Классификация чугуна

Реферат

Чугуном называют сплав железа с углеродом и другими элементами, содержащими более 2,14 % С. В металлургическом производстве чугуны выплавляют в доменных печах. Так, один из видов ферросплавов-зеркальный’ чугун содержит 10-25% марганца, ферромарганец — 70-80% марганца, а ферросилиций — 9-12% кремния. Графитовые включения в чугуне не связаны с металлической основой. Наихудшими свойствами обладают чугуны с пластинчатыми включениями графита, наилучшими — с глобулярными (шаровидными) или хлопьевидными включениями, сред ними — чугуны с точечными включениями графита.Только последний компонент добавляется в больших количествах. Чугун довольно широко применяется в различных областях деятельности человека, в производстве и быту.

Чугуном называют сплав железа с углеродом и другими элементами, содержащими более 2,14 % С.

В металлургическом производстве чугуны выплавляют в доменных печах. Получаемые чугуны подразделяют на: передельные, специальные (ферросплавы) и литейные. Передельные и специальные чугуны используют для последующей переработки в сталь. Литейные чугуны (около 20 % всего выплавляемого чугуна) отправляют на машиностроительные заводы для использования при изготовлении литых заготовок деталей (литья).

Нелегированный конструкционный чугун для производства отливок в машиностроении имеет следующий химический состав, %: 2,0 — 4,5 С; 1,0 — 3,5 Si; 0,5- 1,0 Мп; содержание примесей: не более 0,3 % S; не более 0,15 % S.

Широкое распространение чугуна в промышленности обусловлено оптимальным сочетанием различных свойств: технологических (литейных, обрабатываемости резанием), эксплуатационных (механических и специальных) и технико-экономических показателей.

Белый и серый чугуны

Основной структурной составляющей белых чугунов является хрупкий и твердый цементит. Поэтому белые чугуны обладают высокой твердостью и хрупкостью. Изза этих свойств их незначительно применяют в технике и совершенно не используют в строительстве. Белые чугуны идут в переделку на сталь и серые чугуны. В доменных печах выплавляют белые чугуны трех типов: литейный коксовый, передельный коксовый и ферросплавы.

Литейный коксовый чугун. (ГОСТ 4832-72) содержит от 3,5 до 4,6% углерода и применяется для производства серых чугунов.

Передельный коксовый чугун используется для выплавки стали и производства отливок.

Ферросплавы применяют как добавки при выплавке стали. Они содержат повышенное количество марганца и кремния. Так, один из видов ферросплавов- зеркальный’ чугун содержит 10-25% марганца, ферромарганец — 70-80% марганца, а ферросилиций — 9-12% кремния.

7 стр., 3166 слов

Производство чугуна

... Постоянными полезными примесями чугуна являются марганец и кремний, вредными - сера и фосфор. Марганец - постоянная примесь железных руд. При выплавке чугунов с повышенным содержанием марганца в доменную ... печь загружается марганцовая руда. Высшие окислы марганца восстанавливаются до закиси марганца MnO окисью углерода, ...

Серый чугун. Такое название серые чугуны получили по серому цвету излома в отличие от серебристого цвета излома белых чугунов. Серый цвет излому придает угле род, входящий в состав серого чугуна в свободном со стоянии в виде графита. Графит образуется в серых чугунах в результате распада хрупкого цементита. Этот процесс называют графитизацией. Распад цементита вызывают искусственно путем введения кремния или специальной термической обработки белого чугуна.

Структура серых чугунов состоит из металлической основы и несвязанных с нею включений графита. Механические свойства серых чугунов зависят от структуры металлической основы, количества углерода и конфигурации включений графита.

Металлическая основа в серых чугунах состоит из одного феррита, или одного перлита, или их смеси. Наиболее прочным, но в то же время, наименее пластичным, является чугун на перлитной основе.

Чугун на ферритной основе обладает наивысшей пластичностью при наименьшей прочности. Структура металлической основы зависит от режима термической обработки или от количества кремния. При увеличении количества вводимого кремния возрастает степень графитизации. При введении около 5% кремния в структуре серого чугуна цементит, полностью отсутствует в металлическая основа состоит из одного феррита. Выплавляют серые чугуны на всех трех металлических основах.

Графитовые включения в чугуне не связаны с металлической основой. Поэтому при увеличении содержания углерода повышается объем графитовых включений, что снижает их прочность. Этим обусловлено сравнительно небольшое содержание углерода (от 3,5 до 4,5%) в пере дельных коксовых чугунах, применяемых для производства отливок из серых чугунов.

Конфигурация графитовых включений значительно влияет на механические свойства серых чугунов. Наихудшими свойствами обладают чугуны с пластинчатыми включениями графита, наилучшими — с глобулярными (шаровидными) или хлопьевидными включениями, сред ними — чугуны с точечными включениями графита. Кон фигурация включения графита зависит от способа получения серого чугуна.

Промышленность выпускает серые, высокопрочные, легированные и ковкие чугуны.

Серые чугуны с пластинчатым графитом (ГОСТ 1412-79) выпускают марок от СЧ 10 до СЧ 45. В марках, буквы означают наименование чугуна, цифры — предел прочности чугуна, Н/мм 2, при растяжении. Графитизация в серых чугунах достигается введением в их состав от 1 до 2,9% кремния. При этом образуются пластинчатые графитовые включения.

Для получения более высоких механических свойств производят модификацию серого чугуна. В расплавленный чугун вводят 0,3-0,8% модификаторов, в качестве которых применяют ферросилиций или силикокальций, содержащий 70-65% кремния и 30-35% кальция. При такой модификации графит распределяется в виде точечных включений;

— Высокопрочные чугуны (ГОСТ 7293-79) — разновидность серых чугунов, которые получают при модификации их магнием или церием. Графитовые включения в этих чугунах имеют шаровидную форму. Такие чугуны при высоком пределе прочности до 12 МПА обладают и относительно высоким удлинением до 17%. Высокопрочные чугуны выпускают марок от ВЧ 38-17 до ВЧ 120-2. Буквы означают наименование чугуна, первые две цифры — предел прочности при растяжении чугуна, кгс/мм 2, вторые — относительное удлинение при растяжении, %.

6 стр., 2862 слов

Железоуглеродистые сплавы — стали и чугуны

... чугуна с шаровидным графитом — высокопрочный чугун). Ковкий чугун с хлопьевидным графитом занимает промежуточное положение по прочности между обычным серым и высокопрочным чугуном с вермикулярным графитом между серым и ковким. Таким образом, прочность чугуна (в ... в машиностроении. В отличие о ... и область применения чугуна Согласно ГОСТ 4832-86, установлены следующие марки отливок из серого чугуна (СЧ): ...

Легированные чугуны получают введением в серый чугун небольшого количества легирующих добавок: хрома, никеля, меди, титана, которые улучшают механические свойства металлической основы чугуна и способствуют получению благоприятной формы графита.

Ковкие чугуны (ГОСТ 1215-79) — разновидность серых чугунов, получаемая путем длительного (до 80 ч) выдерживания белых чугунов при высокой температуре. Такая термическая обработка называется томлением. При этом цементит распадается и выделившийся при его распаде графит образует хлопьевидные включения. В зависимости от температуры и длительности выдерживания ковкие чугуны получают на ферритной и ферритно-перлитной основах. Такие чугуны — наиболее пластичные из всех видов чугуна. Относительное удлинение ферритного ковкого чугуна до 12% при прочности на растяжение 3,7 МПА, а ферритно-перлитного 5% при прочности до 5 МПА. Ковкие чугуны выпуска ют марок от КЧЗО-6 до КЧ 50-5. Расшифровка марки такая же, как и у высокопрочного чугуна.

Все виды чугуна обладают хорошими литейными свойствами, а также хорошо противостоят коррозии. Из серых чугунов изготовляют элементы строительных конструкций, в том числе и таких ответственных, как опорные части железобетонных балок, ферм, башмаки под колонны, тюбинги для тоннелей метрополитена.

Половинчатый чугун

Половинчатый чугун характерен тем, что наряду с карбидной эвтектикой в структуре имеется и графит. Это означает, что количество связанного углерода превосходит его предельную растворимость в аустените в реальных условиях затвердевания.

Структура половинчатого чугуна — ледебурит перлит графит. В легированных и термически обработанных чугунах можно получить мартенсит, аустенит или игольчатый тростит.

Половинчатым чугун называется потому, что вид излома у него представляет собой сочетание из светлых и темных участков кристаллического строения. Половинчатый чугун тверд и хрупок; применение изделий из половинчатого чугуна ограничено. Чаще всего эта структура встречается в отбеленных отливках в качестве переходной зоны между отбеленным слоем и графитизированной частью.

Высокопрочный чугун с шаровидным графитом

К бейнитным чугунам относятся чугуны, структура металлической основы которых частично или полностью состоит из бейнита.

Бейнитные структуры образуются в результате превращения аустенита при температуре 250-500°С и непрерывного охлаждения аустенизированного легированного чугуна со скоростью выше критической или изотермической выдержки аустенизированного чугуна в интервале температур бейнитного превращения.

Аустенит при температуре 500-350 °С распадается на феррит (?-фазу) и ?-аустенит с повышенным содержанием углерода. Длительная выдержка при температуре распада аустенита приводит к образованию дисперсных карбидов.

9 стр., 4329 слов

Горячая сварка чугуна

... и др., обладающих высокой пластичностью и имеющих температуру плавления, близкую к температуре плавления чугуна. 3. Подробное описание различных способов сварки чугуна 3.1 Горячая сварка чугуна Наиболее радикальным средством борьбы с образованием отбеленных ...

Распад аустенита при изотермической выдержке зависит от его состояния, т.е. от содержания углерода и химического состава чугуна.

При высокой температуре аустенизации концентрация углерода в аустените повышается, и последующий распад аустенита затрудняется. Содержание углерода, растворенного в аустените, определяется длительностью выдержки при температуре аустенизации.

Зависимость количества связанного углерода ССВ в чугуне от температуры и времени выдержки при перлитной и ферритной исходной структуре: железо углерод чугун

1,2 — 1000 °С; ^-950 °С; 4,6-850 °С; 5-900 °С; 7-800 °С; сплошная — феррит; штриховая — перлит

При выборе закалочной среды необходимо учитывать следующее: 1) скорость, с которой отливка с определенными формой и толщиной стенки может быть охлаждена в определенной закалочной среде;

2) прокаливаемость чугуна, которая должна быть достаточной для подавления перлитного превращения во время охлаждения до температуры изотермической выдержки. Скорость охлаждения ЧШГ в соляной ванне можно рассчитать по уравнению: lgv = 9,41 — l,56 LGD> — 2,54 LGT, где v — скорость охлаждения,°С/с; D — диаметр цилиндра, мм; Т — температура соляной ванны, °С.

В структуре нижнего бейнита ? — фаза, образованная в зернах исходного аустенита, аналогична мартенситным иглам и по перенасыщенности ее углеродом занимают промежуточное положение между мартенситом и ферритом. При длительной выдержке из нее выделяется углерод, формируя дисперсное строение карбидов. Аустенит при образовании и выделении а-фазы оказывается менее пересыщенным углеродом, чем при образовании верхнего бейнита.

Бейнитные структуры нестабильны, поэтому максимальные температуры эксплуатации и отпуска не должны превышать температур изотермического распада аустенита.

Нераспавшийся при бейнитном превращении аустенит обычно называют остаточным, хотя он отличается от исходного содержанием углерода.

Свойства бейнита определяются его структурой, которая при данной температуре Та и длительности ta аустенизации зависит от температуры Ти и длительности ти изотермической выдержки в области температур бейнитного превращения. С понижением Ти массовая доля углерода в феррите бейнита повышается, структура его приобретает игольчатый характер, прочность и твердость сначала растут, а затем снижаются. Нижний бейнит отличается от верхнего более ярко выраженными игольчатостью и рельефностью структуры.

При получении бейнита в результате регулируемого охлаждения отливок из легированного чугуна, т.е. при превращении аустенита в определенном интервале температур, структура формируется неоднородной и может состоять из конгломерата структур сорбитообразного перлита, верхнего и нижнего бейнита, мартенсита и остаточного аустенита. В чугуне возникают значительные, главным образом фазовые, напряжения, для снижения уровня которых обычно производится отпуск.

Процесс аустенизации — скорость и температура превращения и связанное с этим изменение объема у чугуна и стали имеют существенное различие. Аустенит образуется главным образом вокруг включений графита при высоких температурах и по границам зерен при низких температурах бейнитного превращения. При этом ?В, ?0,2 и твердость увеличиваются с ростом объемного содержания бейнита.

Ковкий чугун (КЧ)

5 стр., 2367 слов

Чугун. Общие сведения

... метрополитена. Из серого чугуна, содержащего фосфор (0,5 %), изготавливают архитектурно-художественные изделия. Ковкие чугуны Ковкие чугуны с хлопьевидной ... играет роль надрезов, ослабляющих металлическую основу. Применяемые для отливок чугуны имеют в среднем состав: С ... аустенит и хлопьевидный графит. Процесс графитообразования облегчается при модифицировании (например, алюминием и бором). Чугун, ...

Главное отличие ковкого чугуна заключается в том, что графит в нем имеет хлопьевидную или шаровидную форму. Хлопьевидный графит бывает различной компактности и дисперсности, что отражается на механических свойствах чугуна.

Промышленный ковкий чугун производится главным образом с ферритной основой; в ней, однако всегда имеется перлитная кайма. В последние годы стали широко применяться чугуны с феррито-перлитной и перлитной основой. Чугун с ферритной основой обладает большой пластичностью.

Излом у ферритного ковкого чугуна черно-бархатистый; с увеличением количества перлита в структуре излом становится значительно светлее.

Отливки из ковкого чугуна бывают ограниченной толщины, обычно не более 40-50 мм. Толщина отливок лимитируется трудностью получения сквозного отбеливания.

Специальные чугуны

В зависимости от назначения различают износостойкие, антифрикционные, жаростойкие и коррозионностойкие легированные чугуны.

Химический состав, механические свойства при нормальных температурах и рекомендуемые виды термической обработки легированных чугунов регламентируются ГОСТ 7769-82. В обозначении марок легированных чугунов буквы и цифры, соответствующие содержанию легирующих элементов, те же, что и в марках стали.

Износостойкие чугуны, легированные никелем (до 5 %) и хромом (0,8 %), применяют для изготовления деталей, работающих в абразивных средах. Чугуны (до 0,6 % Сг и 2,5 % Ni) с добавлением титана, меди, ванадия, молибдена обладают повышенной износостойкостью в условиях трения без смазочного материала. Их используют для изготовления тормозных барабанов автомобилей, дисков сцепления, гильз цилиндров и др.

Жаростойкие легированные чугуны ЧХ 2, ЧХ 3 применяют для изготовления деталей контактных аппаратов химического оборудования, турбокомпрессоров, эксплуатируемых при температуре 600°С (ЧХ 2) и 700°С (ЧХ 3).

Жаропрочные легированные чугуны ЧНМШ, ЧНИГ 7Х 2Ш с шаровидным графитом работоспособны при температурах 500-600°С и применяются для изготовления деталей дизелей, компрессоров и др.

Коррозионностойкие легированные чугуны марок ЧХ 1, ЧНХТ, ЧНХМД, ЧН 2Х (низколегированные) обладают повышенной коррозионной стойкостью в газовой, воздушной и щелочной средах. Их применяют для изготовления деталей узлов трения, работающих при повышенных температурах (поршневых колец, блоков и головок цилиндров двигателей внутреннего сгорания, деталей дизелей, компрессоров и т. д.).

Антифрикционные чугуны используются в качестве подшипниковых сплавов, так как представляют группу специальных сплавов, структура которых удовлетворяет правилу Шарпи (включения твердой фазы в мягкой основе), способных работать в условиях трения как подшипники скольжения.

Для легирования антифрикционных чугунов используют хром, медь, никель, титан.

ГОСТ 1585-85 включает шесть марок антифрикционного серого чугуна (АЧС-1 — АЧС-6) с пластинчатым графитом, две марки высокопрочного (АЧВ-1, АЧВ-2) и две марки ковкого (АЧК-1, АЧК-2) чугунов. Этим стандартом регламентируются химический состав, структура, режимы работы, в нем также содержатся рекомендации по применению антифрикционных чугунов.

Различают перлитные и перлитно-ферритные антифрикционные чугуны. Антифрикционные перлитные чугуны (АЧС-1, АЧС-2) и перлитно-ферритный (АЧС-3) применяют при давлении в зоне контакта фрикционных пар до 50 МПА. Чугуны с шаровидным графитом АЧВ-1 (перлитный) и АЧВ-2 (перлитно-ферритный) применяют при повышенных нагрузках (до 120 МПА).

13 стр., 6001 слов

Технология производства чугуна

... сырья в сернокислотной промышленности, а отходы в виде окисленного железа применяют при производстве агломерата. Также находят промышленное применение бедные железные руды: магнетитовые и гематитовые кварциты, ... на его расплавление и снижается механическая прочность кокса, а с увеличением содержания серы и фосфора в коксе ухудшается качество чугуна. Повышенное содержание летучих веществ в коксе ...

Легированные чугуны

При легировании чугунов применяются те же элементы, что и при легировании стали (хром, никель, медь, титан, молибден и др.).

Чугун с повышенным содержанием кремния (свыше 4%) и марганца (свыше 2%) относится к легированным чугунам. В зависимости легирования различают низколегированные (с содержанием легирующих элементов до 1-3%), среднелегированные (3-10%) и высоколегированные чугуны (свыше 10%).

Маркировка легированных чугунов начинается с буквы Ч. Последующие буквы показывают наличие легирующих элементов. Цифры обозначают последовательно среднее содержание легирующих элементов в процентах. Буква III означает, что графит в чугуне имеет шаровидную форму.

Все легирующие элементы изменяют как процесс графитизации при эвтическом превращении, так и процесс формирования металлической основы при эвтектоидном превращении. Они увеличивают устойчивость жидкой фазы и аустенита, способствуя большей степени переохлаждения. Вследствие этого кристаллизация и формирование структуры металлической основы происходят в более благоприятных условиях для получения мелкого и среднего графита и более дисперсной основы. Правильно подбирая содержание основных и легирующих элементов, можно получить ферритную, перлитную, сорбитную, трооститную, мартенситную и аустенитную структуры металлической основы при определенных размерах, форме и распределении графита.

По химическому составу различают несколько групп легированных чугунов: хромистые, кремнистые, алюминиевые, марганцевые и никелевые, а по условиям эксплуатации — жаростойкие, жаропрочные износостойкие, коррозиестойкие и немагнитные. При этом один и тот же легирующий элемент придает чугуну одновременно несколько специальных свойств.

Хромистые чугуны применяют главным образом как жаростойкие, коррозиестойкие и износостойкие материалы. Износостойкость чугуна определяется его структурой и твердостью, большая часть высокохромистых чугунов успешно работает в условиях ударного абразивного изнашивания и истирания.

Кремнистстые чугуны применяют главным образом как окалино- и коррозиестойкие материалы. Механические свойства кремнистых чугунов относительно низкие как при нормальных, так и при повышенных температурах и понижаются с увеличением содержания кремния. С целью повышения механических свойств, кремнистые чугуны иногда легируют медью.

Литейные свойства низкокремнистых чугунов мало отличаются от свойства СЧ и ВЧШГ.

Алюминиевые чугуны применяют как жаростойкие и износостойкие материалы. Увеличение содержания АІ до 12% приводит к непрерывному снижению прочности, которая в дальнейшем стабилизируется. Максимальную твердость имеют чугуны, содержащие 10-17% АІ и свыше 26% АІ. Наиболее технологичным является чугун, содержащий 19-25% АІ(ЧЮ 22), причем чугун с шаровидным графитом обладает повышенной прочностью и жаропрочностью.

Марганцевые чугуны применяют как немагнитные и износостойкие материалы. В марганцевых антифрикционных чугунах, как и в высоконикелевых, медленное охлаждение и отпуск способствуют выпадению большого количества карбидов и снижению легированности аустенита. В структуре антифрикционных марганцевых чугунов содержится 45-55% аустенита и 10-30% карбидов — в литом состоянии; 80-90% аустенита и 5-8%карбидов — после закалки. Именно поэтому твердость чугуна в незакаленном состоянии бывает выше, чем в закаленном (1800-2900 и 1400-1800МПА соответственно).

4 стр., 1773 слов

Классификация и маркировка чугунов

... HRC 60 -62. Прочность после закалки понижается. Прокаливаемость высокопрочного чугуна выше прокаливаемости серого чугуна. После закалки чугун подвергают низкому отпуску для снятия части внутренних напряжений или высокому отпуску с ...

Никелевые чугуны — немагнитные, коррозиестойкие, жаропрочные и хладостойкие материалы. Прочность и твердость никелевых чугунов возрастает с увеличением содержания Ni, Cr. Аустенитный чугун с ШГ обладает высокой жаропрочностью. Дополнительное легирование повышает жаропрочность. Чугун ЧН 20ДГ является жаропрочным и хладостойким материалом.

Термообработка чугунов

Термическую обработку чугунов проводят с целью снятия внутренних напряжений, возникающих при литье и вызывающих с течением времени изменения размеров и формы отливки, снижение твердости и улучшение обрабатываемости резанием, повышение механических свойств.

Различают несколько видов отжига чугунов.

1. Ожиг для снятия внутренних напряжений. Этому виду отжига подвергают чугуны при следующих температурах: серый чугун с пластинчатым графитом — при 55-570С; высокопрочный чугун с шаровидными графитом — при 550-650С; высоколегированный чугун (типа «кирезитс») — при 620-650 С. Скорость нагрева составляет примерно 70-100 град/ч, выдержка при температуре нагрева зависит от массы и конструкции отливки и составляет от 1 до 8ч.

Охлаждение до 200 С медленное, со скоростью 20-50град/ч, что достигает охлаждением отливки вместе с печью. Далее отливки охлаждаются на воздухе.

При этом отжиге не происходит фазовых превращений, снимаются внутренние напряжения, повышается вязкость, исключается коробление и образование трещин в процессе эксплуатации.

2. Смягчающий отжиг (отжиг графитизирующий низкотемпературный) проводят для улучшения обрабатываемости резанием и повышения пластичности. Его осуществляют продолжительность выдержкой при 680-700С (ниже точки Ас 1) или медленным охлаждением отливок при 760-700С. Время выдержки должно быть достаточным для полного и требуемого частичного распада эвтектоидного цементита (для серых чугунов время выдержки 1-4ч, для ковких — до 60ч).

Охлаждение медленное для деталей сложной конфигурации.

В результате этого отжига в структуре чугунов увеличивается количество феррита.

3. Отжиг графитизирующий, в результате которого из белого чугуна получают ковкий чугун.

4. Нрмализация (серого и ковкого чугуна) при температуре 850-950С.

Время выдержки должно быть достаточным для насыщения аустенита углеродом и в зависимости от конфигурации изделий составляет от 1 до 3ч.

Охлаждение ускоренное, чтобы аустенит смог превратиться в перлит, и чаще всего осуществляется на воздухе. Для деталей сложной формы охлаждение с температуры 600-550С должно быть замедленное, чтобы уменьшить величину термических напряжений.

В результате нормализации получается: перлит графит — и повышается прочность и износостойкость.

После нормализации для снятия внутренних напряжений применяется высокий отпуск при 650-680С с выдержкой 1-1,5ч.

Закалка и отпуск чугунов. Для закалки чугун нагревают до 850-959С. Скорость нагрева изделий сложной формы меньше, чем изделий простой формы. Время выдержки обычно составляет от 1 до 3ч. Охлаждение осуществляют в воде или масле. При закалке аустенит превращается в неравновесные структуры: мартенсит или тростит графит.

После закалки проводят отпуск при температуре 200-600С. В результате повышаются твердость, прочность и износостойкость чугуна.

9 стр., 4149 слов

Разработка технологического процесса изготовления корпуса из серого чугуна СЧ

... серого чугуна. Рис. 1. Структурные диаграммы чугуна в зависимости от а) — содержания углерода и кремния; б) — скорости охлаждения Отливки из серого чугуна подвергают термической обработке. Используют отжиг для снятия внутренних напряжений ...

При изотермической закалке чугун нагревают так же, как и при обычной закалке, выдерживают от 10 до 90 мин и охлаждают в расплавленной соли при 200-400С. При этом происходит изотермический распад аустенита с образованием структуры: игольчатый троостит графит.

В результате изотермической закалки повышаются твердость и прочность, но сохраняется пластичность.

Возможность поверхностная закалка кислородно-ацетиленовым пламенем, токами высокой частоты или электролите. Температура нагрева -900-1000С. Охлаждение — в воде, масле или масленой эмульсии. При поверхностной закалке в поверхностном слое образуются структуры: мартенсит графит или троосмартенсит графит. После отпуска при 200-600С и охлаждения на воздухе повышаются твердость, прочность и износостойкость поверхностного слоя при наличии мягкой сердцевины.

Старение чугуна

Старение применяют для стабилизации размеров отливок, предотвращения коробления и снятия внутренних напряжений.

Естественное старение осуществляют на открытом воздухе или в помещении. Изделия после литья выдерживаются в течении 6-15 месяцев. При естественном старении снижение напряжений в отливках составляет 3-10%.

При вибрационном старении снижение напряжений достигает 10-15%. Во время вибрации в отливке возникают дополнительные временные напряжения, вызывающие локальные пластические деформации чугуна и таким образом повышающие стойкость к короблению.

Старение методом статистической перегрузки отличается тем, что для создания дополнительных временных напряжений деталь подвергают воздействию статистических внешних нагрузок. При этом методе снижение напряжений достигает 1030%.

Старение методом термоударов (термоциклическре старение) осуществляют путем быстрого нагрева и охлаждения всей детали или отдельных ее участков. Стойкость против коробления повышается за счет пластических деформаций, вызываемых временными температурными напряжениями. Общий уровень напряжений снижается на 10-20%. Термоциклическое старение осуществляются по следующему режиму: загрузка в печь и нагрев за 3-3.5ч до 350С, выдержка 2-2,5ч, за тем резкое охлаждение (на воздухе), снова поверхностный нагрев (за 1-1,5ч) до 320С, выдержка 4-5ч, охлаждение вместе с печенью до 150-100С.

Искусственное старение осуществляют при повышенных температурах; длительность — несколько часов.

При искусственном старении отливки чугуна загружают в печь, нагретую до 100-200С, нагревают до температуры 555-570С со скоростью 30-60С/ч, выдерживают 3-5ч и охлаждают вместе с печенью со скоростью 20-40С/ч до температуры 150-200С, а затем охлаждают на воздухе. Обычно старение проводят после грубой механической обработки.

Классификация чугунов

Классификация по химическому составу

В чугунах, кроме железа и углерода, содержится (в качестве обычно определяемых постоянных примесей) кремний, марганец, фосфор и сера. Чугуны содержат также незначительные количества кислорода, водорода и азота.

По химическому составу чугуны делятся на нелегированные и легированные.

Нелегированными считаются чугуны, в которых количество марганца не превосходит 2% и кремния 4%. При наличии этих элементов в больших количествах или при содержании специальных примесей чугуны считаются легированными. Принято считать, что в малолегированных чугунах количество специальных примесей (Ni, Cr, Cu и т. п.) не превосходит 3%.

7 стр., 3123 слов

Стали, чугуны и цветные металлы. Классификация и маркировка

... прочности, повышенной прочности, высокой прочности и со специальными свойствами. Серый чугун малой прочности, Серый чугун повышенной прочности, Легированный серый чугун, Модифицированный серый чугун Серые чугуны имеют низкий предел прочности ... 1. Классификация и маркировка сталей Сталями принято ... чугуна получают главным образом путем литья (чугунные отливки), хотя имеются данные о том, что чугуны ...

При малом и умеренном легировании стремятся улучшить общие свойства чугуна — однородность структуры, сохранение прочности и упругости при нагреве до относительно невысоких температур — 300-400°, повышение износостойкости, повышение прочности и т.д.

При среднем, повышенном и высоком легировании чугун приобретает специальные свойства, так как значительно меняется состав твердых растворов и карбидов. В этом случае наибольшее значение приобретает изменение характера металлической основы. Путем легирования можно получить непосредственно в литом состоянии мартенсит, игольчатый троостит и аустенит. Это повышает коррозионностойкость, жаростойкость и меняет магнитные свойства.

Классификация по структуре и условиям образования графита

По степени графитизации, формам графита и условиям их образования различают следующие типы чугунов: а) белый и серый чугуны б) половинчатый, г) высокопрочный с шаровидным графитом и д) ковкий.

Классификация по свойствам

Классифицировать чугуны можно по механическим и специальным свойствам.

По механическим свойствам чугунные отливки делят по: а) твердости (НВ — твердость по Бринеллю);

  • б) прочности (?в — предел прочности при растяжении);
  • в) пластичности (? — относительное удлинение).

Очень удобным является следующее деление: а) по твердости

Мягкие чугуны…………….?В до 149

Средней твердости…………… НВ = 149- 197

Повышенной твердости………….?В = 197 — 269

Твердые……………….?В выше 269 б) по прочности

Обыкновенной прочности……… ?в до 20 кг/мм 2

Повышенной прочности………. ?в = 20 — 38 кг/мм 2

Высокой прочности………… ?в = 40 кг/мм 2 и выше

Обыкновенной прочности бывают только серые чугуны. Повышенной прочности бывают серые и ковкие чугуны, высокой прочности ковкие чугуны и чугуны с шаровидным графитом. в) по пластичности

Непластичные ? до 1 %

Малопластичные ? = 1-5%

Пластичные ? = 5-10%

Повышенной пластичности ? выше 10%

Классификация по способу приготовления чугуна, отливок и их обработки

Большое влияние на свойства чугуна оказывает плавильный агрегат (ваграночный чугун, электроплавильный чугун и т. п.), поскольку от этого зависит степень перегрева жидкого чугуна. Часто приходится встречаться с тем, что какой-нибудь один или несколько технологических факторов играют решающую роль в деле изменения свойств чугуна. Например, добавка стали в ваграночную шихту улучшает свойства чугуна. Такой чугун называют сталистым. Хорошие результаты достигаются модифицированием жидкого чугуна перед разливкой его в формы. В этом случае чугун называется модифицированным.

Соответственно можно классифицировать чугуны по характеру шихты, способу плавки и способу обработки жидкого чугуна.

Большое влияние на свойства чугуна оказывает также состояние формы и характер заливки в нее. По способу получения отливок чугунное литье можно разделить на кокильное (измельчение структуры за счет ускоренного охлаждения), центробежное (плотная структура), армированное (упрочнение отливок) и т. п.

Значительное изменение свойств достигается термообработкой отливок. С помощью термической обработки можно изменить степень дисперсности металлической основы и ее характер вплоть до превращения ее в игольчато-трооститную и мартенситную. До некоторого предела можно изменить количество связанного углерода, а при химико-термической обработке можно в поверхностных слоях изменить и состав чугуна. По виду термической обработки можно разделить отливки на отожженные, нормализованные, улучшенные, поверхностно-закаленные, азотированные и т. п.

Классификация по видам отливок и областям их применения

Чугунные отливки по видам отливок и областям их применения можно делить на станочные, цилиндровые, автомобильные, подшипниковые, прокатные валки из отбеленного чугуна и т. п.

Из приведенных классификаций наиболее четкой является классификация по структуре, наименее четкой является классификация по видам отливок, поскольку чугуны с одинаковой структурой и одинаковым составом могут быть пригодны для различных видов отливок и отраслей машиностроения.

Необходимо отличать главнейшие (определяющие) признаки классификации — форма графита от уточняющих признаков, к которым относится характер металлической основы, способ изготовления и т. п. Например, мало сказать серый чугун (пластинчатый графит), надо уточнить, какой серый чугун по металлической основе, как он получен (модифицированием или термической обработкой), легирован ли и чем он легирован.