Электромагнитные датчики — раздел Философия, Автоматизация химических производств Электромагнитные Датчики Получили Широкое Применение В Различных …
Электромагнитные датчики
индуктивными
Индуктивный датчик
Рис. 2.3. Схема индуктивного датчика
L = W2 / ( RM + RMB ) = W2 / (RM + | 2δв | ) | (2.5) | |
μ0 ∙ SB |
где W — число витков обмотки катушки; RM — магнитное сопротивление магнитопровода; RMB = 2δB ∕ ( μ0 ∙ SB ) — магнитное сопротивление воздушного зазора (μ0 — магнитная проницаемость воздуха).
Достоинством индуктивных датчиков является простота и надежность. Недостатки: сравнительно малая чувствительность; зависимость индуктивного сопротивления от частоты тока; сравнительно небольшой диапазон линейного участка статической характеристики.
Дифференциально-трансформаторный преобразователь
Рис.2.4. Дифференциально-трансформаторный
преобразователь (ДТП)
Первичная обмотка 1 состоит из двух секций, намотанных согласно, а вторичная обмотка состоит из секций 3 и 4, включенных встречно. Подвижный сердечник 2 соединен чувствительным элементом, на который воздействует измеряемая физическая величина (перемещение, давление и т.п.).
е 1
ЭДС на выходе ДТП определяется по формуле:
Е = -j ∙ ω ∙ Ι ∙ M,
2.2.2. Измерительные схемы для датчиков
Малые напряжения постоянного тока, являющиеся выходной величиной генераторных ПИП (например, термоэлектрических термометров), можно измерять либо методом непосредственного измерения с помощью милливольтметра, либо путем использования компенсационной (потенциометрической) или дифференциальной схем.
Компенсационная схема, Дифференциальная измерительная схема, Мостовая измерительная схема
При уравновешенной мостовой схеме применяется нулевой метод измерения тока в диагонали: измерение параметра ПИП (сопротивление, индуктивность, емкость) компенсируется изменением сопротивления другого плеча до момента полного исчезновения тока в измерительной диагонали .
Приемниками информации от датчиков в электрических системах передачи с унифицированным токовым сигналом могут быть промежуточные преобразователи, регуляторы, измерительные (вторичные) приборы и программируемые микропроцессорные контроллеры (ПМК).
Большинство датчиков оснащены преобразователями типа «сила-ток» или «перемещение-ток». Современное бесщитовое распределенное управление существенно ограничило применение вторичных аналоговых приборов, особенно для средних и больших АСУТП.
2.2.3. Вторичные приборы
1. Приборы комплекса К140
Построены по принципу электромеханического следящего уравновешивания и являются одним из наиболее массовых средств автоматизации в большинстве отраслей народного хозяйства.
Приборы выполняют следующие функции: измерение технологических параметров (таких как температура, давление расход и др.) и представление результатов в аналоговой форме; регистрацию параметров на диаграммных лентах или дисках; стабилизацию или допусковый контроль (позиционное регулирование и сигнализация; интегрирование параметров во времени; преобразование и размножение сигналов от датчиков в стандартные электрические сигналы постоянного тока или пневматические.
Модификация приборов КС1, КП1, КС2 общепромышленного назначения, используемая как средство автоматизированных систем управления технологическими процессами (АСУТП) в зависимости от вида входного сигнала делятся на следующие группы:
- Потенциометры – приборы, работающие от входных сигналов напряжения или силы постоянного тока термопреобразователей термоэлектрических, источников ЭДС, сигналов тока и напряжения;
- Мосты – приборы, работающие с термопреобразователями сопротивления; дифференциально-транспортные приборы, работающие от входных сигналов в виде изменения взаимной индуктивности. В основу работы приборов положен компенсационный метод измерения.
Принципиальная схема потенциометра одноканального и многоканального типов КПП1, КП140, КСП1, КСП2 приведена на рис.2.5.
R p
В потенциометрах, работающих с термопарами ТХА, ТХК,ТПП, ТВП, один из резисторов измерительной схемы служит для компенсации ЭДС свободных концов термопары. Этот резистор выполнен из медной проволоки и помещен в непосредственной близости от свободных концов термопары или удлинительных термоэлектродных проводов.
R t
Рис.2.6. Принципиальная электрическая схема мостов | |
Рис.2.5. Принципиальная электрическая схема потенциометров |
пряжение резбаланса, которое усиливается и приводит в действие реверсивный двигатель М1. Далее работа моста аналогична работе потенциометра.
2.Приборы регистрирующие типа ДИСК-250
Предназначены для измерения силы и напряжения постоянного тока, а также неэлектрических величин, преобразованных в электрические сигналы и активное сопротивление.
Принцип действия приборов ДИСК-250 основан на методике непрерывной компенсации измеряемой величины в следящей системе прибора; уравновешивание схемы происходит автоматически с помощью усилителя и реверсивного двигателя, связанного с движком реохорда. В приборах предусмотрена автоматическая компенсация температуры свободных концов термоэлектрического термометра. Краткое описание модификаций приборов ДИСК-250 и КСД-250, выпускаемых заводом Теплоприбор(г. Челябинск), приведена в таблице 2.1.
Прибор аналоговый показывающий и регистрирующий с дисковой диаграммой и встроенными источниками питания и устройством корнеизвлечения типа ДИСК-250ДД предназначен для использования в системах коммерческого учета тепло- и энергоносителей в коммунальном хозяйстве, энергетике, пищевой, химической и других отраслях промышленности. Входным сигналом для прибора служит выходной токовый сигнал от датчика давления, уровня, перепада давления или датчиков расхода (дифференциального давления с квадратичной зависимостью выходного сигнала от измеряемого расхода), например, датчиков типа «Метран», «Сапфир».
Вторичные показывающие и регистрирующие приборы КСД-250 разработаны взамен комплекса КСД3 и применяются в системах регулирования и управления технологическими процессами в отраслях промышленности, где традиционно применялись приборы КСД 3: энергетике, пищевой, металлургической, химической, нефтехимической, нефтеперерабатывающей и т. д.
Таблица 2.1. | Заменяемый прибор | КС 1, КС 2 РП 160 | КСТЗ-С | КСД 3, КСД 2, КСД 1 |
Краткое описание | Базовая модель «Диск – 250» Входной сигнал: «низкого» уровня непосредственно от датчиков температуры (термопреобразователей сопротивления и термопар) и «высокого» уровня (мА, В) от датчиков технологических параметров (уровня, расхода, давления).
Регистрация: дисковая диаграмма d 250 мм. Сигнализация: трехпозиционная контактная Регулирование: трехпозиционное бесконтактное или релейное пропорционально-интегральное (ПИ) токовое или пневматическое (прибор укомплектован электропневмопреобразователем ЭГП 324-выходной пневматический сигнал 0,2.. 1 кгс/см2 ) Преобразование: входного сигнала в унифицированный токовый 0..5 или 4..20 мА Особенности “Диск – 250 И” Входной сигнал : только от датчиков температуры, искробезопасная входная цепь уровня “ia” маркировка “ExiallC” Регулирование : Лишь трехпозиционное бесконтактное, ПИ токовое или пневматическое Особенности “Диск – 250 ДД” Входной сигнал : только от датчиков давления или расхода (мА), в прибор встроены источник питания или устройство извлечения корня, линеаризующее показания и регистрацию расхода. Особенности «Диск – 250 П» Регулирование: только программное бесконтактное или программное релейное регулирующее устройство с типовой программной типа «трапеция» подъем, выдержка, спад (заменяет приборы КПЗ-ЛЭ, РУ-5 для трех участков регулирования) |
Особенности «Диск – 250 ТН» Входной сигнал : только от силоизмерительных тензорезисторных датчиков используемых в системах автоматического дозирования Регулирование : лишь трехпозиционное релейное | Входной сигнал : от датчиков расхода, уровня, давления типа ДМ-3583М (мГн) Регистрация : дисковая диаграмма d 250 мм. Сигнализация : трехпозиционная контактная Регулирование : трехпозиционное бесконтактное или релейное, ПИ токовое или пневматическое (прибор укомплектован электропневмопреобразователем ЭП 1324-выходной пневматический сигнал 0,2 1 кгс/см) Преобразование : входного сигнала в унифицированный токовый (0..5 или 4..20 мА) или частотный (4..8 кГц) сигнал. Рекомендуем заменять на прибор КСД-250 выпускаемый ранее прибор КСД 3 | |
Тип прибора | Тип прибора | Аналоговые показывающие и регистрирующие приборы Диск – 250 — 250И- 250ДД- 250П — 250ТН | Аналоговый показывающий и регистрирующий прибор КСД — 250 |
Все темы данного раздела:
АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ: Учебное пособие / С.Ф. Абдулин. – Омский государственный технический университет: Омск, изд-во ОмГТУ, 2002. – 150 с. Рас
Замена ручного труда человека в операциях управления на управление с помощью технических средств называется автоматизацией. Технические средства, с помощью которых выполняютс
Базовой основой современных АСУТП являются системы автоматического контроля (САК), позволяющие быстро получить достоверную измерительную информацию о режимных параметрах технологических процессов,
Качество ИП характеризуется рядом показателей, важнейшими из которых являются: погрешность, чувствительность, цена деления шкалы, предел измерения и динамическая погрешность. Погрешность х
один из наиболее широко применяемых принципов преобразования физических величин основан на изменении сопротивления чувствительных элементов, которые могут быть реализованы в виде потенциометров, те
эти датчики имеют разнообразные области применения, однако наибольшее распространение они получили для измерения малых перемещений и физических величин, легко преобразуемых в перемещение, например
2.3.1.Измерение температуры Температура – один из распространенных параметров, который приходится контролировать в различных средах: газовой, паровой, жидкостной и твердой. В совр
К ним относится жидкостные стеклянные, биметаллические и дилатометрические термометры. Жидкостные стеклянные термометры применяются для измерения температуры жидких и газообразных с
Термометры сопротивления основаны на зависимости сопротивления проводников (металлов) и полупроводников от температуры R =f(t).
При этом сопротивление металлических термометров (медн
Основаны на термоэлектрическом эффекте, заключающемся в том, что в замкнутой цепи, состоящей из двух разнородных проводников, возникает электрический ток, если хотя бы два места соединения (спая) п
Цель автоматического регулирования, являющегося частным случаем автоматического управления, состоит в обеспечении заданного алгоритма функционирования – закона изменения некоторого
Обоснованный выбор и расчет регулятора в первую очередь определяется достоверностью математической модели объекта регулирования (ОР) (машина, аппарат, технологический процесс), к которому подключае
3.3.1. Классификация линейных регуляторов По функциональному назначению и конструктивномуисполнению регуляторы можно квалифицировать следующим образом: 1.
Усилитель является одним из основных элементов большинства систем автоматического контроля, регулирования и управления, так как мощность, развиваемая чувствительным элементом (датчиком) недостаточн
Исполнительное устройство АСР состоит из двух функциональных блоков: исполнительного механизма (ИМ) и регулирующего органа (РО).
Исполнительный механизм под действием управляющего в
Задачей системы управления приводами является организация пуска и торможения машин и механизмов, переход с одной ступенискоростина другую, реверс и осуществление этих операций в определенной послед
Исследование элементов и автоматических систем регулирования (управления) связано с изучением процессов, в них протекающих. Характер этих процессов описывается с помощью различных з
Вывод дифференциальных уравнений элементов системы – сложная творческая работа, при которой допускаются определенная идеализация процесса, пренебрежение отдельными факторами, рассмотрение частных с
3.10.1. Понятия о дискретных АСР и их классификация В непрерывных системах существуют только непрерывные сигналы, являющиеся непрерывными функциями времени. В дискретных АС
АСУТП – это человеко-машинная система, обеспечивающая эффективное функционирование технологического объекта на основе быстрой и точной информации о состоянии объекта и выработки соответствующих ком
Внедрение микропроцессоров в самые различные устройства автоматики на всех уровнях управления создало насыщение цифровым «интеллектом» большинство устройств, составляющих аппаратурн
5.1.1. Краткие сведения о типовых технологических процессах Несмотря на большое разнообразие химических производств, между ними есть определенное сходство по содержанию в и
5.2.1. Автоматизация управления процессами первичной переработки нефти Обезвоженная и обессоленная нефть (после блока ЭЛОУ) поступает в колонну отбензинивания 1 (рис.5.4), где происходит и
Коксование нефтяных остатков и высококипящих дистиллятов вторичного происхождения используют для получения малозольного электродного кокса, применяемого в алюминиевой промышленности. Одновременно
5.3.1. Автоматизация управления процессом производства олифинов Производство олефинов основано на термическом разложении углеводородного сырья на ряд продуктов и выделении этих продуктов
5.4.1. Автоматизация производства бутадиен-стирольного каучука 5.4.1.1. Технологическая схема производства. Бутадиен-концентрат, стирол-ректификат и ст
5.4.2.1. Технологическая схема производства. Осушенная углеводородная шихта подается на охлаждение в холодильник-испаритель 1, охлаждаемый кипящим пропаном (рис. 5.2