-12,1

Компрессирование + ГКО

4,8

0,7

194,8

4,8

СКО с щелочными металлами

-4,6

0,6

42,7

-4,6

Группи-ровка ГТМ

Название ГТМ

Рост обводнённости за 6 месяцев

Прирост дебита нефти за 12 месяцев, т/сут

Прирост дебита нефти за 12 месяцев, %

Рост обводнённости за 12 месяцев

ОПЗ

Термобарохимическая обработка

15,1

0,4

36,5

15,1

ИДВ

-6,8

0,4

20,9

-6,8

Акустическо-химическое воздействие

4,8

ТГХВ в кислоте

0,7

-0,7

-13,6

0,7

Акустическое воздействие

16,7

-1,6

-50,1

16,7

Оптимизация

Перевод с ШГН на ЭЦН

14,7

-8,2

-35,2

25,6

Увеличение подвески насоса

0,9

1,2

14,7

0,9

Увеличение диаметра ШГН

6,0

1,2

24,0

5,7

Увеличение диаметра ЭЦН

15,1

-0,1

-0,5

16,6

Увеличение параметров откачки

5,4

0,2

3,8

5,4

Перевод с УЭДН на ШГН

6,7

0,0

-0,7

6,7

Пере-вод

Переход на новый горизонт

20,8

2,9

417,4

20,8

Перевод из нагнетательной скважины в добывающие

94,0

0,3

94,0

РИР

РИР ЭМКО

-13,8

Изоляция башмака

-54,2

4,3

4 297,3

-54,2

РИР с ПАА

-13,8

2,5

672,7

-14,8

Изоляция пластовой воды

-12,5

1,5

194,6

-12,3

Отключение пласта С-V, C-VI

-5,7

1,2

403,4

-5,7

Изоляция закачиваемых вод

-4,0

0,8

120,4

-4,0

Отключение пласта

-5,8

0,7

224,7

-5,8

РИР водонабухающим полимером

-19,1

0,6

51,0

-19,1

ОВЦ цементом

-4,5

-0,1

-26,3

-6,4

2.4.1. Анализ проведения гидравлического разрыва пласта на скважинах Ельниковского место­рождения в 2004-2005гг

В декабре 2004 – январе 2005 года в ОАО «Удмуртнефть» был проведен гидроразрыв пласта на 9 скважинах Ельниковского месторождения (песча­ники С-III Яснополянских отложений).

Среднесуточный дебит скважин по­сле ГРП в течение 12 месяцев составил 22 т/сут, что составляет 150% при­рост (13 тонн) от 9 т/сут дебита скважин до ГРП. Фактические результаты оказались на 50% выше прогнозируемых. Потенциально существует возмож­ность увеличения дебитов за счет программы оптимизации скважин. Если бы все скважины работали на гидродинамическом уровне, соответствующему уровню до ГРП, среднесуточный дебит мог составить 30, а не 22 т/сут. При значении гидродинамического уровня 1100м дебит мог возрасти до 50 т/сут.

График изменения дебитов скважин до и после ГРП.

 анализ текущего состояния разработки ельниковского месторождения 1

Рис. 10

Еще один успешный фактор данной кампании: на одной из скважин, участвовавших в кампании 2001-2002 года (скважина 3548), был проведен повтор­ный ГРП. Увеличение дебита на 60% свидетельствует о нали­чии большого потенциала увеличения добычи от повторного ГРП.

Таблица 9

Изменение дебитов скважин до и после проведения ГРП.

№ скважины

до ГРП

после ГРП

Qн, т/сут

Qж, м³/сут

% воды

Qн, т/сут

Qж, м³/сут

% воды

2809

5,4

14,3

66,4

7,3

17,4

62,7

4033

12,8

22

48,2

20,5

27,8

34,4

3863

2,1

3,4

45,0

7,1

9,2

31,3

3813

4,6

9,4

56,4

12,5

22,3

50,1

3858

14,2

29

56,4

60,2

102,1

47,5

3808

10,2

22,8

60,2

14,5

23,1

44,1

4108

6

9,4

43,2

20,1

27,9

35,9

3782

47

68

38,5

66,7

92,6

35,9

3548

19,6

31,2

44,1

31,3

35,8

22,2

среднее

13,5

23,3

50,9

26,7

39,8

40,5

Коэффициент увеличения добычи (КУД) по проведенным 9 операциям составил 2,5, по 4 наиболее успешным операциям КУД составил 3,7, по 4 наименее успешным 1,8. За исключением одной операции с полученным «стопом» и закачанным объемом проппанта 10% от запланированного, в це­лом КУД варьируется от 1,6 до 6. При проектировании последующих опера­ций необходимо учитывать следующее:

1) рекомендуется провести технико-экономический расчет замены ЭЦН для снижения гидродинамического уровня в скважинах;

2) снижение гидродинамического уровня, а также вероятность подтягива­ния конуса воды, вызовет увеличение напряжения на проп­пантную пачку;

3) рекомендуется проводить повторную перфорацию перед повторным ГРП;

4) рекомендуется проектировать ГРП с расчетом проводимости тре­щины не менее 20-30 кг/м 2 ;

5) средняя длина трещины составила соответственно 60 и 85м. По резуль­татам компьютерного моделирования даже длина 60м пред­ставляется избыточной. Рекомендуется проектировать ГРП с расче­том длины трещины, примерно равной 40 м;

6) согласно показаниям забойных манометров, в среднем расчетные дав­ления оказались на 27% выше фактических. В дальнейшем при расчете следует закладывать значения пластовых давлений на 27% ниже;

7) рекомендуется продолжать перестрел колонн перед каждым гидрораз­рывом посредством чередования глубоких прострелов заря­дами малого диаметра и неглубоких прострелов зарядами большого диаметра (фазировка всех зарядов – 60 градусов);

8) обводненность после ГРП снизилась по всем скважинам, кроме од­ной, № 2809, содержащий водоносный горизонт всего в 6м от кол­лектора. По данной скважине отмечено увеличение обводненности на 3%. На скважине 3858 обводненность снизилась на 20%, хотя водо­носный горизонт расположен в 8метрах;

9) на 9 скважинах эффективность мини-ГРП варьировалась от 27 до 53%, что свидетельствует о необходимости продолжать выполнение мини-ГРП при последующих операциях;

10) для увеличения эффективности при закачке основного ГРП следует до­бавлять силикатную муку и песок фракции 100 меш. Силикатную муку добавлять в концентрации около 10 кг/м 3 в течение всей опера­ции, песок добавлять на последней трети мини-ГРП (и закачки по­душки) в концентрации 40 кг/м3 ;

11) основной проппант, применявшийся на всех ГРП, — Форес 12-18. В це­лом, даже более крупный проппант поможет улучшить проводи­мость трещины и снизить объем выноса проппанта. Если при перфо­рации образуются отверстия диаметром 24мм, проппант 8-12 беспре­пятственно проникает в пласт./3/

2.4.2. Литературный обзор известных технических решений по теме проекта

ГРП является одним из наиболее эффективных методов повышения нефтеотдачи и интенсификации притока. Этот метод повышения нефтеотдачи имеет ряд технологических модификаций, обусловленный различиями в геологических условиях залежей, типами.

В специальном приложении «Нефтеотдача» №5 2002г. Журнала «Нефть и капитал» разработчики компании ОАО «Пурнефтеотдача» В. Радченко,

П. Попов, А. Рожков в статье «Современный подход к планированию гидроразрыва пласта» описывается понятие о ГРП, зависимость технико-экономической эффективности от достоверности геолого-геофизической и промысловой информации объектов разработки, интерпретации данных сейсморазведки, ГИС. В статье достаточно полно раскрыта классификация способов ГРП, адаптации технологий ГРП к конкретным типам пластов. Оговаривается необходимость учитывать структуру трещины.

Весьма значительна взаимосвязь ширины и длины трещины. Там, где проницаемость пласта наименьшая, доминирующим параметром выступает длина трещины, вследствие значительной разницы проводимости пласта и трещины. Если же разница незначительная, то более предпочтительна короткая и широко раскрытая трещина. Для этих условий применяется технология с экранировкой кромки трещины. Другим важным моментом является возможность влияния на рост трещины по вертикали. Комбинацией определённых приёмов при подготовке и проведении ГРП можно добиться роста трещины по высоте в заданных пределах. Данная технология успешно применяется в водоплавающих залежах.

Для интенсификации обводнённого фонда скважин используется технология, изменяющая фазовую проницаемость по нефти и воде в трещине ГРП. Прививая необходимые свойства пропанту на поверхности, можно получить, после закачки его в пласт, значительное уменьшение обводнённости при одновременном росте дебита.

«Нефть и газ» № 6, 2001г., В работе «Методика выбора скважин для проведения гидроразрыва пласта» Г.А. Малышева, на основе исследований проведения ГРП на месторождениях Западной Сибири, выработана методика выбора скважин. В качестве основного критерия можно принять условие компенсации понесённых затрат за счёт прироста извлекаемых запасов. Опыт проведения ГРП показывает, что средняя продолжительность эффекта составляет 2-3 года. Причины снижения эффективности могут быть разрушение зёрен пропанта и их вынос, забивание межзернового пространства частицами глины, выпадение смол и парафинов и т.д. поэтому выбор скважины, исходя из данного критерия, основывается на анализе возможных изменений в режиме работы скважины и участка в целом в результате создания в пласте трещины. Основными факторами являются степень выработки запасов, неоднородность пласта, степень обводнения отдельных пропластков, состояние изолирующих экранов.

Исследования на моделях пласта показывают, что повышение продуктивности определяется относительной проводимостью трещин. В результате обработки данных расчётов на модельных средах Претсом получена зависимость отношение эффективного радиуса скважины (rэф) к длине трещины (α = rэф / L) от обратной величины относительной проводимости трещины. Для оценки объёма извлекаемых запасов, степени их выработки различными авторами используется в основном экспоненциальный, гиперболический закон падения добычи, а также уравнение Фетковича, однако наиболее обоснованным является соотношение, полученное теоретически Р.И. Медведским и названное «универсальным законом».

Анализ результатов проведения ГРП в скважинах Западной Сибири показывает, что в большинстве успешных воздействий наблюдается увеличение производной на характеристике вытеснения, выражающее повышение коэффициента нефтеотдачи. При этом, в случае постоянства показателя степени «универсального закона» до и после воздействия, полученный эффект достигается за счёт устранения негативного влияния скин-эффекта в ПЗ скважины.

«Технологии ТЭК» № 2, 2004г. научно-технический журнал. Статья «Опыт применения комплекса «Химеко-В» в технологиях ГРП» Е. Курятников, Н. Рахимов, А. Седых, М. Силин

Одним из определяющих факторов эффективности интенсификации скважин методом ГРП является правильный выбор жидкости разрыва. Компанией ЗАО «Химеко-ГАНГ» (Россия) было предложено использовать для приготовления жидкости разрыва новый полисахаридный комплекс химреагентов «Химеко-В», включающий в себя: гелеобразователь ГПГ-3; ПАВ-регулятор деструкции; сшиватель БС-1 и деструктор ХВ. Комплекс реагентов был опробован при проведении ГРП в Казахстане на месторождении Каламкас. Жидкость разрыва готовилась на основе пресной «волжской» воды. Существенное значение, влияющее на заданные параметры ГРП, имеет вязкость приготовленной жидкости разрыва (геля).

Так при его приготовлении на основе нового комплекса гелирующего «Химеко-В» время сшивки находится в интервале 8-10 секунд, вязкость составила 1200-1500 сп (по проекту 1000-1200 сп).

Создание и развитие трещины является важным и во многом определяющим этапом при проведении ГРП, однако не менее важным является закрепление созданной полудлины трещины. Для этого этапа неотъемлемым требованием технологии проведения ГРП является закачка пропанта в строго расчётном количестве. В свою очередь для соблюдения требований данного технологического этапа ГРП необходимо получить жидкость разрыва с хорошей песконесущей и пескоудерживающей способностью, что и было наглядно подтверждено проведением серии ГРП в Казахстане.

2.4.3. Патентный обзор известных технических решений по теме проекта

Патент РФ № 2156356 «Технология гидравлического разрыва пласта» авторы: Т.К. Апасов, А.Н. Пазин, К.П. Локтев технология основана на прогнозировании геометрии трещины и оптимизации ёё параметров.

Патент РФ № 2149992 «Способ технико-экономического прогнозирования эффективности проведения ГРП» авторы: И.А. Виноградова, А.А. Казаков, Медведский Р.И. способ связан с оценкой приоритетности скважин-кандидатов.

Патент РФ № 2171147 «Способ гидравлического разрыва пласта» авторы: Л.Ю. Бортников, Б.В. Петров, Б.Т. Саргин, Д.П. Килин, с помощью способа создаётся протяжённая , высокопроводящяя трещина, охватывающяя пласт полностью

Патент РФ № 21117148 «Способ приготовления эмульсии для гидравлического разрыва пласта» авторы: А.М. Панич, Г.Л. Данилов, Б.Ю. Охвич приготовление основано на применении оригинального оборудования и технологии смешивания ПСЖГ.

Патент РФ № 2101476 «Эмульсионный состав для гидравлического разрыва пласта» авторы: М.А. Бобылёв, В.Н. Журба сущность состава в определённой концентрации химреагентов, а именно гелеобразователь ГПГ-3; ПАВ-регулятор диструкции; смешиватель БС-1; деструктор ХВ жидкость готовится на основе пресной воды.

2.4.4. Анализ применения ГРП на других месторождениях

В настоящее время в разработку широко вовлекаются трудноизвле­каемые запасы нефти, приуроченные к низкопро­ницаемым, слабодренируе­мым, неоднородным и расчлененным коллекторам.

Сейчас имеются широкие потенциальные возможности для внедрения крупномасштабных операций по проведению ГРП в низ­копроницаемых газо­носных пластах на месторождениях Сибири (глубина — 2000…4000м), Став­ропольского (2000…3000м) и Красно­дарского (3000…4000м) краев, Саратов­ской (2000м), Оренбургской (3000…4000м) и Астраханской (Карачаганакское месторождение (4000…5000м)) областей.

В нефтедобыче России большое внимание уделяют пер­спекти-вам при­менения метода ГРП. Это обусловлено прежде всего тенденцией роста в структуре запасов нефти доли запасов в низкопроницаемых коллекторах.

Высокопроводя­щие трещины гидроразрыва позволяют увеличить продуктив­ность скважин в 2…3 раза, а применение ГРП как элемента си­с­темы разработки, т.е., создание гидродинамической системы скважин с тре­щинами гидроразрыва, дает увеличение темпа отбора извлекаемых запасов, повышение нефтеотдачи за счет вовлечения в активную разработку слабо­дренируемых зон и пропластков и увеличения охвата заводнением, а также позволяет вводить в разработку залежи с потенциальным дебитом скважин в 2…3 раза ниже уровня рентабельной добычи, следо­вательно, переводить часть забалансовых запасов в промыш­ленные. Увеличение дебита скважин после проведения ГРП определяется соотношением проводимостей пласта и трещины и размерами последней, причем коэффициент продуктивности скважины не возрастает неограниченно с ростом длины трещи­ны, сущест­вует предельное значение длины, превышение кото­рого практически не при­водит к росту дебита жидкости.

За период 1988-1995гг. в Западной Сибири проведено более 1600 опера­ций ГРП. Общее число объектов разработ­ки, охваченных ГРП, превысило 70. Для целого ряда объектов ГРП стал неотъемлемой частью разработки. Благо­даря ГРП по многим объектам удалось добиться рентабельного уровня деби­тов скважин по нефти. В настоящее время объем проведения ГРП в Западной Сибири достиг уровня 500 скважино-операции в год. За эти годы накоплен определенный опыт в проведении и оценке эффективности ГРП в различных геолого-физических условиях.

Большой опыт гидроразрыва пластов накоплен в АО «Юганскнефтегаз». Анализ эффективности более 700 ГРП, про­веденных СП «ЮГАНСКФРАК­МАСТЕР» в 1989-1994 гг. на 22 пластах 17 месторождений АО «Юганскнеф­тегаз», показал следующее.

Основными объектами применения ГРП являлись залежи с низкопрони­цаемыми коллекторами. В первую очередь ГРП проводили на малоэффек­тивном фонде скважин: на бездействующих скважинах — 24 % от общего объ­ема работ, на малодебитных скважинах с дебитом жидкости менее 5 т/сут — 38 % и менее 10 т/сут — 75 %. На безводный и ма­ловодный (менее 5 %) фонд скважин приходится 76 % всех ГРП. В среднем за период обобщения по всем обработкам в резуль­тате ГРП дебит жидкости был увеличен с 8,3 до 31,4 т/сут, а по нефти — с 7,2 до 25,3 т/сут, т.е. в 3,5 раза при росте обводнен­ности на 6,2 %. В результате дополнительная добыча нефти за счет ГРП составила за 5 лет около 6 млн т. Наиболее удачные результаты получены при проведе­нии ГРП в чисто нефтяных объектах с большой нефтенасыщенной толщиной, где дебит жидкости увеличился с 3,5…6,7 до 34 т/сут при росте обводнен­но­сти всего на 5…6 %.

В 1993г. начались опытно-промышленные работы по проведению ГРП на месторождениях ОАО «Ноябрьскнефте­газ», в течение года было про­ведено 36 операций. Общий объем производства ГРП к концу 1997г. соста­вил 436 операций. Гид­роразрыв проводился как правило в малодебитных скважинах с низкой обводненностью, расположенных на участках с ухуд­шенными фильтрационно-емкостными свойствами. После ГРП дебит нефти увеличился в среднем в 7,7 раза, жидкости — в 10 раз. В результате ГРП в 70,4 % случаев обводненность возросла в среднем от 2 % до ГРП до 25 % после обработки. До­полнительная добыча нефти, от производства ГРП в ОАО «Но­ябрьскнефтегаз» к концу 1997г. превысила 1 млн. т.

Общепринятый подход к оценке эффективности гидроразрыва состоит в анализе динамики добычи нефти только обработан­ных скважин. При этом за базовые принимаются дебиты до ГРП, а дополнительная добыча рассчитыва­ется как разница между фактической и базовой добычей по данной скважине. При принятии решения о проведении ГРП в скважине часто не рассматрива­ется эффективность этого мероприятия с учетом всей пластовой системы и расстановки добывающих и нагнета­тельных скважин. Видимо, с этим свя­заны негативные послед­ствия применения ГРП, отмечаемые некоторыми авторами. Так, например, применение этого метода на отдельных участках Мамонтовского месторождения вызвало снижение нефтеотдачи из-за более интенсивного роста обвод­ненности некоторых обработанных и особенно ок­ружающих скважин. Анализ технологии проведения гидроразрыва на мес­то­рождениях ОАО «Сургутнефтегаз» показал, что зачастую неудачи связаны с нерациональным выбором параметров обра­ботки, когда темп закачки и объ­емы технологических жид­костей и проппанта определяются без учета таких факторов, как оптимальная длина и ширина закрепленной трещины, рас­счи­танные для данных условий; давление разрыва глинистых экранов, отде­ляющих продуктивный пласт от выше- и нижеле­жащих газо- и водонасы­щенных пластов. В результате умень­шаются потенциальные возможности ГРП как средства увели­чения добычи, увеличивается обводненность добы­ваемой про­дукции.

При промышленной реали­зации ГРП предварительно необходимо составле­ние проектно­го документа, в котором была бы обоснована технология ГРП, увязанная с системой разработки залежи в целом. При проведе­нии ГРП необ­ходимо предусмотреть комплекс промысловых исследований на первооче­редных скважинах для определения местоположения, направления и прово­димости трещины, что позволит внести корректировку в технологию ГРП с учетом особенностей каждого конкретного объекта. /6/.

2.5. Проектирование гидравлического разрыва пласта

2.5.1. Подбор скважин для осуществления программы по проведению

Подбор кандидатов является, вероятно, наиболее критичным этапом всего проекта ГРП. Успех ГРП в очень большой степени зависит от подбора скважины. Например, эффект от ГРП истощенного коллектора может ока­заться весьма краткосрочным и неутешительным. Наоборот, такой ГРП на скважине с сильно поврежденной призабойной зоной, в коллекторе с боль­шими запасами может привести к значительному и устойчивому приросту добычи.

Параметры для оценки скважин-кандидатов для ГРП: для корректной оценки скважины-кандидата ГРП требуется минималь­ный объем данных. Ниже приведен перечень параметров и данных, необхо­димых для проведения такую оценку.

1. Карта месторождения с указанием:

1) расположения скважины-кандидата;

2) расположения соседних скважин, включая нагнетательные;

3) расположения скважин с выполненными ГРП;

4) легендой, дающей возможность рассчитать расстояния до соседних скважин.

2. Данные по добыче прошлых лет:

1) графики работы скважины по нефти, воде и газу, динамика давления на устье, данные по всем внутрискважинным работам;

2) текущий режим эксплуатации;

3) сведения по скважинам после ГРП в районе работ, в т.ч. данные ГИС.

3. Данные (диаграммы) ГИС в открытом стволе:

1) ГК, ПС, пористость, сопротивление и/или данные акустического каро­тажа;

2) содержать сведения об интервале как минимум на 50м выше и 50м ниже интересуемой зоны;

3) на диаграммах должны быть показаны зоны ПВР (в прошлом, настоя­щие и планируемые в будущем);

4) текущий и планируемый искусственный забой;

5) должна быть показана кровля всех зон.

4. Данные по целевому интересуемому и соседним пластам:

1) пластовое давление;

2) пластовая температура;

3) пористость;

4) литология;

5) местонахождение разломов;

6) естественная трещиноватость коллектора.

5. Данные по фильтрационным свойствам пласта, полученные при бурении:

1) модуль Юнга;

2) данные, свидетельствующие о том, будут ли прилегающие зоны яв­ляться барьером на пути развития трещины в высоту, или нет;

3) проектные кровля и подошва трещины;

4) требуется изоляция перфорационных отверстий для обеспечения разви­тия трещины в целевой зоне?;

5) представляет ли проблему близкорасположенный водоносный гори­зонт?

6. Представляет ли проблему вынос проппанта?

7. АКЦ с данными по 50м выше и ниже целевого интервала.

8. Схемы конструкции скважин с указанием расположения интервалов пер­форации, высоты подъема цемента, интервалов посадки и диаметров, це­ментных мостов-пробок, мест выполнения ловильных работ.

9. Сведения по обсадным и НКТ колоннам:

1) диаметры, марки стали, интервалы спуска;

2) наличие хвостовика в скважине?;

3) диаметр планируемой колонны ГРП?;

4) выдержит ли колонна ГРП преждевременный «Стоп»?;

5) выдержит ли затруб ожидаемые давления?;

6) достаточно ли качество цементирования над предполагаемой высо­той трещины?;

7) достаточно ли сцепление цементного камня (качество и количество) чтобы избежать смятия обсадной колонны над пакером?;

8) можно ли выполнить исследование с применением тетраборнокис­лого натрия или импульсный нейтронный каротаж для выявления воды в каналах цементного камня?

10. Данные о перфорации:

1) тип перфоратора;

2) плотность перфорации (отв. на м);

3) диаметр и глубина отверстий (мм);

4) фазирование (град);

5) отношение диаметра к макс. размеру частиц проппанта (меш).

11. Искривление ствола:

1) глубина максимальной кривизны ствола;

2) отклонение от вертикале на кровле интервала перфорации.

12. Полные данные по эксплуатации скважины.

13. Наземные сооружения.

14. Поддержка проекта со стороны ППД:

1) в состоянии ли нагнетательные скважины обеспечить повышенные объ­емы нагнетания в связи с возросшим отбором нефти?;

2) требуется карта (схема) заводнения.

Аномальные давления., Абразивные составы., Высокие нагрузки на НКТ и пакер, Высокие нагрузки на обсадную колонну., Высокие нагрузки на хвостовик.

Жидкости – всегда следует проверять жидкости до начала КРС: качество, плотность, процент содержания соли, кальция и магния в воде, общее содер­жание взвешенных частиц и рН. В качестве основных жидкостей рекоменду­ется отфильтрованная до 10 микрон вода с 3% содержанием хлористого ка­лия. «Чистую» нефть необходимо проверить на содержание воды и частиц песка. Для глушения скважин и КРС должна применяться только нефть с со­держанием частиц песка < 0.003%. Все емкости для хранения нефти должны быть очищены паром. Для транспортировки разрешается использование только очищенных емкостей. Перед применением все жидкости подлежат обязательной проверке.

Посадка пакера, Интервал проработки обсадной колонны скребком.

нижней перфорации.

Размер шаблонов

2.5.2. Выбор скважин-кандидатов

На основании выше изложенного мы провели детальный анализ всего добывающего фонда скважин Ельниковского месторождения: работа скважины; проведенные на ней ремонты (аварии); проводимые на ней ГИС; конструкцию скважин; проведенные на ней ГТМ, оптимизации; способ эксплуатации; расположение скважины по отношению к другим скважинам. После этого были выбраны 10 скважин для осуществления программы по гидроразрыву пласта.

Мощность продуктивной зоны (Н), Кривизна ствола в зоне перфораций, Количество перфорированных зон, Проницаемость, Обводненность (%), Пластовое давление

Таблица 10

Динамика добычи по скважинам — кандидатам

Дата

Скважина

4006

Скважина

4025

Скважина

2806

Скважина

4002

Скважина

2805

%

%

%

%

%

янв.

06

12,9

5,1

56

7,0

2,9

54

12,5

4,9

56

9,0

7,2

10

7,0

3,1

50

фев.

06

12,7

5,1

55

7,1

2,9

54

13,0

5,2

55

8,8

7,0

10

7,5

3,4

50

мар.

06

12,8

4,7

59

7,1

2,9

54

12,5

5,2

53

8,9

7,1

10

7,2

3,1

51

апр.

06

11,2

4,9

51

7,0

2,9

54

12,1

5,1

53

9,2

7,4

10

7,2

3,1

52

май

06

11,5

4,8

53

7,0

3,0

52

12,3

5,0

54

9,0

7,2

10

7,2

3,1

52

июн

06

11,5

4,7

54

7,0

2,8

55

12,4

5,1

54

9,3

7,4

11

7,4

3,0

55

июл

06

11,9

4,9

54

7,1

2,8

55

12,5

4,9

56

9,3

7,4

11

7,0

2,8

55

авг 06

12,0

5,2

51

7,2

2,9

55

12,6

5,3

53

9,1

7,2

11

7,2

3,0

53

сен 06

12,0

5,0

53

7,3

3,1

53

12,3

4,9

55

9,0

7,2

11

7,2

2,9

55

окт 06

11,4

4,4

56

7,3

3,1

52

12,4

4,9

56

9,6

7,5

12

7,6

3,0

55

ноя 06

11,8

4,3

59

7,2

3,0

53

12,5

5,0

55

9,1

7,2

11

7,6

3,1

54

дек 05

12,0

4,7

56

7,4

3,0

54

12,5

5,2

53

9,0

7,1

11

7,5

3,2

53

Дата

Скважина

2792

Скважина

2758

Скважина

2814

Скважина

3786

Скважина

2817

%

%

%

%

%

янв.

06

12,9

5,1

56

7,0

2,9

54

12,5

4,9

56

9,0

7,2

10

7,0

3,1

50

фев.

06

12,7

5,1

55

7,1

2,9

54

13,0

5,2

55

8,8

7,0

10

7,5

3,4

50

мар.

06

12,8

4,7

59

7,1

2,9

54

12,5

5,2

53

8,9

7,1

10

7,2

3,1

51

апр.

06

11,2

4,9

51

7,0

2,9

54

12,1

5,1

53

9,2

7,4

10

7,2

3,1

52

май

06

11,5

4,8

53

7,0

3,0

52

12,3

5,0

54

9,0

7,2

10

7,2

3,1

52

июн

06

11,5

4,7

54

7,0

2,8

55

12,4

5,1

54

9,3

7,4

11

7,4

3,0

55

июл

06

11,9

4,9

54

7,1

2,8

55

12,5

4,9

56

9,3

7,4

11

7,0

2,8

55

авг 06

12,0

5,2

51

7,2

2,9

55

12,6

5,3

53

9,1

7,2

11

7,2

3,0

53

сен 06

12,0

5,0

53

7,3

3,1

53

12,3

4,9

55

9,0

7,2

11

7,2

2,9

55

окт 06

11,4

4,4

56

7,3

3,1

52

12,4

4,9

56

9,6

7,5

12

7,6

3,0

55

ноя 06

11,8

4,3

59

7,2

3,0

53

12,5

5,0

55

9,1

7,2

11

7,6

3,1

54

дек 05

12,0

4,7

56

7,4

3,0

54

12,5

5,2

53

9,0

7,1

11

7,5

3,2

53

Таблица 11

Конструкция скважин

Скважи-на

э/колонна

Забой

Перфорация

Ф, мм

Толщи-на стенок, мм

Исскуствен-ный, м

Теку-щий, м

Дата

Интервал

Тип перфора-тора

Плот-ность

4006

146

8

1360

1358

1991

1278-1279,8; 1280,4-1282,4; 1283,6-1286

ПК-105

10

4025

146

8

1480

1480

1988

1377,4-1378,8; 1380,2-1381,4; 1383-1385,6; 1389-1391,6; 1393-1396

ПК-105

10

2806

146

8

1510

1500

1990

1436.4-1438.0; 1438.8-1440.4; 1444.4-1450.4

ПК-105

10

4002

146

8

1520

1490

1985

1451.2-1452.8; 1459.4-1461.2; 1462.0-1464.2; 1468.0-1472.0

ПК-105

10

2805

146

7

1488

1485

1987

1418.8-1420.4; 1422-1423.2; 1428-1431.6

ПК-105

10

2792

146

8

1521

1515

1990

1423.2-1424.4; 1428.0-1429.2; 1436.4-1438.4; 1445.6-1447.2; 1449.0-1451.6

ПК-105

10

2758

146

8

1430

1420

1991

1346.8-1348.0; 1349.0-1350.0; 1352.4-1361.0; 1380.8-1384.0

ПК-105

10

2814

146

7

1468

1460

1986

1403.0-1405.2; 1412.2-1413.8; 1418.4-1422.8

ПК-105

10

3786

146

8

1503

1500

1988

1442.8-1445.2; 1453.0-1454.0; 1455.2-1457.6

ПК-105

10

2817

146

8

1500

1500

1987

1430.8-1433.0; 1435.0-1436.0; 1437.0-1438.0; 1440.8-1446.0

ПК-105

10

Таблица 12

Физико-химические свойства по скважинам-кандидатам.

Скважина

Рпл, атм

Рзаб, атм

Рнас, атм

Вязкость, мПа·с

Объемный коэффициент

Скин-фактор

Нэф, м

Проницаемость, мД

Плотно-сть нефти. пов.усл., т/м³

4006

111

50

65

20,87

1,028

25,148

5,2

100

0,889

4025

124

48

62

21,30

1,100

23,146

10,0

87

0,889

2806

124

50

66

20,01

1,056

25,147

7,4

97

0,889

4002

138

52

68

20,90

1,080

24,657

22,2

81

0,889

2805

135

54

63

21,80

1,102

26,822

6,6

86

0,889

2792

125

51

62

21,89

1,112

25,444

10,0

79

0,889

2758

127

47

61

22,34

1,038

20,176

9,0

96

0,889

2814

127

31

65

20,08

1,097

26,688

6,6

100

0,889

3786

123

52

65

20,84

1,112

26,442

9,8

94

0,889

2817

135

54

66

23,41

1,084

25,233

12,0

83

0,889

2.5.3. Технология проведения гидравлического разрыва пласта

1) Геологической службой управления составляется информация установленной формы для расчета ГРП.

2) Составляется программа проведения ГРП по результатам расчета на ЭВМ.

4) Устанавливается специальное устьевое оборудование на скважине.

5) Мастер КРС передает скважину ответственному по ГРП соответственно акта для проведения ГРП установленной формы.

7) Проводится испытание на герметичность устьевого оборудования, манифольдов и соединений нагнетательных линий от агрегатов к скважине под давлением 700 атм. в течении 10 мин.

8) При установлении герметичности соединений в скважину подается чистая загеленная жидкость разрыва для осуществления ГРП. Свидетельством достижения разрыва является увеличение приемистости скважины по диаграмме на компьютере.

9) После достижения разрыва в скважину, согласно программе, нагнетается от 10 до 40 м 3 чистой загеленной жидкости разрыва.

10) За жидкостью разрыва производится закачка загеленной жидкости с подачей расчетной дозы проппанта от 100 до 900 кг/м 3 до определенной стадии объема закачки по намеченной программе при давлениях до 450 атм. Для закрепления трещин закачивается 4-30 т проппанта.

11) Непосредственно за смесью проппанта и жидкости закачивается жидкость продавки в объеме до кровли пласта. Управление процессом ГРП осуществляется с пульта управления и по радиосвязи.

12) Темп нагнетания жидкости выдерживается расчетный, в пределах 3-7 м 3 /мин. в зависимости от геолого-промысловых данных пласта.

13) Скважина оставляется на распад геля, на 24 часа под остаточным давлением, с регистрацией изменения давления в виде графика на ЭВМ.

14) В процессе ГРП ведется непрерывная регистрация следующих параметров: давления нагнетания, темпа закачки, затрубного давления, количества пропанта, плотности жидкости, количества химреагентов. Регистрация параметров ведется одновременно в виде графика на экране ЭВМ, записи в памяти ЭВМ, записи на дискету, распечатки на принтере и записи в таблицу данных. Выдача документации по ГРП с ЭВМ производится в форме: сводки ГРП, графиков изменения параметров в процессе ГРП, графика изменения остаточного давления после ГРП. /4/.

Гидравлический разрыв пласта —

Хорошие результаты дает предварительная перфорация в узком интервале пласта, намеченном для ГРП. Для этих целей применяется кумулятивную или гидропескоструйную перфорацию. Такие мероприятия снижают давление разрыва и повышают его эффективность.

Проверяется герметичность эксплуатационной колонны и цементного кольца. Спускают НКТ (как можно большего диаметра для уменьшения потерь давления) с пакером и якорем. Пакер устанавливается на 5-10м выше разрываемого пласта против плотных непроницаемых пород (глина, аргиллит, алевролит).

Ниже пакера устанавливаются НКТ (хвостовик).

Длину хвостовика выбирают максимальной возможной для того, чтобы песок двигался к трещине и не выпадал в зумпф скважины.

Промывают и заполняют скважину до устья собственной дегазированной нефтью в нефтяных добывающих и нагнетаемой водой — в нагнетательных скважинах. После посадки пакера, опрессовку его производят путем закачки нефти или воды в НКТ при открытом затрубном пространстве. При обнаружении пропусков в пакере его срывают и производят повторную посадку и опрессовку. Если и в этом случае не достигается герметичность пакера, то его заменяют или изменяют место посадки.

Оборудование, необходимое для ГРП, расставляется персоналом бригады ГРП на площадке перед скважиной согласно технологической схемы, производится обвязка оборудования трубопроводами (для низкого давления мягкими рукавами, для высокого давления — стальными трубами) между собой, емкостями и скважиной. После закрепления всех трубопроводов производится их опрессовка на давление ожидаемое рабочее плюс коэффициент запаса, зависящий от величины ожидаемого рабочего (например, при ожидаемом рабочем давлении более 650 атм, коэффициент запаса будет равен 1,25).

Производится приготовление рабочей жидкости разрыва путем перемешивания технологической жидкости, находящейся в емкостях, с химическими реагентами, повышающими вязкость. Продолжительность подготовки жидкости разрыва зависит от ее объема, качества и температуры. /7/

Процесс ГРП начинается с закачки жидкости разрыва в скважину с расходами и давлением, соответствующим рабочему проекту. Разрыв пласта отмечается падением давления закачки и увеличением приемистости скважины

Давление ГРП на забое скважины Рз определяется по формуле:

Р згр ,

где: Б р — предел прочности пород продуктивного пласта на разрыв, МПа;

Р г — величина горного давления, определяется по формуле:

Р г = Н*р*10(ехр-5),

где: Н — глубина обрабатываемого пласта, м;

р — плотность пород, слагающих разрез скважины, кг/м 3 .

Давление ГРП на устье скважины Ру определяется по формуле:

Р у

где: Р тр — потери давления из-за трения жидкости в трубах, МПа;

Р пл — пластовое давление, МПа.

После разрыва пласта для увеличения приемистости скважины увеличивают расход жидкости и поднимают давление разрыва. При получении величины трещины, соответствующей проектной, начинается закачка расклинивающего материала в трещину для ее закрепления. Эта стадия проходит при максимальных давлениях и производительности для обеспечения максимального раскрытия созданных трещин. .

Непосредственно после закачки расклинивающего материала без снижения темпов производится его продавка в пласт чистой жидкостью в объеме, равном объему труб; затем останавливаются все агрегаты, закрывается устьевая задвижка и скважина не менее суток находится на распределении давления и распаде геля.

Во время процесса ГРП в затрубном пространстве скважины поддерживается давление от 80 до 130 МПа с целью уменьшения перепада давления на НКТ и пакер.

Все параметры ГРП (давление на насосных агрегатах, мгновенные и накопленные расходы жидкости и закрепляющего материала, давление в затрубном пространстве, суммарный расход жидкости, плотность смеси) выводятся на станцию контроля и управления процессом и регистрируются в памяти компьютеров. В процессе ГРП используется следующая техника: специальные насосные агрегаты высокого давления; смеситель(блендер); стан-ция контроля и управления процессом; песковоз; пожарный автомобиль; блок манифольдов; автомобиль для перевозки химреагентов; вакуумная установка.

Схема расстановки наземного оборудования при производстве ГРП

Гидравлический разрыв пласта  1

Рис. 11

Схема расположения подземного оборудования

при проведении ГРП на примере скважины 4006.

Гидравлический разрыв пласта  2

Рис. 12

2.5.4. Проведение перфорации

При проведении скважинных работ важно не допустить закупорки пер­форационных отверстий. Все операции, которые могут привести к осыпям (цементирование, установка песчаных заглушек, проработка скребком и др.) должны проводиться до перфорирования. Затем жидкости в скважине вытес­няются чистыми жидкостями. Эта операция также проводится до перфориро­вания.

За исключением случаев ограниченной перфорации, ПВР на скважине должно выполняться таким образом, чтобы минимизировать: давления тре­ния в пристволье и риск преждевременного «Стопа» при закачке ГРП, паде­ние давления в призабойной зоне и вынос проппанта при эксплуатации, а также, чтобы обеспечить хорошее перекрытие продуктивной зоны, избежав в то же время контакта трещины с зонами нежелательных флюидов.

Важно, чтобы диаметр перфорационных отверстий соответствовал раз­меру проппанта. Во многих случаях, особенно при осадконакоплениях, реко­мендуется повторное перфорирование до начала ГРП. В отсутствие надеж­ной информации в целях безопасности скважины рекомендуется ПВР с плот­ностью 20 отв/м, фазированием 60 град., с входным диаметром отверстий 12мм.

Длина интервала перфорации может оказать влияние на трещину. Для вертикальных скважин ограничение по интервалу перфорации 15-30 метров. На наклонно-направленных скважинах интервал ПВР должен прогрессивно уменьшаться при нарастании отхода от вертикали. В случае если зенитный угол ствола составляет 45 град и более, рекомендуемый интервал не должен превышать 10 метров. Интервал перфорации должен быть ограничен на сква­жинах с большим отходом и горизонтальных. Меньшие интервалы ПВР сле­дует предусмотреть и в случае жестких пород, а также при неблагоприятной ориентации стрессов в призабойной зоне. Для горизонтальных скважин в ме­ловых породах рекомендуемый интервал перфорации составляет от 0,7 до 2,5 метров, в зависимости от ориентации ствола. В более жестких породах интер­вал ПВР должен быть сокращен до 0,7 м.

На вертикальных скважинах и скв с зенитным углом менее 45 град про­стрел выполняется с фазированием 60 град. При больших углах отхода и на горизонтальных скважинах прострел выполняется с фазированием от 0 до 180 град с ориентацией кровли и подошвы интервала перфорации по вектору силы тяжести. За исключением случаев частичной (ограниченной) перфора­ции плотность ПВР должна быть как минимум 10 отв./м. Как правило, глу­бина отверстий в 100-150 мм является достаточной.

Депрессия на пласт может снизить начальное давление разрыва на 68 атм и, вероятно, даст возможность привлечения к ГРП большей части интер­вала перфорации. Вызов притока перед ГРП имеет такой же эффект. В иных случаях избыточное (репрессия) или сбалансированное давление может быть достаточным. Перфорирование на очень высокой репрессии перед ГРП мо­жет помочь минимизировать проблемы с искривлением каналов, обуслов­ленным некачественными работами ПВР, однако, как правило, не рекомен­дуется.

2.5.5. Дизайн гидравлического разрыва пласта

Традиционно рассматриваемые моменты включают:

Зенитный угол и азимут., Траектория скважины., Расчет проницаемости коллектора., Повторный ГРП, Качество цементирования (целостность сцепления), Данные по соседним скважинам, Забойные манометры (ЗМ) с работой в реальном времени или записью в блок памяти, Полудлина и проводимость трещины., Высота трещины

2.5.6.Заключительные работы

После проведенного гидроразрыва и спада давления из скважины извле­кается подземное оборудование и замеряется забой. При наличии песчаной пробки производится промывка ее.

В том случае, если для контроля местоположения трещин и оценки их раскрытия закачивался меченый изотопами материал, производится повтор­ный замер гамма-каротажа. Сопоставление контрольного и проведенного за­меров гамма-каротажа позволяет установить интервалы разрыва, а по вели­чине зернистого «меченого» материала оценивают раскрытие трещин.

Освоение и эксплуатация скважины после процесса в большинстве слу­чаев производятся тем же способом, как и до гидроразрыва.

После установления постоянного отбора жидкости из скважины произ­водится исследование методами установившегося и неустановившегося от­бора для определения коэффициента продуктивности по добывающим или коэффициента приемистости по нагнетательным скважинам и других пара­метров пласта, призабойной зоны скважины. Для выявления качественных изменений, происшедших в скважине после гидроразрыва, следует произво­дить замеры дебита нефти и газа, процента обводненности, количества выно­симого песка и т.д.

Для более полного представления о длительности эффекта в скважине при последующей эксплуатации ее, помимо замеров дебита нефти и газа, не­обходимо периодически (один раз в квартал) производить исследования по изучению динамики коэффициента продуктивности. Особенно такие иссле­дования необходимы при значительных изменениях режима работы насосной установки (длины хода, числа качаний, глубины подвески и диаметра насоса) или режимов работы фонтанного или газлифтного подъемников.

2.5.7. Техника для гидравлического разрыва пласта

Смеситель

Смеситель монтируется на грузовом автомобиле типа «Kenworth» рассчитана на эксплуатацию в диапазоне температур окружающего воздуха от — -40°С до +40 °С.

Смесительная установка характеризуется следующими техническими данными:

расход жидкости – 7,9 м З / мин.;

  • максимальное давление на выходе – 5,3
  • максимальная плотность на выходе – 2,4 кг песка на 1 литр;
  • максимальный расход сухих химических веществ – 0,074 мин .;
  • максимальный расход жидких химических веществ — 57 л/мин
  • максимальная подача расклинивающего агента — 7260 кг/мин.

Привод смесительной установки — гидравлический. Привод насоса — от

многоступенчатой коробки передач с гидроприводом от силовой установки на шасси автомобиля. Насос питает которые приводят в действие следующие агрегаты:

  • всасывающий центробежный насос;
  • нагнетательный центробежный насос;
  • две системы сухих добавок;
  • два для подачи расклинивающего агента;
  • один растворов;
  • систему подъема расклинивающего агента.

Смесительная система:

Смесительный бак:

Смесительная система Stewart & Stevenson » содержит цилиндрический смеситель, построенный на принципе «бак в баке» для обеспечения полного и равномерного смешивания растворов. Чистая жидкость поступает в смесительный бак через всасывающий коллектор и далее проходит в радиальном направлении внутри наружной жидкостной камеры.

Циркулируя в наружной камере, жидкость перетекает через верхнюю радиальную кромку наружной стенки внутренней камеры, во внутреннюю смесительную камеру, смешиваясь с подаваемыми в нее расклинивающими агентами.

Благодаря большой поверхностной зоне наклонных стенок внутренней камеры тщательно увлажняется, не вызывая при этом ненужной аэрации раствора. В нижней части камеры установлен миксер с регулируемой скоростью вращения лопаток, который обеспечивает полное и равномерное смешивание раствора.

Смеситель содержит также систему автоматического регулирования уровня жидкости. В камеру смешивания также подаются химические добавки из соответствующих систем сухих и жидких добавок.

еки для загрузки расклинивающего агента:

В задней части установки монтируются два диаметром 30,5 см с переменной частотой вращения. У основания шнековых транспортеров установлен стальной бункер для загрузки проппанта.

На смонтированы электрические датчики для регистрации объема и скорости подачи проппанта.

Шнековый транспортер поднимается и опускается в транспортное или рабочее положение. Имеется также механическое блокировочное устройство для фиксации в установленном гидромеханизмами положении.

Всасывающий насос и коллекторы:

Всасывающий центробежный насос Mission Magnum » обеспечивает

перекачивание жидкостей с интенсивностью 11 мин, из емкостей в

смесительный бак или к насосным установкам. На всасывающем коллекторе смонтировано девять входных штуцеров диаметром 4″ с дроссельным затвором в каждом и соединительным фитингом с внутренней резьбой. Нагнетательная линия соединяется трубопроводами со смесительным баком.

Нагнетательный насос:

Нагнетательный центробежный насос Mission Magnum » обеспечи-вает перекачивание жидкостей с интенсивностью 11 м З / мин, из смесите-льного бака, насыщенные проппантом смеси. На нагнетательном коллекторе смонтировано шесть входных штуцеров диаметром 4″ с дроссельным клапаном в каждом и соединительным фитингом с внутренней резьбой.

Контрольные приборы (расходомеры и плотномеры):

Между всасывающим коллектором и смесительным баком устанавливается расходомер турбинного типа. Такой же расходомер устанавливается и в нагнетательной магистрали. Там же смонтирован плотномер типа 200МС I. Эти приборы оборудуются соответствующими датчиками и электрическими кабелями для соединения этих приборов с суммирующими цифровыми приборами.

Система сухих добавок:

Смеситель оснащен двумя системами сухих добавок с изменяемой

частотой вращения. Для подачи сыпучих химикатов используются транспортеры с производительностью 0.037 м З / мин.

Система жидких химических добавок:

Смесительная установка оснащена двумя насосными системами жидких добавок с изменяемой частотой каждая из них оборудована расходомерами в нагнетательной линии с датчиками и кабелями для соединения с сумматорами расхода добавок, которые смонтированы в кабине управления установкой.

Системы жидких добавок подают соответствующие химикаты с указанной ниже производительностью при давлении выше 5

  • система 1: 19 л/мин;
  • система 2: 38 л/мин.

Б

Установка смонтирована на грузовом а/ Mersedes Bens 2629″ и предназначена для работы в диапазоне температур от — 40°С до +40°С.

На шасси смонтирован гидравлический кран FG » с поворотной стрелой, который используется для снятия и установки сетчатого короба с гибкими соединениями, а также для других погрузочно-разгрузочных работ.

Блок состоит из двух частей: манифольда низкого давления и манифольда высокого давления. Манифольд низкого давления представляет собой сварную конструкцию из стальных труб диаметром 10″. Манифольд имеет 8 точек ввода, соединяемых шлангами с нагнетательной линией смесителя и по 6 выводов диаметром 4″с каждой стороны манифольда для подсоединения всасывающих линий насосных установок. Каждое соединение имеет дроссельный клапан.

высокого давления представляет собой конструкцию, собранную из стальных труб диаметром З», жестко закрепленную на салазках и служит для подключения до шести насосных установок. На каждом из вводов установлен обратный клапан, что исключает перетек жидкости из линии высокого давления в насос и задвижка поворотного типа.

Снятие показаний давления в производится через датчик, соединенный при помощи кабеля с аналого-цифровым преобразователем, установленным в станции управления.

Блок оснащен комплектом труб диаметром 3″ и гибких соединений диаметром 3″ различной длины. Демонтаж и монтаж блока производится при помощи гидравлической лебедки, смонтированной на шасси автомобиля.

Насосная установка (4 Модель FC 2251:

  • Установка может нагнетать кислоту и прочие расклинивающие растворы; управляется на расстоянии либо с пульта

дистанционного управления, либо с помощью станции управления.

Установка рассчитана на эксплуатацию в длительном режиме нагнетания. Силовая установка — 2- дизельный двигатель » DETROIT DIESEL» 16У-149Т IВ». Двигатель установки развивает мощность на маховике (по условиям SА E) до 2250 л .с. при 2050 об/мин в прерывистом и непрерывном режиме эксплуатации.

насос S РМ Т WS 2000 развивает гидравлическую

мощность не менее 2000 .с.

Основные характеристики:

  • диаметр плунжеров — 127 мм;
  • ход плунжера – 203,2 ;
  • передаточное число – 1;
  • максимальное рабочее давление — 802 при расходе 772 л/мин;
  • максимальная производительность — 2547 л/мин.
  • корпус насосной установки и выкидная линия выдерживают давление до 1050

Передвижная автоматизированная установка:

Сбора данных и управления Модель D

Это установка с программным и техническим обеспечением, она включает вспомогательный пульт управления ГРП и компьютерные устройства для сбора и регистрации данных, обработки полученных результатов и т.д. Станция снабжена шестью катушками с кабелем (40 каждый), предназначенными для подключения следующих потребителей и контроллеров:

  • линии для ввода данных о темпе закачки жидкости;
  • линии для ввода данных о давлении в
  • линии для ввода данных о давлении в
  • линии для ввода данных о плотности смеси рабочей жидкости и

расклинивающего агента;

  • линии для ввода данных о скорости оборотов
  • линии для ввода данных о скорости подачи жидких

Сигналы от внешних устройств поступают на стойку аналогово-цифрового преобразователя. Преобразованные сиг где регистрируются в режиме реального времени.

Контроль за производством ГРП в режиме реального времени производится при помощи программы регистрирующей сигналы от любых выше перечисленных внешних устройств что позволяет оперативно вносить необходимые коррективы в процесс ГРП.

Питание всех систем производится от генератора мощностью 6,4 кВт при частоте вращения 1500 об/мин. Привод генератора — дизельный двигатель Generac Series «.

Прочее оборудование:

Кроме того, в состав комплекта для производства ГРП входят :

  • а/ для транспортировки расклинивающего агента, смонтированный на базе «Mersedes Bens» , грузоподъемностью 18 т;
  • насосный агрегат ЦА-320;
  • а/ для транспортировки химреагентов;
  • вакуумная машина;
  • вахтовая машина 40.

2.5.8. Материалы, применяемые при ГРП

Технические жидкости:

Рабочие жидкости для ГРП представляют собой эмульсии и жидкости на углеводородной или водной основах.

Наиболее часто в процессе ГРП на промыслах применяют следующие рабочие жидкости. На углеводородной основе — дегазированная нефть, амбарная нефть, загущенная нефть, мазут или его смеси с нефтями, керосин или дизельное топливо, загущенное специальными реагентами. На водной основе — сульфит-спиртовая барда, вода, растворы соляной кислоты; вода, загущенная различными реагентами, загущенные растворы соляной кислоты. Эмульсии – гидрофобная водо-нефтяная, гидорфильная водо-нефтяная, нефтекислотные и керосинокислотные.

Расклинивающие материалы:

Песок для ГРП. К песку для ГРП предъявляются следующие требования: механическая прочность (достаточная, чтобы не разрушиться под весом вышележащих пород); отсутствие широкого разброса по фракционному составу.

Плотность укладки песка в созданной трещине определяется зазором трещины, фильтруемостью жидкости-песконосителя и концентрацией песка в этой жидкости.

Для ГРП чаще всего применяют отсортированный кварцевый песок (проппант) фракции 0,5-0,8 мм. Кроме того применяются и более прочные материалы: стеклянные и пластмассовые шарики, корунд и агломерированный боксит.

2.5.9. Факторы, определяющие эффективность гидроразрыва пласта

Существует ряд факторов, которые следует учитывать при проектировании процесса ГРП.

1) Литологическая характеристика пласта, а именно тип коллектора, степень сцементированности зерен, степень трещиноватости и кавернозности, степень глинистости. Из опыта ГРП по России известно, что наибольший эффект от проведения операций ГРП получается в карбонатах или сильно сцементированных песчаниках с низким содержанием глин и малой степенью трещиноватости. Неуспешные операции ГРП определялись некоторыми признаками и один из первых это разрушение глинистых экранов и, как следствие резкое, увеличение обводненностью скважин. Наличие в пласте трещин ставит под угрозу выполнение ГРП, так как возможен уход жидкости разрыва в естественные трещины и мы не получим никакого эффекта.

2) Литологическая неоднородность, характеризующаяся коэффициентами песчанистости, расчлененности, анизотропии. Большой эффект получается при воздействии на однородный пласт с низким коэффициентом анизотропии по проницаемости.

3) Физические свойства пласта (пористость, проницаемость).

Эффект будет положительным в пластах с низкими фильтрационными характеристиками, так как при высоких данных характеристиках нет смысла проводить ГРП.

4) Наличие газовой шапки и подошвенной воды. При их близости ставится под сомнение успешность ГРП. Известно также, что во избежание прорыва воды не рекомендуется осуществление ГРП в случаях, когда раздел между продуктивным и водоносным горизонтами менее 10 м.

5) Толщина продуктивного пласта. Для направленного ГРП необходимо пласт отпакеровать двумя пакерами. Поэтому достаточно проблематично осуществление данного процесса в пластах мощностью менее 2 м.

6) Глубина залегания пласта, а точнее величина пластового давления.

7) Степень закольматированности призабойной зоны пласта. В отдельных случаях невозможно провести иные ГТМ по повышению продуктивности, кроме ГРП.

8) Степень обводненности продукции скважин, которая характеризует равномерность дренирования эффективной толщины пласта. При наличии в продуктивной толщине высоко обводненных пропластков эффективность ГРП низка.

9) Темп закачки и давление обработки иногда ограничивают, в зависимости от градиента разрыва пласта и возможностей устьевого оборудования.

10) Жидкость разрыва оказывает сильное влияние на распределении и закачивание расклинивающих агентов и на общую эффективность воздействия на пласт. Высоковязкая жидкость создает более широкую трещину и лучше транспортирует расклинивающие агенты, но при ее закачивании возникает более высокое давление, которое создает предпосылки для нежелательного роста трещины по вертикали.

11) Объем жидкости разрыва. От параметра зависит длина и раскрытость трещины.

12) Качество расклинивающего агента. Прочность расклинивающего агента должна быть достаточной, чтобы не быть раздавленной массой вышележащей толщи горных пород и, в то же время, зернистые материалы не должны вдавливаться в поверхность трещины. Не допускается широкий разброс по фракционному составу. Считается, что с увеличением размера частиц увеличивается гидропроводность трещины, а с уменьшением их размера повышается транспортирующая способность жидкости-песконосителя.

13) Концентрация расклинивающего агента. Содержание песка либо другого агента определяется удерживающей способностью жидкости-песконосителя. При малом содержании агента имеем возможность того, что трещина полностью не заполнится, а при большом появляется возможность образования песчаной пробки.

14) Объем продавочной жидкости. Он определяет конечную глубину проникновения расклиненной трещины и ее проводимость.

Все эти факторы можно разделить на геологические (исходная информация) – факторы не поддающиеся корректировке и технологические, которые можно регулировать, используя промысловый опыт.

Проведенные исследования на месторождениях выявили стимулирующее воздействие ГРП в добывающей скважине на режимы работы соседних скважин, что противоречит результатам расчетов в рамках большинства существующих моделей. /2/.

Дополнительная добыча нефти от проведения ГРП в нагнетательных скважинах на 30% выше, чем в добывающих. Это обусловлено более сильным влиянием достигаемого в результате ГРП увеличения дебита нагнетательной скважины на режим дренирования участка при равных с добывающими скважинами кратностях прироста продуктивности.

При выполнении ГРП по традиционной технологии происходит проникновение трещины вглубь экранов, а при небольшой толщине экранов в кровле или подошве пласта – нарушение их герметичности. В последующем при эксплуатации скважин это приводит к прорыву воды или газа по трещине на забой и уменьшению дебитов.

2.6. Расчет параметров гидравлического разрыва пласта

Расчёт параметров закачки производится инженерной службой организации, которая производит гидроразрыв, после получения исходных параметров по скважине от геологической службы НГДУ.

Вертикальная составляющая горного давления:

Р гв =

Горизонтальная составляющая горного давления

Р гггв *

Давление на забое

 расчет параметров гидравлического разрыва пласта 1 , (2.6)

Длина трещины

 расчет параметров гидравлического разрыва пласта 2 , (2.7)

Раскрытость трещины

W =4*(1- V 2 )*1*(Рзаб — Рг )/Е , (2.8)

Объемная доля проппанта в смеси

 расчет параметров гидравлического разрыва пласта 3 , (2.9)

Вязкость жидкости — песконосителя

m ж = m *ехр(3,18* n 0 ) , (2.10)

Остаточная ширина трещины

W 1 = W * n 0 /(1- m ) , (2.11)

Проницаемость трещины

 расчет параметров гидравлического разрыва пласта 4 , (2.12)

Средняя проницаемость в призабойной зоне при вертикальной трещине

K 1 =((π*D–W1 )*k+W1 *k

Плотность жидкости-пескносителя

P ж н *(1-n0 )+Рпр * n 0, (2.14)

Число Рейнольдса

 расчет параметров гидравлического разрыва пласта 5 , (2.15)

Коэффициент гидравлического сопротивления

l =64/ R е, (2.16)

Потери давления на трение при Re >200

 расчет параметров гидравлического разрыва пласта 6 , (2.17)

Устьевое давление при гидроразрыве

P у заб r * g * h * L + P тр, (2.18)

Необходимое число насосных агрегатов

 расчет параметров гидравлического разрыва пласта 7 , (2.19)

Объем жидкости для продавки

V п = 0,785 d 2 L , (2.20)

Коэффициент, учитывающий вязкость жидкости разрыва

 расчет параметров гидравлического разрыва пласта 8 , (2.21)

Коэффициент, учитывающий сжимаемость пластовой жидкости

 расчет параметров гидравлического разрыва пласта 9 ,(2.22)

Кальматирующие свойства жидкости разрыва

С w = 0,0022* расчет параметров гидравлического разрыва пласта 10, (2.23)

S p

Приведенный коэффициент фильтрационных утечек

 расчет параметров гидравлического разрыва пласта 11 , (2.25)

 расчет параметров гидравлического разрыва пласта 12 , (2.26)

 расчет параметров гидравлического разрыва пласта 13 , (2.27)

 расчет параметров гидравлического разрыва пласта 14 , (2.28)

Расчет устьевого давления

1. 3абойое давление разрыва

Р рг +

d р » З МПа — прочность породы на разрыв

2. Устьевое давление разрыва

 расчет параметров гидравлического разрыва пласта 15 , (2.30)

где расчет параметров гидравлического разрыва пласта 16 ,  расчет параметров гидравлического разрыва пласта 17.

Расчет на блендере

1. Плотность смеси

 расчет параметров гидравлического разрыва пласта 18 , (2.31)

2. Подача проппанта

 расчет параметров гидравлического разрыва пласта 19 , (2.32)

3. Расход жидкости по стадиям

 расчет параметров гидравлического разрыва пласта 20 , (2.33)

3. Объем стадии

V ´ж = V см V ´см , (2.34)

4. Всего проппанта по стадиям

 расчет параметров гидравлического разрыва пласта 21 , (2.35)

(за исключением 2 и 3 стадий)

 расчет параметров гидравлического разрыва пласта 22 , (2.36)

5. Всего проппанта G å = G 1 + G 2 + G 3 + G 4 + G 5 (2.37)

Условные обозначения:

r п — плотность пород;

g ускорение свободного падения;

L глубина скважины;

  • n — коэффициент Пуассона;

E модуль упругости пород;

Q темп закачки;

  • m -динамическая вязкость;

Q ж объем жидкости;

G масса проппанта на 1 м3 жидкости;

r пр плотность проппанта;

  • m — пористость трещин после закрытия;
  • k — коэффициент проницаемости пород;

D диаметр скважины;

r ж — плотность жидкости;

r н — плотность жидкости-носителя проппанта;

  • d — внутренний диаметр НКТ;

P r , рабочее давление агрегата;

Q а — подача агрегата при рабочем давлении;

K тс — коэффициент технического состояния агрегата. /3/.

2.6.1. Расчёт прогнозируемых показателей после проведения гидраразрыва пласта

Технологическая эффективность ГРП определяется по увеличению продуктивности скважины. Продуктивность скважины с трещиной зависит от размеров трещины и проницаемости песка в трещине.

Проницаемость песка зависит от его минералогического и фракционного состава, а также от эффективного давления. Увеличение продуктивности скважины после гидроразрыва оценивается по формуле:

 расчёт прогнозируемых показателей после проведения гидраразрыва пласта 1  расчёт прогнозируемых показателей после проведения гидраразрыва пласта 2

Применив эти формулы оценки и принимая во внимание, что процент обводненности продукции скважины мы оставляем как и до гидроразрыва, мы получили увеличение продуктивности по 10 скважинам в среднем в 3,5 раза. Мы не учли еще тот факт, что при ранее проводимых операциях по гидроразрыву пласта обводненность продукции значительно снижалась, тем самым мы можем получить ещё больший эффект. Прогнозируемые дебиты по скважинам представлены в табл. 13.

Таблица 13

Дополнительная добыча после ГРП.

Скважи-на

Текущий

Планируемый

2007г.

2008г.

2009г.

%

%

%

%

4006

12,0

4,7

56,0

24

10,6

56

23

10,0

56

21

9,0

56

4025

7,4

3,0

54,0

27

12,6

54

26

11,8

54

23

10,7

54

2806

12,5

4,9

56,0

34

14,8

56

32

13,9

56

29

12,5

56

4002

9,0

7,1

11,4

17

15,4

11

16

14,5

11

15

13,0

11

2805

7,5

3,2

52,7

17

7,9

53

16

7,4

53

14

6,7

53

2792

31,4

12,0

57,0

50

21,7

57

47

20,4

57

43

18,4

57

2758

13,6

5,0

58,4

44

18,4

58

41

17,3

58

37

15,6

58

2814

52,0

23,5

49,2

76

38,8

49

71

36,5

49

64

32,8

49

3786

14,8

4,3

67,4

28

9,2

67

26

8,6

67

24

7,8

67

2817

37,7

18,4

45,1

63

34,6

45

59

32,5

45

53

29,3

45

Итого прирост нефти

35734

31704

25391

всего

92 828

1.7. Сравнение текущих и прогнозируемых показателей до и после проведения гидроразрыва пласта

Итог проведения гидравлического разрыва пласта на предложенных десяти скважинах и влияние проекта на разработку представлен в табл. 14.

Таблица 14

Сравнение текущих и прогнозируемых показателей

разработки до и после ГРП (визейский объект)

Показатели

Текущие показатели

2004 год

2005 год

2006 год

Фактические

Фактические

Фактические

Добыча нефти всего,

тыс. т

399,7

452,7

431,2

Накопленная добыча нефти, тыс.т

20927,7

21380,4

21811,7

Отбор от НИЗ, %

73,9

75,5

77,1

Обводненность среднегодовая по (массе), %

83,2

82,8

84,6

Добыча жидкости всего, тыс. т/год

2381,0

2637,2

2805,2

Закачка рабочего агента, тыс. м³

2402,9

2662,8

2862,1

Фонд действующих добывающих скважин

229

214

222

Среднесуточный дебит одной добыв-х скважины, т/сут

по нефти

4,8

5,6

5,9

по жидкости

28,3

32,5

38,1

Показатели

Прогнозируемые показатели

2007 год

2007 год

2007 год

проект

без ГРП

проект

без ГРП

проект

без ГРП

проект

без ГРП

проект

без ГРП

проект

без ГРП

Добыча нефти всего,

тыс. т

408,2

408,2

408,2

408,2

408,2

408,2

Накопленная добыча нефти, тыс.т

22219,8

22219,8

22219,8

22219,8

22219,8

22219,8

Отбор от НИЗ, %

78,5

78,5

78,5

78,5

78,5

78,5

Обводненность среднегодовая по (массе), %

86,1

86,1

86,1

86,1

86,1

86,1

Добыча жидкости всего, тыс. т/год

2936,4

2936,4

2936,4

2936,4

2936,4

2936,4

Закачка рабочего агента, тыс. м³

2980,5

2980,5

2980,5

2980,5

2980,5

2980,5

Фонд действующих добывающих скважин

222

222

222

222

222

222

Среднесуточный дебит одной добыв-х скважины, т/сут

по нефти

5,3

5,3

5,3

5,3

5,3

5,3

по жидкости

38,3

38,3

38,3

38,3

38,3

38,3

3. ОХРАНА ТРУДА, ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ,БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

Единая система управления промышленной безопасностью и охраной труда является составной частью комплексной системы управления произ­водством в ОАО «Удмуртнефть» и устанавливает единые требования к безо­пасной организации работ в области промышленной безопасности и охраны труда.

Единая система управления промышленной безопасностью и охраной труда направлена на решение следующих задач:

1) совершенствование организации работы в области промышленной безопасности и охраны труда на всех уровнях управления производством;

2) обеспечение безопасности производственного оборудования и произ­водственных процессов;

3) соблюдение требований промышленной безопасности и охраны труда на стадии проектирования, строительства, эксплуатации, ремонта и реконст­рукции опасных производственных объектов (ОПО);

4) разработка мероприятий, направленных на улучшение состояния промышленной безопасности и предотвращение ущерба окружающей среде;

5) координация работ, направленных на предупреждение аварий на ОПО и обеспечение готовности к локализации аварий и ликвидации их последст­вий;

6) контроль за своевременным проведением необходимых испытаний и технических освидетельствований технических устройств, ремонтом и про­веркой контрольно-измерительных приборов;

7) контроль за соблюдением технологической дисциплины.

Руководители, главные специалисты и специалисты акционерного об­щества обязаны осуществлять организационно-технические и санитарно- ги­гиенические мероприятия по созданию и обеспечению промышленной безо­пасности, охраны труда, безопасных и здоровых условий труда на производ­ственных объектах филиалов, обязаны контролировать соблюдение работни­ками установленных правил и норм безопасности, инструкций по охране (безопасности) труда, обеспечивать и контролировать выполнение приказов и указаний вышестоящих органов управления, предписаний органов государ­ственного надзора.

3.1. Нормативно-правовая база

При выполнении проектных работ по разработке, обустройству место­рождения для обеспечения охраны труда и безопасности жизнедеятельности необходимо использовать и не нарушать следующие основополагающие дей­ствующие нормативно-правовые акты:

Федеральный закон от 17 июля 1999г. № 181-ФЗ «Об основах охраны труда в Российской Федерации» (с изменениями от 20.05.2002г., 10.01.2003г.)

Настоящий Федеральный закон устанавливает правовые основы регу­лирования отношений в области охраны труда между работодателями и ра­ботниками и направлены на создание условий труда, соответствующих тре­бованиям сохранения жизни и здоровья работников в процессе трудовой дея­тельности.

Федеральный закон от 21 июля 1997г. № 116-ФЗ «О промышленной безо­пасности опасных производственных объектов» (с изменениями от 07.08.2000г., 10.01.2003г.).

Настоящий Федеральный закон определяет правовые, экономические и социальные основы обеспечения безопасной эксплуатации опасных произ­водственных объектов и направлен на предупреждение аварий на производ­ственных объектах и обеспечения готовности организаций, эксплуатирую­щих опасные производственные объекты, к локализации и ликвидации по­следствий указанных аварий.

Положение настоящего ФЗ распространяется на все организации независимо от их организационно-правовых форм и форм собственности, осуществляющие деятельность в области промышленной безопасности опасных производственных объектов на территории РФ.

«Трудовой кодекс Российской Федерации» от 30 декабря 2001г. № 197-ФЗ, по состоянию на 01.03.2006г.

Целями трудового законодательства являются установление государст­венных гарантий трудовых прав и свобод граждан, создание благоприятных условий труда, защита прав и интересов работников и работодателей.

Основными задачами трудового законодательства являются создание не­обходимых правовых условий для достижения оптимального согласования интересов сторон трудовых отношений, интересов государства, а также пра­вовое регулирование трудовых отношений и иных непосредственно связан­ных с ними отношений по:

1) организации труда и управлению трудом;

2) трудоустройству у данного работодателя;

3) профессиональной подготовке, переподготовке и повышению ква­ли­фикации работников непосредственно у данного работодателя;

4) социальному партнерству, ведению коллективных переговоров, за­клю­чению коллективных договоров и соглашений;

5) участию работников и профессиональных союзов в установлении усло­вий труда и применении трудового законодательства в преду­смотренных законом случаях;

6) материальной ответственности работодателей и работников в сфере труда;

7) надзору и контролю (в том числе профсоюзному контролю) за со­блюде­нием трудового законодательства (включая законодательство об охране труда);

8) разрешению трудовых споров.

Закон РФ от 21 сентября 1994 г. № 69 — ФЗ «О пожарной безопасности» (с дополнениями и изменениями от 24 января 1998 года).

Закон РФ «О санитарно-эпидемиологическом благополучии населения» от 30 марта 1999г., № 52-ФЗ;

  • Закон РФ от 21 февраля 1992г. N 2395-1 «О недрах» (в ред. от 3 марта 1995г.) (с изм. и доп. от 10 февраля 1999г., 2 января 2000г., 14 мая, 8 августа 2001г., 29 мая 2002г., 6 июня 2003г.)

СанПиН 2.2.1/2.1.1.1031-01. Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов

СНиП ІІ-89-80. Генеральные планы промышленных предприятий

СНиП 2.11.03-93. Склады нефти и нефтепродуктов. Противопожарные нормы

СНиП 2.05.06-85. Магистральные трубопроводы ПБ 09-170-97. Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и перерабатывающих производств

НПБ 107-97. Определение категорий наружных установок по пожарной опасности

ПБ 03-108-96. Правила устройства и безопасной эксплуатации технологи­ческих трубопроводов

СН 2.2.4/2.1.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой за­стройки», М.,1996.

СН 2.2.4/2.1.8.566-96 Производственная вибрация. Вибрация в помещениях жилых и общественных зданий

СанПиН 2.2.4.548-96 Гигиенические требования к микрокли­мату производственных помещений

ПУЭ-2000, издание 7. Правила устройства электроустановок

Инструкции по охране труда по профессиям и видам работ. ОАО «Удмуртнефть». 2006г;

  • Инструкция по противопожарной безопасности на объектах ОАО «Удмуртнефть».

РД 39-0147035-236-89 Инструкция по технологии глубокопро­никающего гидравлического разрыва пласта

ПБ 08-624-03 «Правила безопасности в нефтяной и газовой промышленно­сти.» М.,2003г;

3.2. Промышленная безопасность

Предприятия и организации должны представлять соответствующим ор­ганам в порядке, установленном Правительством Российской Федерации, декларацию промышленной безопасности.

Декларация промышленной безопасности проектируемого объекта раз­рабатывается в составе проектной документации и уточняется или разраба­тывается вновь при обращении за лицензией на эксплуатацию опасного про­изводственного объекта.

При работе на одном объекте нескольких предприятий порядок органи­зации и производства работ должен определяться положением о взаимодей­ствии между предприятиями, утверждаемым совместно руководителями этих предприятий, а при работе нескольких подразделений одного предприятия — порядком, устанавливаемым руководством предприятия.

Производство работ в местах, где имеется или может возникнуть повы­шенная производственная опасность, должно осуществляться по наряду-до­пуску.

Перечень таких работ, порядок оформления нарядов-допусков, а также перечни должностей специалистов, имеющих право руководить этими рабо­тами, утверждаются техническим руководителем предприятия.

Производство работ повышенной опасности должно осуществляться в соответствии с инст­рукциями, устанавливающими требования к организации и безопасному про­ведению таких работ, утвержденными техническим руководителем предпри­ятия.

На взрывопожароопасных объектах руководством предприятия должен быть разработан план ликвидации возможных аварий (ПЛА), в котором с учетом специфических условий необходимо предусматривать оперативные действия персонала по предотвращению аварий и ликвидации аварийных си­туаций, исключению загораний или взрывов, безопасной эвакуации людей, не занятых в ликвидации аварии.

Дополнительные перерывы для обогрева работающих, приостановка ра­боты на объектах осуществляется в зависимости от установленных для субъ­екта Российской Федерации предельных значений температуры наружного воздуха и скорости ветра в данном климатическом районе.

Запрещается находиться посторонним лицам на территории производст­венного объекта, обозначенной в установленном на предприятии порядке, без разрешения руководителя работ или администрации.

Предприятия и организации должны организовывать и осуществлять производственный контроль за соблюдением требований промышленной безопасности согласно Федеральному закону «О промышленной безопасно­сти опасных производственных объектов» от 21.07.97 г., N 116-ФЗ .

Сведения об организации производственного контроля и о работниках, уполномоченных на его осуществление, представляются в территориальный орган Ростехнадзора России, обеспечивающий государственный надзор на данной территории.

В случае изменения условий деятельности или требований промышлен­ной безопасности предприятия и организации должны внести соответствую­щие изменения в декларацию промышленной безопасности, получить заклю­чение экспертной организации и обратиться в орган, выдавший лицензию на эксплуатацию объекта, для решения вопросов о соответствии условий дейст­вия лицензии в связи с внесенными изменениями и возможности ее подтвер­ждения. Для обеспечения охраны труда и безопасности на предприятии в соответствии с «Правилами безопасности в нефтяной и газовой промышленно­сти» должны выполняться основные требования:

1) требования к персоналу определяют круг лиц, допущенных к работе на предприятии; порядок и сроки обучения рабочих и руководителей; порядок прохождения медицинских осмотров; обеспечение спецодеж­дой.

требования к территории, объектам, помещениям, рабочим местам

требования к оборудованию и инструменту

организационно-технические требования

требования по обеспечению взрывобезопасности

3.2.1. Требования при подготовительных работах на скважине

1. Территория вокруг скважины должна быть спланирована с учетом расстановки оборудования для ремонта и эксплуатации скважин и освобож­дена от посторонних предметов, а в зимнее время – очищена от снежных за­носов и льда.

2. Площадка для установки передвижных агрегатов должна соору­жаться с учетом грунта, типов агрегатов, характера выполняемых работ и располагаться с наветренной стороны с учетом розы ветров.

3. Полы, мостки должны сооружаться таким образом, чтобы на их по­верхности не создавались условия для образования луж от атмосферных и разлива жидкости, а их поверхность, предназначенная для передвижения об­служивающего персонала, в любой ситуации не создавала условия для воз­можности скольжения подошв обуви.

4. Трубы, штанги и другое технологическое оборудование должно ук­ладываться на специально отведенные для этой цели стеллажи (мостки), обеспечивающие свободное передвижение обслуживающего персонала.

5. Рабочие места должны быть оснащены плакатами, знаками безо­пасности в соответствии с типовыми перечнями, утвержденными в установ­ленном порядке.

6. Бригады по обслуживанию и ремонту скважин должны быть обес­печены оборудованием и инструментом в соответствии с утвержденным ру­ководством предприятия перечнем.

7. Освещенность рабочих мест должна соответствовать установлен­ным нормам.

8. Содержание нефтяных газов и паров в воздухе рабочей зоны не должно превышать предельно допустимых концентраций (ПДК) по ГОСТ 12.1.0005-88.

9. До начала ремонтных работ или перед осмотром оборудования, пе­риодически работающей скважины с автоматическим, дистанционным или ручным пуском, привод должен отключаться, а на пусковом устройстве вы­вешиваться плакат: «Не включать работают люди!»

3.2.2. Правила безопасности при проведении работ по гидравлическому разрыву пласта

Процесс ГРП основан на создании или расширении уже имеющихся трещин в породах при скважинной части пласта. Достигается это путем создания высоких давлений на забоях скважин закач­кой значительных объемов жидкостей, что опасно для окружающих, поэтому должны соблюдаться следующие требования:

1) Объем и время проведения работ определяется утвержденным пла­ном и графиком.

2) При проведении работ должны соблюдаться общие правила безопасности при подземном и капитальном ремонте скважин и соот­ветствующие инструкции.

3) Допуск инженерно-технических работников и рабочих к выполне­нию работ разрешается после проведения инструктажа. Инструктаж инженерно-технических работников проводит старший инженер цеха капитального и подземного ремонта скважин (ЦКПРС).

Инст­руктаж рабочих, машинистов и водителей проводят мастера бригад ЦКПРС и начальник УТТ. Инструктаж оформляется в журнале под роспись. После­дующие инструктажи проводятся в соответствии с общими правилами по технике безопасности.

4) До начала работ необходимо ознакомить работающих: с характером проводимых работ; со схемой обвязки; с технологическими режимами работы.

5) ГРП должен проводиться специально подготовлен­ной бригадой под руководством мастера или другого ИТР по плану, утвер­жденному главным инженером предприятия.

6) Перед расстановкой агрегатов на скважине все участвующие про­ходят инструктаж по технике безопасности и ознакомиться с технологиче­скими параметрами процесса.

7) Территория вокруг скважины в радиусе 50м должна быть обозна­чена, освобождена от оборудования, не задействованного в технологическом процессе.

8) Места установки агрегатов на скважине должны быть соответст­вующим образом подготовлены и освобождены от посторонних предметов, препятствующих установке агрегатов и прокладке коммуникаций.

9) Насосные агрегаты и передвижные емкости должны быть расстав­лены согласно схеме, утвержденной главным инженером предприятия, на расстоянии не менее 10м от устья скважины и не менее 1м между агрегатами, емкостями для свободного выезда с территории скважины.

10) При расстановке агрегатов следует учитывать направление ветра во избежание попадания на них и на обслуживающий персонал газов и ка­пель нефти.

11) Запрещается устанавливать агрегаты, оборудование и выполнять какие-либо работы в пределах охранной зоны воздушных линий электропе­редач.

12) Агрегаты должны быть установлены на ровной площадке, затор­можены ручным тормозом. В необходимых случаях под колеса устанавли­вают упоры.

13. До начала работ должна быть проверена исправность агрегатов и запорной арматуры, наличие на насосах агрегатов заводских тарированных предохранительных устройств.

14) Монтаж проводится специальными трубами высокого давления при помощи быстро сворачивающихся соединений. Количество гибких ме­таллических соединений на каждой линии должно быть не менее трех.

15) Перед соединением все элементы обвязки должны быть очищены от грязи, осмотрены, сомнительные детали из резины заменены.

16) Линии высокого давления (в случае пересечения) находятся по­верх линии низкого давления.

17) Перед началом работ по обвязке устья талевый блок должен быть спущен, отведен в сторону и прикреплен к ноге спуско-подъемного сооруже­ния, рабочая площадка освобождена от посторонних предметов.

18) Выхлопные трубы агрегатов и других спецмашин, применяемых при ГРП, должны быть снабжены глушителями и искрогасителями, и выве­дены на высоту не менее 2–3 метров от уровня платформы агрегата.

19) По окончании монтажа линии опрессовываются на 1,5-кратное ожидаемое давление, но не превышающее паспортных данных на оборудова­ние.

20) При гидравлических испытаниях нагнетательных систем персонал, несвязанный непосредственно с самим процессом, должен быть удален за пределы опасной зоны, устанавливаемой планом работ.

21) Во избежание разрывов трубопровода опрессовку следует выпол­нять при малых скоростях агрегата.

22) При обнаружении пропусков в нагнетательном трубопроводе не­обходимо устранить пропуск, плавно снизить давление до атмосферного и произвести повторную опрессовку.

23) В целях предупреждения повреждения соединительных кабелей их монтаж следует проводить только после гидравлической обвязки блока ма­нифольда и всех участвующих в операции агрегатов. Необходимо тщательно следить за тем, чтобы кабели датчиков не попадали под колеса автомашин, тракторов или другой спецтехники.

24) Для замера и регистрации давления при ГРП к головке должны быть подсоединены показывающий и регистрирующий манометры, вынесенные при помощи импульсных трубок на безопасное расстояние.

25) Рабочее место в темное время суток должно освещаться согласно требования ПТБЭ, ПТЭЭ и ПУЭ не менее 26люкс. Кроме того, каждый агре­гат должен иметь индивидуальное освещение.

26) Все электрооборудование: рубильники, розетки, прожектора, маг­нитные пускатели и кнопки управления не взрывоопасного исполнения должно размещаться не ближе 20м от устья скважины.

27) Проведение работ по ГРП не допускается при скорости ветра 15м/сек и выше, во время грозы, сильного снегопада, ливне, тумане (с види­мостью менее 50м).

28) Запрещается: курить в обозначенной зоне работ; пользоваться открытым огнем для освещения, осмотра и прогрева агрегата и трубопровода; пользоваться открытым огнем для осмотра желобных систем, ото­грева задвижек и определения уровня.

29) Перед началом технологического процесса руководитель работ обязан убедиться в наличии двухсторонней переговорной связи между уча­стниками процесса. Как исключение допускается визуальная обратная связь от машинистов агрегатов к руководителю работ. Каждый раз перед началом работ необходимо обговорить сигналы взаимодействия между руководите­лем работ, экипажами агрегатов и членами бригады.

30) Перед началом работы по ГРП необходимо привести в рабочее по­ложение все складывающиеся ограждения площадок на агрегатах.

31) Пуск и остановка агрегатов проводится только по команде руково­дителя работ по микрофону. Присутствующие при операции другие лица не имеют право подачи команд, минуя руководителя работ, кроме команды «ос­тановки» при аварийном положении или травме с обслуживающим персона­лом.

32) Не разрешается проводить ремонтные работы, смазку и т. п. Во время работы агрегата. Разрешается только смазывать плунжерную пару при открытом контрольном клапане.

33) Машинист находится с правой стороны агрегата на платформе, а моторист-водитель в кабине за пультом управления. Разрешается замена их местами.

34) Оператор ГРП, находящийся на блендере, должен находится непо­средственно за пультом управления смесителя, а другой оператор должен следить за подачей песка из самосвала и обеспечивать бесперебойное посту­пление песка на шнеки смесительного устройства.

35) В зимнее время перед пуском агрегата в работу после временной остановки необходимо убедиться в отсутствии в коммуникациях линий про­бок. Отогревать трубопроводы следует только паром или горячей водой.

36) При ГРП скважины жидкостью на нефтяной ос­нове должна быть вызвана пожарная машина с боевым расчетом для тушения возможного пожара. Противопожарный инвентарь бригады должен быть проверен и приведен в боевую готовность.

37) В процессе работы обслуживающий процесс персонал обязан кон­тролировать состояние рабочих механизмов, напорных и рабочих линий.

38) По окончании работ, по команде руководителя, давление в линии должно быть снижено до атмосферного, и затем линия может быть демонти­рована.

39) Остатки жидкости из емкостей вывозятся автоцистернами или сливаются в приемный амбар. Разлив технологической жидкости на террито­рии не допускается.

40) Члены бригады обязаны хорошо знать требования техники безо­пасности, правила электробезопасности, противопожарной безопасности, оказание первой медицинской помощи при ранении, ожогах, отравлении, об­мораживании, поражении электрическим током и так далее.

3.2.3. Правила безопасности при закачке химреагентов

1) Работы должны выполняться с применением необходимых

средств индивидуальной защиты и в. соответствии с требованиями инструкции по применению данного реагента.

2) На месте проведения работ по закачке агрессивных химреагентов (серной, соляной, фторной кислоты и т.д.) должен быть: аварийный запас спецодежды, спецобуви и других средств индивидуальной защиты; запас чистой пресной воды; нейтрализующие компоненты для раствора (мел, известь, хлорамин).

3) Остатки химреагентов следует собирать и доставлять в специально отведённое место, оборудованное для утилизации или уничтожения.

4) После закачки химреагентов или других вредных веществ до раз­борки нагнетательной системы агрегата должна прокачиваться инертная жид­кость объемом, достаточным для промывки нагнетательной системы. Сброс жидкости после промывки должен производиться в сборную емкость.

5) Для определения концентрации паров серной кислоты и серного ангидрида, бригада должна быть обеспечена газоанализаторами.

6) Загрузка термореактора магнием должна проводиться непосредст­венно перед спуском его в скважину.

7) Загруженный магнием термореактор, емкости и места работы

с магнием необходимо располагать на расстоянии не менее 10м от нагнета­тельных трубопроводов и емкостей с кислотами.

3.2.4. Правила безопасности при прострелочно-взрывных работах

1) Прострелочно-взрывные работы (ПВР) в скважинах должны прово­диться в соответствии с требованиями «Единых правил безопасности при взрывных работах».

2) Руководитель подразделения по выполнению ПВР (начальник партии, отряда) должен иметь право ответственного руководства взрывными рабо­тами. Руководитель взрывных работ, выполняемых с применением электро­взрывания, должен пройти обучение электробезопасности с присвоением квалификацион­ной группы не ниже III.

3) Непосредственную работу со взрывчатыми материалами (ВМ) могут выполнять только взрывники (каротажники, имеющие Единую книжку взрыв­ника).

Отдельные операции по работе с прострелочно-взрывной аппа­ратурой (ПВА), не связанные с обращением со средствами инициирования (СИ), мон­тажом и проверкой электровзрывной сети (ЭВС), обращением с от­казавшими ПВА, могут выполнять проинструктированные в установленном порядке рабо­чие геофизических партий (отрядов) под непосредственным ру­ководством взрывника или руководителя взрывных работ.

4) Обслуживающий не геофизическое оборудование персонал, привле­кае­мый для выполнения спуско-подъемных операций и задействования аппа­ратов, спускаемых на насосно-компрессорных или бурильных трубах, дол­жен быть проинструктирован руководителем взрывных работ в части мер безопасности и работать под его наблюдением.

5) Геофизические организации должны иметь эксплуатационную доку­мен­тацию на все применяемые ими ПВА, изделия из взрывчатых веществ (ВВ), приборы взрывного дела и руководствоваться ими на всех стадиях об­ращения с ними.

6) Условия применения ПВА в скважинах (максимальные температура и гидростатическое давление, минимальный проходной диаметр и др.) должны строго соответствовать допускаемым эксплуатационной документацией на кон­кретный ПВА. В скважинах с температурой и давлением в интервале перфора­ции (интенсификации) на уровне предельно допустимых (+/- 10%) для приме­няемой аппаратуры обязательно проведение замеров этих парамет­ров перед спуском ПВА.

7) Приступать к выполнению ПВР на скважине разрешается только по­сле окончания работ по подготовке ее территории, ствола и оборудования к ПВР, подтвержденного «Актом готовности скважины для производства ПВР», подпи­санным представителями Заказчика и Подрядчика.

8) При выполнении ПВР устье скважины должно оборудоваться запор­ной арматурой и лубрикаторными устройствами, обеспечивающими гермети­зацию при спуске, срабатывании и подъеме ПВА. При выполнении ПВР в процессе ремонта скважин с пластовым давлением, превышающим гидростатическое, устье скважины должно оборудоваться про­тивовыбросовым оборудованием. Монтаж и схема обвязки этого обору­дования должны быть согласованы с территориальными органами Госгор­технадзора России и противофонтанной службой. Необходимость монтажа ПВО должна быть указана в плане работ на производство капитального ре­монта скважины. Допускается проведение ПВР в ремонтируемых скважинах без установки про­тивовыбросового оборудования на устье при: величине пластового давления вскрываемого (вскрытого) нефтеносного пласта, исключающей возможность самопроизвольного при­тока нефти из пласта в скважину и отсутствии заколонных перетоков во всех выше­лежащих зонах; ведении взрывных работ (отсоединение от аварийного инструмента и т.п.) при наличии цементного моста в обсадной колонне, перекрывающего продук­тивные.

9) Контрольное шаблонирование ствола скважины необходимо выпол­нять спуском на кабеле шаблона, диаметр, масса и длина которого должны соответ­ствовать габаритно-массовым техническим характеристикам приме­няемых ПВА. При использовании ПВА нежесткой конструкции (бескорпус­ных перфо­раторов, пороховых генераторов давления, шнуровых торпед и др.) ограниче­ния по длине шаблона не устанавливаются.

10) Независимо от наличия электроустановок все металлоконструкции скважины должны иметь надежную металлическую связь между собой и за­зем­лены на единый заземлитель (контур заземления скважины).

11) На скважине должны быть подготовлены площадки для работ по сна­ряжению и заряжанию ПВА. Эти площадки должны быть удалены от жилых и бытовых помещений не менее чем на 100м, от устья скважины — 50м. При за­рядке ПВА в ЛПС — 20м от устья скважины.

В случаях невозможности обеспе­чения указанных расстояний размещение площадки должно быть вы­брано с учетом минимального риска, согласовано с территориальным орга­ном Госгор­технадзора и указано в проекте на производство ПВР.

12) Вокруг мест работы с ВМ и ПВА должны быть выставлены знаки обо­значения границ опасных зон взрывных работ: мест снаряжения ПВА — радиусом не менее 20м; устья скважины — радиусом не менее 50м.

13) Для подсоединений отдельных заземляющих проводников геофизи­че­ского оборудования на металлоконструкции скважины в легкодоступном, хо­рошо видимом месте знаком «Земля» должна быть обозначена точка под­ключе­ния.

14) При выполнении ПВР в темное время суток на скважине должно быть освещение, выполненное с учетом требований «Единых правил безопасности при взрывных работах».

15) При использовании электрического метода взрывания должны вы­пол­няться меры по защите от блуждающих токов. В особых случаях, при не­воз­можности их выполнения, работу с СИ и по монтажу ЭВС необходимо вести при соблюдении специальных мер, разрабатываемых геофизическими органи­зациями и отражаемых в «Техническом проекте на производство ПВР». При этом в первую очередь должно предусматриваться применение допущенных Госгортехнадзором России технических средств защиты от блуждающих токов –защищенных систем электровзрывания, блокировок .

16) Проверка исправности полностью смонтированной ЭВС должна вы­полняться замером сопротивления при проводимости допущенным для этих це­лей Госгортехнадзором России прибором после спуска аппарата на глу­бину не менее 50м. После этого радиус опасной зоны вокруг устья скважины может быть уменьшен по указанию руководителя взрывных работ.

17) При подъеме задействованного ПВА в случае отсутствия аппаратур­ного контроля за фактом и полнотой взрывания, вплоть до осмотра ПВА взрывником, режим опасной зоны вокруг устья скважины должен сохра­няться.

3.3. Санитарно-гигиенические требования

Согласно требованиям трудового законодательства, каждый гражданин имеет право на охрану здоровья от неблагоприятного воздействия, возни­кающего в процессе ведения производственных работ (в том числе в резуль­тате аварий, катастроф и стихийных бедствий).

При обустройстве и эксплуатации месторождения особое внимание пла­нируется уделять сохранению здоровья человека. Учитывая особенности сложившихся биолого-генетических, биоритмических, социально-психоло­гических и природных стереотипов, предлагается разработка соответствую­щей системы для трех групп людей:

1) здоровье местного населения, проживающего в районе рассматривае­мого месторождения (в данном случае под районом понимается тер­ритория месторождения и прилегающая к ней зона, на которую будет оказываться прямое или косвенное влияние при обустройстве и экс­плуатации этого месторождения);

2) здоровье персонала, работающего на месторождении вахтовым мето­дом;

3) здоровье работающего на месторождении персонала, постоянно прожи­вающего в районе нефтедобычи.

Решение поставленной задачи предлагается за счет создания служб адаптации, разработки и внедрения комплекса адаптогенных воздействий, разработки рекомендаций по организации труда и отдыха работающих, а так же путем подготовки соответствующих специалистов и пропаганды здоро­вого образа жизни.

При работе на открытом воздухе правилами безопасности предусмот­рены мероприятия по защите рабочих от воздействия неблагоприятных ме­теорологических факторов: снабжение рабочих спецодеждой и спецобувью; устройство укрытий, зонтов над рабочими местами, помещений для обогрева рабочих (культбудки) и т. д .

Во время сильных морозов, ветров, ливней всякие работы запрещаются. К числу мероприятий по улучшению условий труда при работе на открытом воздухе относится также создание микроклимата на рабочих местах с помо­щью соответствующих агрегатов и устройств.

Освещение производственных помещений, площадок и кустов нефтега­зодобывающих предприятий считается рациональным при соблюдении сле­дующих требований:

1) световой поток должен ярко и равномерно освещать рабочее место, чтобы глаз без напряжения различал нужные ему предметы и не ис­пытывал слепящего действия от чрезмерной яркости как источника света, так и отражающих поверхностей.

2) на полу в проходах не должно быть резких и глубоких теней. Освеще­ние должно быть взрывобезопасным и как в помещениях, так и наружных установок, где возможно образование опасных по взрыву и пожару смесей.

3) для кустов, скважин установлены следующие нормы электрического освещения (в люксах):

устья нефтяных скважин, станки-качалки………………………………….10

моторные будки станков-качалок, будки с аппаратурой

электропогружных насосов………………………………………………………10

рабочие места при подземном и капитальном ремонте скважин:

устье скважины……………………………………………………………………….25

лебедка …………………………………………………………………………………..15

подъемная мачта……………………………………………………………………..2

люлька верхнего рабочего……………………………………………………….15

При работе со скважиной, кроме химических веществ вредное влияние также оказывает производственный шум. Для смягчения пагубного влияния звука с высоким уровнем давления на слуховой аппарат человека, рекомен­дуется применять звукоизолирующие наушники.

3.4. Пожарная безопасность

Охраняемыми объектами пожарной охраны являются цеха, здания и со­оружения. Контроль за соблюдением правил пожарной безопасности при но­вом строительстве ведущимся на территории объекта осуществляется силами пожарной охраны объекта.

Здания и сооружения нового строительства, расположенные вне терри­тории охраняемого объекта, обслуживаются в пожарно-профилактическом отношении наравне с другими, не охраняемыми ведомственной пожарной охраной и ППО объектами.

Главные задачи профилактической работы:

1) разработка и осуществление мероприятий, направленных на устране­ние причин, которые могут вызвать возникновение пожаров;

2) ограничение распределения возможных пожаров и создание условий для успешной эвакуации людей и имущества в случае пожара;

3) обеспечение своевременного тушения пожара.

Профилактическая работа включает следующее:

1) ежедневные проверки состояния пожарной безопасности объекта в целом и его отдельных участков силами пожарной части и боевых расчетов пожарного караула, а также своевременным выполнением предложенных мероприятий;

2) постоянный контроль за проведением пожароопасных работ, выпол­нение противопожарных требований, норм и правил на объектах нового строительства, при реконструкции и переоборудовании цехов, складов и других помещений;

3) проверку исправности и правильного содержания автоматических и первичных средств пожаротушения, противопожарного водоснабжения и систем извещения о пожарах;

4) проведение инструктажей, бесед и специальных занятий с работни­ками и служащими объекта по вопросам пожарной безопасности (так же с временными работниками) и других мероприятий по пожарной пропаганде и агитации;

5) подготовку личного состава пожарной дружины и боевых расчетов для проведения профилактической работы и тушения возможных пожаров и загораний;

6) ежегодное проведение пожарно-технических обследований объекта с вручением руководству объекта предписания Государственного надзора;

7) осуществление мероприятий по оборудованию в цехах, на установ­ках, складах, отдельных агрегатах и помещениях установок и систем пожар­ной автоматики.

Ответственность за противопожарное состояние предприятий и органи­заций, за выполнение предписаний и предложений государственного пожар­ного надзора и пожарных частей возлагается персонально на руководителей этих предприятий и организаций. Руководители предприятий и организаций должны назначить приказом начальников цехов, участков или других должностных лиц, ответственных за пожарную безопасность отдельных объектов, обеспечение их первичными средствами пожаротушения, а также своевременное соблюдение правил и норм пожарной безопасности.

На каждом объекте на видном месте должна быть вывешена табличка с указанием ФИО и должности лица ответственного за противопожарную безопасность.

Для выявления мер пожарной безопасности в технологических процес­сах производства, организации рационализаторской и изобретательской ра­боты по вопросам пожарной безопасности, содействия пожарной охране в проведении профилактической работы, организации и массово-разъясни­тельной работы среди рабочих, служащих и ИТР по соблюдению противо­пожарных правил и установленного режима создаются общеобъектовые, а в крупных цехах – цеховые пожарно-технические комиссии, состав которых объявляется приказом руководителя объекта. Эти комиссии проводят свою работу в соответствии с Положением о противопожарных комиссиях на промышленных предприятиях.

В случаях обнаружения непосредственной угрозы возникновения по­жара или гибели людей при пожаре начальник части обязан немедленно принять меры по устранению этой опасности или приостановке работы цеха и доложить об этом начальнику объекта и начальнику УПО, ОПО, отряда ВПО.

К лицам, виновным в нарушении ППБ или невыполнении противопо­жарных мероприятий, необходимо принимать меры воздействия по линии административного объекта, выносить вопросы об их отношении к защите народного достояния от огня на обсуждение.

3.5. Безопасность жизнедеятельности в чрезвычайных ситуациях

При проведении различных ремонтов скважины велика вероятность вы­броса пластовых флюидов, которые характеризуются пожаро- и взрыво­опас­ностью. При проведении спуско-подъемных работ, возможно газопро­явле­ние. При определённой концентрации и возникновении искрения в неис­прав­ных электрических приборах, газовоздушная смесь взрывается. Взрыво­опас­ная концентрация возникает в результате выделения большого количе­ства газа и отсутствии смены воздушной массы в этой области.

Для предотвращения и быстрой ликвидации аварий, которые могут воз­никнуть на объектах нефтедобычи составляются планы по ликвидации воз­можных аварий (ПЛВА).

ПЛВА составляются в соответствии с Правилами безопасности в нефтяной и газовой промышленности и должны содержать следующее:

1) перечень возможных аварий на объекте;

2) способы оповещения об аварии (сирена, световая сигнализация, громкоговорящая связь, телефон и др.), пути выхода людей из опасных мест и участков в зависимости от характера аварии;

3) действия лиц технического персонала, ответственных за эвакуа­цию людей и проведение предусмотренных мероприятий;

4) список и порядок оповещения должностных лиц при возникнове­нии аварии;

5) способы ликвидации аварий в начальной стадии. Первоочередные действия технического персонала по ликвидации аварий (пожара), предупреждению увеличения их размеров и осложнений. Осуще­ствление мероприятий по предупреждению тяжелых последствий аварий. Порядок взаимодействия с газоспасательными и другими специализированными службами;

6) список и местонахождение аварийной спецодежды, средств индиви­дуальной защиты и инструмента;

7) список пожарного инвентаря, находящегося на объекте;

8) акты испытания СИЗ, связи, заземления

9) график и схему по отбору проб газовоздушной среды;

10) технологическая схема объекта;

11) годовой график проведения учебных занятий для предотвращения возможных аварий;

— План ликвидации аварий составляется и утверждается 1 раз в пять лет. Согласно графика с работниками предприятия каждый месяц проводятся за­нятия по ликвидации возможных аварий. Результаты занятий заносятся в журнал с подписью ответственного лица из числа инженерно-технических работников. Также на предприятии проводятся занятия и учебные тревоги по граж­данской обороне для подготовки людей к защите от ядерного, химического и биологического оружия массового уничтожения, создания условий, повы­шающих устойчивую работу предприятий в военное время.

Основными задачами гражданской обороны на предприятии являются:

1) Осуществление мероприятий по защите рабочих, служащих и насе­ления от ядерного, химического и биологического оружия.

2) Проведение мероприятий, повышающих устойчивость работы предприятий энергетики, транспорта и связи в военное время.

3) Обеспечение надежной действующей системы оповещения и связи.

4) Общее обучение рабочих, служащих, населения мерам защиты от оружия массового поражения.

Особенностью организации гражданской обороны в НГДУ является спе­цифика производства, связанная с добычей нефтяного стратегического сы­рья.

Спецификой производства являются:

1) непрерывный цикл производства;

2) повышенная газовзрываемость объектов НГДУ;

3) необходимость поддержания пластового давления.

В основу боевой подготовки формирований гражданской обороны по­ложены практические и тактико-специальные занятия. Проводятся двадцати­часовые занятия по программе обязательного обучения и по специальной подготовке в каждой службе гражданской обороны. В настоящее время в НГДУ укомплектованы формирования граждан­ской обороны, спасательные отряды, группы связи, отряды сандружины, ава­рийно-технические команды, с помощью которых эффективно разрешаются все задачи по гражданской обороне, поставленные перед этими формирова­ниями.

3.6. Затраты на мероприятия для обеспечения безопасности при проведении гидравлического разрыва пласта

Затраты на мероприятия для обеспечения промышленной безопасности в области охраны труда приведены в табл. 15.

Таблица 15

Затраты для обеспечения безопасности при

проведении проектируемых работ

Мероприятия

Год (тыс.руб.)

Соблюдение законодательных и иных государственных требований

58,00

Обязательное страхование опасных производственных объектов

57,00

СИЗ

81,00

Химчистка и стирка СИЗ

24,00

Лабораторные испытания СИЗ, продление сроков эксплуатации

4,00

Медицинские расходы

33,00

Содержание и услуги медицинских кабинетов

2,00

Материалы для оказания первой помощи ( противоожоговые средства и т.д.)

1,00

Страхование от несчастных случаев и профзаболеваний

3,00

Дополнительное питание за вредные производственные факторы

11,00

Дезинсекция и Дератизация

2,00

Первая помощь (оборудование и материалы) (кол-во)

12,00

Оснащение аптечками (производственных .объектов, офисов, транспорта) (кол-во)

2,00

Чрезвычайные ситуации и пожарная безопасность

61,00

Огнезащитная обработка

3,00

Закупка огнетушителей

8,00

Услуги газоспасателей и противофонтанных военизированных частей

50,00

Итого по всем мероприятиям

233,00

ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ И ОХРАНА НЕДР

4.1. Нормативно-правовая база в области охраны окружающей среды и недр

Одним из главных вопросов охраны окружающей среды при выборе тех­ни­ческих решений является наличие экологических ограничений хозяйст­венной деятельности. При выборе земельного участка учитывают размеры водоохран­ных зон водотоков, санитарно-защитные зоны объектов, зоны са­нитарной ох­раны артезианских скважин и другие ограничения.

При проектировании и дальнейшей эксплуатации объектов необходимо учитывать действующие законодатель­ные и нормативно-правовые доку­менты:

1 Федеральный закон от 10 января 2002г. N 7-ФЗ «Об охране окружаю­щей среды».

2 Закон РФ от 21 февраля 1992г. N 2395-1 «О недрах» (в ред. от 3 марта 1995г.) (с изм. и доп. от 10 февраля 1999г., 2 января 2000г., 14 мая, 8 ав­густа 2001г., 29 мая 2002г., 6 июня 2003г.)

3 Федеральный закон от 23 ноября 1995г. N 174-ФЗ «Об экологической экс­пертизе» (с изм. и доп. от 15 апреля 1998г.)

4 Закон РФ от 21 февраля 1992г. N 2395-1 «О недрах» (в ред. от 3 марта 1995г.) (с изм. и доп. от 10 февраля 1999г., 2 января 2000г., 14 мая, 8 ав­густа 2001г., 29 мая 2002г., 6 июня 2003г.)

5 Федеральный закон от 14 марта 1995г. N 33-ФЗ «Об особо охраняе­мых природных территориях» (с изм. и доп. от 30 декабря 2001г.)

6 Водный кодекс Российской Федерации от 16 ноября 1995г. N 167-ФЗ (с изм. и доп. от 30 декабря 2001г., 24 декабря 2002г., 30 июня, 23 де­кабря 2003г.)

7 Лесной кодекс РФ, № 22-Ф3, от 29 января 1997г.;

8 Земельный кодекс Российской Федерации от 25 октября 2001г. N 136-ФЗ (с изм. и доп. от 30 июня 2003г.)

9 Федеральный закон «Об охране атмосферного воздуха», от 04 мая 1999г.;

10 СанПиН 2.1.6.1032-01 «Гигиенические требования по охране атмосфер­ного воздуха населенных мест»;

— Предприятие на месторождение имеет согласованные проекты нормативов предельно допустимых выбросов (ПДВ) в атмосферу, предельно допустимых сбросов (ПДС), проект нормативов образования отходов и лимитов на их размещение. Все выбрасываемые и сбрасываемые вещества предложены в качестве нормативов ПДВ, ПДС. Также получены лимиты на размещение отходов производства и потребления.

Поверхностные воды:

При аварийных ситуациях миграция загрязненных стоков в поверхностные водотоки возможна по поверхности земли только при разрушении обваловок площадок, а также аварий на трубопроводах. При возникновении аварийной ситуации, учитывая расчетное время продвижения загрязняющих веществ, необходимо принять меры по сокращению распространения фронта сточных потоков.

Подземные воды:

4.3. Оценка воздействия на окружающую среду

В результате работ по мониторингу отмечается, что уровень загрязнения атмосферного воздуха объектами с повышенной техногенной нагрузкой находится на низком уровне. В связи с этим, основное внимание при прогнозе уделяется водным объектам и почве.

4.4. Мероприятия, обеспечивающие выполнение нормативных доку­ментов по охране окружающей среды при осуществлении гидроразрыва пласта

Согласно СанПиН 2.2.1/2.1.1.567-96 «Санитарно-защитные зоны и сани­тар­ная классификация предприятий, сооружений и иных объектов» предпри­ятия по добыче нефти с малым содержанием летучих углеводородов и вы­бросом серо­водорода до 0,5т/сут относятся ко II классу с размером сани­тарно-защитной зоны (СЗЗ) -1000м.

Ширина водоохранных зон рассматриваемых водотоков согласно Поста­новления № 1404 составляет от 50 до 500метров. Объекты нефтедобычи не должны располагаться в водоохранной зоне рек.

Согласно СН 2.2.4/2.1.8.562-96 шум на рабочих местах в производствен­ных помещениях и на территории предприятий не должен превышать 80дБА. В на­селенных пунктах (жилые комнаты квартир) установлены уровни шума: с 7 до 23 ч — 55дБА, с 23 до 7 ч — 45дБА согласно СН 3077-84.

С точки зрения эрозионной опасности земель площадки кустов скважин не следует располагать на чрезвычайно и сильно эррозионных землях.

Согласно действующим нормам проектирования границы санитарно-за­щит­ных зон вдоль высоковольтных ЛЭП устанавливаются по величине на­пря­жен­ности электрического поля, которая не должна превышать 1 кВ/м.

Одним из способов снижения экологического ущерба при капиталь­ном ре­монте скважин может служить технология ремонта в герметизирован­ном вари­анте.

Размещение оборудования и работы по ремонту скважин нужно произ­во­дить на отчужденной территории. В аварийных ситуациях происхо­дит за­грязне­ние устья скважины скважинной и технологической жидкостью. По за­вершении работ все загрязнения подлежат утилизации, а почвенный слой территории ре­культивируется. Технологические ремонтные операции можно производить по замкну­той схеме с применением земляных амбаров, изолированных полиэтиле­новой оболочкой; циркуляционных систем; герметизирующих сальниковых уст­ройств; быстросъемных трубных соединений, предотвращающих попадания технологических жидкостей и других материалов на почву.

В процессе текущих и капитальных ремонтов необходимо использо­вать пресную и техническую воду в качестве жидкости глушения и транс­порти­рую­щей жидкости при разбуривании цементных мостов, при выполне­нии ра­бот по интенсификации притока и по промывке скважин. В связи с этим вода загрязня­ется взвешенными твердыми части­цами, химическими веществами и нефтью и собирается в циркуляционной системе.

При производстве работ по стимуляции скважин и повышению нефтеот­дачи пластов все применяемые химические вещества, растворители, гели, ки­слоты в полном объеме следует закачивать в продуктивный пласт.

Пресная и техническая вода после использования в технологических про­цессах должна отстаиваться в циркуляционных емкостях. При этом выбу­ренная порода и цемент оседают на дно емкостей или герметизированных амбаров. Впоследствии осадок отправляется для намыва в зоны поглощения в бурящихся или ремонтирующихся скважинах. Осветленная отстоявшаяся вода закачива­ется в систему сбора нефти. Высоковязкие пастообразные смеси, содержащие нефть и нефтепродукты, а также асфальтосмолопарафи­нистые вещества перера­батываются на специальных установках, или исполь­зу­ются в качестве тампони­рующего материала для ликвидации зон поглоще­ния при ремонте и бурении скважин, либо закачиваются в поглощающие скважины.

Капельные утечки технической и пресной воды, эмульсий и других ма­те­риалов из сальниковых устройств и быстросъемных соединений трубо­прово­дов могут также образовывать отходы нефтеасфальтосмолопарафини­стых веществ и техническую воду.

Одной из концепций утилизации жидких отходов от технологических про­цессов нефтедобычи может являться их закачка в поглощающие гори­зонты фа­менского яруса. Это возможно осуществлять через специально про­буренные скважины. Для определения условий скважинной утилизации не­обходимо учесть все методы, применяемые на промыслах Удмуртии. Это по­зволяет опре­делять всевозможные сочетания различных реагентов в жидких отходах и объ­емы отходов.

Практически все технологические процессы осуществляются по “разо­вой” технологии, а потому непродолжительны по воздействию на эко­си­стему. Это сводит к минимуму риск загрязнения окружающей природной среды.

Кроме того, все отходы при осуществлении технологических процес­сов скапливаются на рабочей площадке у устья скважины в виде шлама, за­грязненной почвы и продуктов нейтрализации кислот или щелочей, то есть в твердом или пастооб­разном состоянии. Жидкие отходы могут быть пред­ставлены в виде водных рас­творов исходных химических реагентов и вспо­могательных жидкостей в самых различных сочетаниях и соотношениях.

Кроме того, жидкие отходы в виде водных дисперсий ПАВ могут обра­зо­вываться при подготовительно-заключительных операциях: промывке ав­тоцис­терн и насос­ных агрегатов, а также ствола скважины и НКТ.

В ходе разработки технологии скважинной утилизации отходов про­цесса добы­чи нефти выделен ряд реагентов, отходы которых возможно ути­лизиро­вать несколькими способами. Во-первых, в индивидуальном порядке в сис­теме ППД для обработ­ки призабойных зон ближайших нагнетательных скважин. При этом исключается необходимость транспортировки их к специ­альным скважинам для захоронения в поглощающие горизонты. К числу та­ких отходов относятся не­онолы Афд 10 , а так­же гексан. Закачку ПАВ осуще­ствляется в виде водных рас­творов с концентрацией до 10%. После закачки этих отходов повышается прие­мистость нагнетательной сква­жины вследст­вие моющего действия ПАВ и рас­творителя. Аналогичным образом сле­дует поступать с отходами MgCl и FeCl, добавляя их в нагнетаемую в пласт воду. Во-вторых, есть группа химических реагентов, отходы которых могут быть использова­ны в технологических про­цесса при их совместном применении. Например, при закач­ке АФд в нагнета­тельные скважины ПАВ типа неонолы Афд10 для увеличения нефтеот­дачи пла­стов допускается добавлять в нагне­таемую в пласт воду отходы полигликоля, щелочных агентов, а также солей MgCl и FeCl3 .

Кроме того, отходы соляной и плавиковой кислот можно закачивать в скважины, где проводится глинокислотная обработка призабойной зоны сква­жин. Однако в этом случае концентрации HCl и HF следует довести до 8-10% и 3-5%, соответственно.

Следует иметь в виду, что недопустимая совместная утилизация отхо­дов хими­ческих реагентов, при смешивании которых образуются осадки, гели, газы. Это может привести к резкому снижению приемистости погло­щающей сква­жины.

Так ли необходимо улучшать экологическую обстановку в области ре­монта скважин. В первую очередь это проявится в повышении качества ре­монтных работ и, как следствие, в снижении количества ремонтов.

Например, гидроизоляция земляных амбаров полиэтиленовой оболоч­кой исключит филь­трацию в грунт технической минерализованной воды и дру­гих химических веществ, а следовательно, предотвратит загрязнение под­зем­ных го­ризонтов пресных вод.

Следует разработать комплекс специального природоохранного оборудо­ва­ния для подземных ремонтов скважин, которое очищало бы внеш­нюю поверх­ность колонны НКТ от любой скважинной жидкости при подъ­еме труб из сква­жины, а также предотвращало разбрызгивание скважинной жидкости при подъ­еме НКТ, когда не срабатывает сливной клапан.

Оснащение всех бригад подземного ремонта комплексом этого оборудо­ва­ния по­зволит исключить использование земляных амбаров и пре­дупредить по­падание заг­рязнений на почву.

Рассмотренные в данной работе геолого-технические мероприятия по ин­тенсификации добычи нефти, уменьшению доли воды в добываемой про­дукции влекут за собой увеличение объемов перекачиваемой нефти и воды, что ска­жется в свою очередь на увеличении объемов выбросов вред­ных ве­ществ в ат­мосферу. Также большое внимание следует уделять непо­средст­венно техноло­гическим процессам, так как несоблюдение технологии гео­лого-технического мероприятия может привести к авариям и нанести боль­шой урон окружающей среде. В частности, необходимо следить за гер­метич­ностью оборудования и ма­нифольдных линий, которые соединяют ме­жду со­бой устье скважины и техно­логические емкости и агрегаты, во избе­жании разливов нефти, нефтепродуктов и химических реагентов, применяе­мых при проведении операций.

Анализ хозяйственной деятельности показал, что на Ельниковском ме­сто­рождении реализуются основные принципы, заложенные технологиче­ской схе­мой разработки. Месторождение укомплектовано стандартным обо­рудованием, подъем нефти на поверхность осуществляется посредством штанговых глубин­ных насосов, сбор продукции производится по однотруб­ной герметизированной схеме, для поддержания пластового давления в пласт нагнетается пресная и техническая вода. Для предотвращения осложнений при эксплуатации нефте­промыслового оборудования широко внедряются химические реагенты-ингиби­торы АСПО и коррозии. Другие методы приме­няются по необходимости в зави­симости от конкретной ситуации.

Благодаря проводимой на промысле природоохранной работе си­туацию с предупреждением аварийности на Ельниковском месторождении нефти можно считать благоприятной.

Основными мероприятиями по охране окружающей среды являются:

1) исключение случаев выбросов газа и разливов нефти путем свое­времен­ного осуществления сброса нефти и газа в аварийные емкости;

2) оперативный сбор разлитой нефти;

3) категорический запрет утилизации разлившейся нефти путем ее выжига­ния;

4) постоянный строгий контроль за выбросами в атмосферу транс­порт­ными средствами;

5) постоянное внедрение технологий и оборудования, ведущих к сни­жению норм ПДВ;

6) охрана водных объектов от попадания нефтепродуктов и химиче­ских реа­гентов;

7) проведение мероприятий по рекультивации земель в случае их за­грязне­ния нефтепродуктами, химическими реагентами согласно утвер­жденным методам.

С целью снижения ущерба от загрязнения объектов природы должен быть составлен план ликвидации аварий (фонтанирование нефтью, газом, пластовой водой и их смесями, разливы нефти, пластовой воды, нарушение обваловки ам­бара), содержащей порядок действий по оповещению служб, которые должны участвовать в ликвидации аварий, перечень требуемых тех­нических средств и аварийного запаса обезвреживающих реагентов, способы сбора и удаления за­грязняющих веществ, обезвреживания территорий и объ­ектов водопользования в случае аварийного загрязнения водного объекта, ре­культивации земель.

4.4.1. Природоохранная деятельность. Производственный мониторинг

ОАО «Удмуртнефть» в июле 2003г. получило международный сертификат соответствия ГОСТ ИСО 14001 («Система управления окружающей средой»).

Среди постоянно проводимых мероприятий являются замена трубопроводов на трубы с внутренним полиэтиленовым покрытием, строительство и восстановление обваловок, поддержание чистоты и порядка, ликвидация замазученности, утилизация попутного газа, строительство ливневой канализации, установка пакеров, поведение геофизических исследований на скважинах и утилизация нефтешламов, снижение аварийности.

Полная программа экологического мониторинга предусматривает организацию наблюдений за источниками и факторами техногенного воздействия, изменениями природных компонентов и комплексов. Для контроля за состоянием основных компонентов природной среды (атмосферы, гидросферы, растительного и почвенного покрова, донных отложений) сформирована система ведомственного экологического мониторинга. Основными методами контроля в процессе эксплуатации месторождения является визуальный и инструментальный (физико-химические, гидрохимические) методы анализа.

Визуальный метод контроля заключается в осмотре территории месторождения и регистрации места нарушения и загрязнения. Эти работы выполняются службами, на которые возложены функции технической эксплуатации месторождения.

Инструментальный метод контроля проводится группой мониторинга и химико-аналитической лабораторией ОАО «Удмуртнефть».

В качестве контролирующих параметров рассматривается общая минерализация, ионный состав воды, содержание нефтепродуктов, взвешенных веществ.

Гидрохимические показатели, определяемые при наблюдении за подземными водами, следует принять следующие: рН, жесткость, сухой остаток, минерализация, Сl , SO4 2- , НСОз , Са2+ , Na+ + K+ , Mg2+ , СО3 , нефтепродукты.

Почвенный мониторинг включает в себя контроль за нефтяным загрязнением почв и его последствиями и должен осуществляться вблизи наиболее вероятных мест загрязнения. Для ранней диагностики развития неблагоприятных изменений свойств почв будет производиться отбор их образцов 1 раз в год на потенциально опасных местах — вблизи производственных площадок, трасс коммуникаций. Отбор проб почв фоновый, с участков подлежащих рекультивации и в потенциально-опасных местах на содержание рН, органического вещества, Hr, S, V, P 2 O5 , K2 O, плотного осадка, хлоридов, нефтепродуктов.

Важным элементом функционирования любого производственного комплекса является постоянный контроль за параметрами технологического процесса и производимым влиянием его на элементы природного комплекса. Подобраны основные пункты контроля поверхностных вод и почв для Ельниковского месторождения и представлены в табл. 16.

Таблица 16

Пункты наблюдательной сети Ельниковского месторождения на 2006г.

Наименование пункта

Местоположение

Вид

наблюдений

Периодичность наблюде-ний, раз/год

Поверхностные воды

53-01

р. Худиха, 500м СЗ к. 41б

Уровни воды, температура воды, химический состав (сокр.)

2

53-02

р. Кырыкмас, пруд в д. Соколовка

-«-

3

53-04

ручей, к. 18

-«-

3

53-06

ручей, д. Тарасово, С

-«-

3

53-07

ручей. К. 33-34

-«-

3

53-08

ручей, к. 49

-«-

3

53-09

р. Тушинка, к. 39

-«-

3

53-10

р. Явлаш, устье

-«-

3

53-11

р.Ялык, устье

-«-

3

53-13

ручей, д. Калмаши, ЮВ (н/л)

-«-

3

53-14

р. Калмашка, пруд в д. М. Калмаши

-«-

3

53-15

р. Ялык, к. 84а

-«-

3

53-16

ручей, к. 97

-«-

3

53-17

р. Калмашка, 1 км З к. 99

-«-

3

53-19

ручей. К. 33-34

-«-

3

53-27

ручей, н/л 500 м З УПН

-«-

3

Таблица 16 (продолжение)

Наименование пункта

Местоположение

Вид

наблюдений

Периодичность наблюде-ний, раз/год

Родники

53-02

исток р. Кырыкмас, к. 14

Уровни воды, температура воды, химический состав воды (сокращенный)

4

53-19

500м С _КВ. 55

-«-

4

53-20

к. 41б

-«-

3

53-21

исток ручья, _КВ. 55

-«-

3

53-22

исток ручья, к. 40

-«-

4

53-23

исток ручья, к. 29а

-«-

4

53-24

исток ручья, 500 м СВ к 25

-«-

4

53-25

к. 100

-«-

3

53-26

к. 70

-«-

3

53-28

300 м В УПН

-«-

3

Почвы

48

ДНС-2, за обваловкой факела

нефтепродукты, хлориды

1

49

ДНС-1, в/тр через дорогу

-«-

1

50

УПН, в районе факела

-«-

1

51

куст 4

-«-

1

52

куст 41б, в/тр

-«-

1

53

куст 81, в/тр

-«-

1

4.5. Расчет затрат от воздействия на атмосферу, гидросферу, литосферу, биоту

Нормативы платы за выбросы в атмосферный воздух загрязняющих веществ от стационарных источников приняты в соответствии с Постановлением Правительства РФ «О нормативах платы за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления».

Таблица 17

Затраты при выполнении мероприятий по охране окружающей среды и охране недр по Ельниковскому месторождению

Мероприятия

Год (тыс.руб.)

Мероприятия по охране окружающей среды

Обращение с отходами

Нефтесодержащие отходы ( нефтешлам, нефтесодержащие грунты)

Ельниковское месторождение

306,00

Мероприятия по охране подземных вод

Ельниковское месторождение

40,00

Рекультивация ( только на загрязненных и нарушенных объектах, возникших после 01.01.2005)

Разработка проектов рекультивации

Сбор нефти на загрязненных участках (га)

Ельниковское месторождение

203,00

Водоохранные мероприятия

Ельниковское месторождение

208,00

Итого по мероприятиям

757,00

Расчёт затрат от воздействия на атмосферный воздух :

Величина платы за загрязнение атмосферного воздуха с учётом коэффициента индексации на период проведения ГРП составит – 330,075 руб/год,

Таблица 18

Расчёт платежей за загрязнение водных объектов

Наименование загрязняющих веществ

Лимиты до 2007г.

Платёж с учётом коэффиц. от воздйст. на вод. среду (тыс.руб.)

Всего

В том числе

Концентрация, мг/дм³

ВСС

ПДВ

Взвешенные вещества

0,528

0,444

16,0

0,084

16,7

БПК

0,105

0,073

6,0

0,032

6,0

нефтепродукты

0,026

0,024

0,3

0,002

152,3

ХПК

0,264

0,106

30,0

0,158

30,0

Сульфаты

0,528

0

100,0

0,528

65,32

Хлориды

1,056

0

200,0

1,056

43,0

Платежи за загрязнение водных объектов на период проведения ГРП составят 307,32 тыс./год.

Таблица 19

Виды отходов

Нормативы платы за размещение отходов в пределах установленных лимитом, руб/тонн

1кл. опасности (чрезвычайно опасные)

1739,2

2кл. опасности (высокоопасные)

745,4

3кл. опасности (умеренноопасные)

497,0

4кл. опасности (малоопасные)

248,4

5кл. опасности (практически неопасные):

-добывающей промышленности;

-перерабатывающей промышленности;

-прочие

0,4

15

8

Расчет платы за размещение отходов не приводится, т.к. все отходы, образующиеся в период проведения ГРП, подлежат передаче другим предприятиям для переработки.

ЭКОНОМИЧЕСКИЙ РАЗДЕЛ

5.1. Обоснование показателей экономической эффективности

Основная цель расчетов – экономическая оценка предлагаемого проекта по ГРП на Ельниковском месторождении, отвечающая критерию достиже­ния максимального экономического эффекта от возможно более полного из­влечения нефти и получения прибыли за счет дополнительной добычи при соблюдении требований экологии и охраны окружаю­щей среды.

Экономическая эффективность проекта выражается в расчете прибыли от дополнительной добычи нефти. При этом учитываются все статьи затрат: затраты на подготовительные работы, проведение ГРП, эксплутационные затраты, затраты на электроэнергию, налоговые исчисления.

При реализации этого проекта мы предполагаем получить дополнительную добычу нефти в объеме 92 828 тыс.т (таб. ) за три года эксплуатации.

Таким образом, целью данного раздела является экономическое обоснование предлагаемых мероприятий, т.к. только на основании экономических показателей, таких как показатель экономического эффекта, дисконтированный поток денежной наличности, прибыль от реализации продукции, период окупаемости можно судить об экономической эффективности предлагаемых мероприятий. Численные значения этих показателей дают нам полное представление об экономической эффективности предлагаемых мероприятий, позволяют определить превышение стоимостной оценки результатов над стоимостной оценкой затрат, совокупный доход предприятия уменьшенный на величину эксплуатационных затрат, определить период окупаемости проекта.

Основными показателями по принятию проекта к реализации являются такие показатели, как дисконтированный поток денежной наличности, прибыль от реализации, выручка от реализации, индекс доходности, период окупаемости.

Дисконтированный поток денежной наличности — сумма прибыли от реализации и амортизационных отчислений, уменьшенная на величину инвестиций, направляемых на освоение нефтяного месторождения, расчет NPV дает ответ об эффективности варианта в целом.

Индекс доходности (РI) характеризует экономическую отдачу вложенных средств и представляет собой отношение суммарных приведенных чистых поступлений к суммарному объему капитальных вложений, его значение интерпретируется следующим образом: если PI >1, проект эффективен, если PI <1 – проект не рентабелен.

Показатель – период окупаемости, устанавливаемый временем возмещения первоначальных затрат, так же, как и два предыдущих, чем меньше значение этого показателя, тем эффективнее рассматриваемый вариант.

5.2. Исходные данные и нормативная база для расчета экономических показателей проекта

Исходные данные для расчета экономических показателей данного проекта приведены в табл.20 и табл.21.

Таблица 20

Экономические условия расчета

Показатели

Ед.изм.

Значение

Количество проведенных ГРП

шт.

10

Дополнительная добыча нефти

тыс.т

92,8

Стоимость одного ГРП, тыс.руб.

тыс.руб.

3244,056

Цена реализации нефти на внутреннем рынке

руб/т

6000

Норма дисконта

%

15

Расчетный период

год

3

Таблица 21

Данные для расчета экономической эффективности

Скважи-на

Параметры до ГРП

Параметры после ГРП

Прогноз добычи нефти без ГРП, т

Добыча нефти после ГРП за 3 года, т

Дополнительная добыча нефти за счет ГРП, т

Q нефти , т/сут

Q жидкости, т/сут

2007г.

2008г.

2009г.

Q нефти , т/сут

Q жидкости, т/сут

Q нефти , т/сут

Q жидкости, т/сут

Q нефти , т/сут

Q жидкости, т/сут

4006

4,7

12,0

10,6

24

10,0

23

9,0

21

5146,5

11552,3

6405,8

4025

3,0

7,4

12,6

27

11,8

26

10,7

23

3285,0

8869,5

5584,5

2806

4,9

12,5

14,8

34

13,9

32

12,5

29

5365,5

13030,5

7665,0

4002

7,1

9,0

15,4

17

14,5

16

13,0

15

7774,5

17574,8

9800,3

2805

3,2

7,5

7,9

17

7,4

16

6,7

14

3504,0

12811,5

9307,5

2792

12,0

31,4

21,7

50

20,4

47

18,4

43

13140,0

29017,5

15877,5

2758

5,0

13,6

18,4

44

17,3

41

15,6

37

5475,0

11935,5

6460,5

2814

23,5

52,0

38,8

76

36,5

71

32,8

64

25732,5

40296,0

14563,5

3786

4,3

14,8

9,2

28

8,6

26

7,8

24

4708,5

10676,3

5967,8

2817

18,4

37,7

34,6

63

32,5

59

29,3

53

20148,0

31317,0

11169,0

ИТОГО по скважинам:

94280

187081

92828

Расчет затрат на процесс проведения ГРП на одну скважину сделан на основании сметы затрат и нормативов.

5.2.1. Выручка от реализации

Цена реализации нефти на внутреннем рынке принята 6000 руб/т.

Выручка от реализации продукции (Вt) рассчитывается как произведение цены реализации нефти и дополни­тельной добычи нефти после ГРП за годичный период:

Вt = (Цн

  • Qн), (5.1.)

где, Цн – цена реализации в t-ом году, руб./т;

  • Qн – дополни­тельная добыча нефти за t год.

Определим прирост выручки за счет дополнительной реализации нефти:

В1=35 734·6 000=214 404 000 руб., за 2007год

В2=31 704·6 000=190 224 000 руб., за 2008год

В3=25 391·6 000=152 346 000 руб., за 2008год

Прирост выручки за 3 года составил 556 974 000 рублей.

5.2.2. Эксплутационные затраты

При оценке вариантов разработки эксплуатационные затраты могут быть определены по видам расходов – статьям затрат или элементам затрат. Эксплуатационные затраты рассчитаны, исходя из зависимости нормативов и технологических показателей.

Таблица 22

Нормативы эксплуатационных затрат

Элементы затрат

Ед.измерения

значение

Расходы на энергию по извлечению нефти

Тыс.руб./т.

5,05

Расходы по искусственному воздействию на пласт (закачка воды)

Тыс.руб./т.

76,9

Расходы по сбору и транспортировке нефти и газа

Тыс.руб./т.

10,3

Расходы по технологической подготовке нефти

Тыс.руб./т.

71,5

Обслуживание скважин

Тыс.руб./скв.

306,8

Балансовая стоимость ОПФ

Млн.руб.

8,4

Остаточная стоимость ОПФ

Млн.руб.

2,5

Средняя норма износа ОПФ

%

6,8

Расходы на содержание и эксплуатацию оборудования (в т.ч. ПРС)

Тыс.руб./т.

360,4

Цеховые расходы

Тыс.руб./т.

108,7

Общепроизводственные расходы

Тыс.руб./скв.

544,8

Прочие производственные расходы

Тыс.руб./скв.

15,1

Расчёт эксплуатационных затрат:

Обслуживание нефтяных скважин:

Зоб = 306 790 ∙ 10 = 3 067 900 руб. за 1 год.

Зоб = 3 067 900 ∙ 3 = 9 203 700 руб. за 3 расчётных года.

Затраты на энергию по извлечению дополнительной жидкости после ГРП на каждый год расчётного периода:

З эл/эн = 72 336,1 ∙ 5,05 = 365 297,3 руб., за 2007г.

З эл/эн = 64 178,2 ∙ 5,05 = 324 099,9 руб., за 2008г.

З эл/эн = 51 398,7 ∙ 5,05 = 259 563,4 руб., за 2009г.

Итого энергетические затраты за 3 года – 948 960,6 руб.

Затраты по искусственному воздействию на пласт(закачка воды) на каждый год расчётного периода:

З зак = 72 336,1 ∙ 76,9 = 5 562 646,1 руб., за 2007г.

З зак = 64 178,2 ∙ 76,9 = 4 935 303,6 руб., за 2008г.

З зак = 51 398,7 ∙ 76,9 = 3 952 560,1 руб., за 2009г.

Итого затраты по закачке воды за 3 года – 14 450 509,7 руб.

Затраты на сбор и транспорт нефти на каждый год расчётного периода:

З сб. = 72 336,1 ∙ 10,3 = 745 061,8 руб., за 2007г.

З сб. = 64 178,2 ∙ 10,3 = 661 035,4 руб., за 2008г.

З сб. = 51 398,7 ∙ 10,3 = 529 406,6 руб., за 2009г.

Итого затраты на сбор и транспорт нефти за 3 года – 1 935 503,8 руб.

Затраты по технологической подготовке нефти за 3 года:

З подг = 72 336,1 ∙ 71,5 = 5 172 031,1 руб., за 2007г.

З подг = 64 178,2 ∙ 71,5 = 4 588 741,3 руб., за 2008г.

З подг = 51 398,7 ∙ 71,5 = 3 435 779,4 руб., за 2009г.

Итого затраты на подготовку нефти за 3 года – 13 435 779,4 руб.

Затраты на содержание и эксплуатацию оборудования (в т.ч. ПРС) на каждый год расчётного периода:

З ПРС = 72 336,1 ∙ 360,4 = 26 069 930,4 руб., за 2007г.

З ПРС = 64 178,2 ∙ 360,4 = 23 129 823,3 руб., за 2008г.

З ПРС = 51 398,7 ∙ 360,4 = 18 524 091,5 руб., за 2009г.

Итого затраты на содержание и эксплуатацию оборудования (в т.ч. ПРС) за 3 года – 67 723 845,2 руб.

Текущие затраты в целом:

Зтек. = Зоб + З эл/эн + Ззак + Зсб + Зподг + ЗПРС

Зтек = 40 982 866,7 руб., за 2007г.; Зтек = 36 706 903,5 руб., за 2008г.;

  • Зтек = 30 008 528,7 руб., за 2009г.

Итого текущие затраты в целом за 3 года – 107 698 298,9 руб.

5.2.3. Капитальные вложения

Расчет капитальных вложений производся с учетом необходимой реконструкции и технического перевооружения производственных мощностей, существующих на месторождении. В данном проекте подобные вложения не предусмотрены. В данном проекте капитальным вложением является гидравлический разрыв пласта – его стоимость.

В том числе, оборудование, предлагаемое подрядчиком, для выполнения операций ГРП: 4 насосных агрегата; блендер; песковоз; манифольд; станция управления и контроля; лаборатория; коплект трубы НКТ NEW-VAM L -80; колонная головка Cameron 15000 PSI; извлекаемый пакер Seit 15000 PSI; скрепер.

Персонал для проведения необходимого проектирования: инженер-геолог ГО; лаборант.

Персонал для проведения фрак-операции, состав группы ГРП: руководитель работ по ГРП; 2 оператора блендера; 8 операторов насосных агрегатов; оператор станции управления и контроля; 2 машиниста автогидроподъёмника; оператор песковоза.

Стоимость услуг по проведению ГРП приведены в табл.23.

Таблица 23

Стоимость услуг и материалов

Наименование

Количество

Стоимость, руб.

Услуги инженерного сопровождения

Стоимость инженерного сопровождения

150 час.

105 000

Оборудование

Флот ГРП

9

950 000

Пакер Seit 15000 PSI

1

70 000

Колонная головка Cameron 15000 PSI

1

250 000

Трубы НКТ NEW – VAM L –80

до 1500 м

320 000

Скрепер

1

50 000

Материалы

Жидкость разрыва на нефтяной основе

руб./ м³

5500

Проппант ULTRA PROP 20/40

руб./ т.

54545

Проппант Боровичи 20/40

руб./ т.

22600

Мобилизация и демобилизация

Мобилизация и демобилизация

527 000

Итого стоимость одного гидроразрыва пласта равна 3 244 056 рублей и внесена в таблицу экономические условия.

5.2.4. Платежи и налоги

Расчет показателей эффективности данного проекта выполнен при условии применения налоговой системы, действующей в Российской Федерации на 1.01.2007г.

Налоги, отчисляемые в бюджетные и внебюджетные фонды, определены законодательством РФ и законами местных органов, перечень и порядок их начисления указан в табл.24.

Таблица 24

Ставки налогов и отчислений

Показатели

Ед. изм.

Значения