Технология обработки конических и фасонных поверхностей на токарных станках

Отчет по практике

В связи с переходом к новым экономическим отношениям в России произошли большие изменения в промышленности. Особо динамичным оказались изменения в металлообрабатывающей промышленности, а в ней — в машиностроении, где главная рабочая профессия — станочник.

На предприятиях, функционирующих в условиях рынка, к рабочему-станочнику предъявляются особые требования, необходимые при изготовлении конкурентоспособной продукции. Для создания продукции высокого качества малыми партиями, станочник должен уметь работать на разнообразном оборудовании (токарном, фрезерном, шлифовальном, и других станках), самостоятельно налаживая оборудование, выбирая оптимальные режимы обработки, устранять отказы, контролировать качество своего труда в условиях, когда нет технолога или мастера, технической библиотеки, отсутствует квалифицированная помощь рабочего, имеющего более высокий разряд.

При простоте станочного оборудования на многих предприятиях продолжает ощущаться, Целью учебной

Формирование первоначальных практических профессиональных умений в рамках модулей ОПОП СПО по основным видам профессиональной деятельности для освоения специальности, обучение трудовым приемам, операциям и способам выполнения трудовых процессов, характерных для соответствующей специальности и необходимых для последующего освоения ими общих и профессиональных компетенций по избранной специальности.

1. Технология обработки конических поверхностей на токарных станках

1. Настройка станка при растачивании и развертывании конических отверстий. Контроль качества.

2. Обработка конических отверстий. Приемы установки резцов.

3. Обработка наружных конических поверхностей поперечным сдвигом задней бабки.

4. Обработка наружных конических поверхностей с помощью конусной линейки.

Настройка станка при растачивании и развертывании конических отверстий. Контроль качества.

Обработку конических отверстий на токарных станках в большинстве случаев производят растачиванием резцом с поворотом верхней части суппорта и реже с помощью конусной линейки. Все подсчеты, связанные с поворотом верхней части суппорта или конусной линейки, выполняются так же, как при обтачивании наружных конических поверхностей.

Если отверстие должно быть в сплошном материале, то сначала сверлят цилиндрическое отверстие, которое затем растачивают резцом на конус или обрабатывают коническими зенкерами и развертками.

Чтобы ускорить растачивание или развертывание, следует предварительно просверлить отверстие сверлом, диаметр d, которого на 1—2 мм меньше диаметра малого основания конуса. После этого рассверливают отверстие одним или двумя сверлами для получения ступеней.

3 стр., 1249 слов

Конические поверхности

... и посадки конических соединений В системе допусков конусов используется два способа нормирования допусков диаметра конуса. Способ 1 - допуск на диаметр конуса (рис. 7) устанавливаемый по квалитетам точности ... специальных деталях (например, конусы Морзе, инструментальные конусы, конические трубные резьбы и калибры, шпиндели и оправки станков и т.д.). -Специальные углы, размеры которых связаны ...

После чистового растачивания конуса его развертывают конической разверткой соответствующей конусности. Для конусов с небольшой конусностью выгоднее производить обработку конических отверстий непосредственно после сверления набором специальных разверток.

2. Измерение конических поверхностей

Поверхности конусов проверяют шаблонами и калибрами; измерение и одновременно проверку углов конуса производят угломерами.

Наружные и внутренние углы различных деталей можно измерять универсальным угломером. Он состоит из основания, на котором на дуге нанесена основная шкала. С основанием жестко скреплена линейка. По дуге основания перемещается сектор, несущий нониус. К сектору посредством державки может быть прикреплен угольник, в котором, в свою очередь, закрепляется съемная линейка. Угольник и съемная линейка имеют возможность перемещаться по грани сектора.

Путем различных комбинаций в установке измерительных деталей угломера можно производить измерение углов от 0 до 320°. Величина отсчета по нониусу. Отсчет, полученный при измерении углов, производится по шкале и нониусу следующим образом: нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы основания, — число минут.

Для более точной проверки конусов в серийном производстве применяют специальные калибры.

Для проверки отверстия калибр, имеющий уступ на определенном расстоянии от торца и две риски, вводят с легким нажимом в отверстие и проверяют, нет ли качания калибра в отверстии. Отсутствие качания показывает, что угол конуса правилен. Убедившись, что угол конуса правилен, приступают к проверке его размера. Для этого наблюдают, до какого места калибр войдет в проверяемую деталь. Если конец конуса детали совпадает с левым торцом уступа или с одной из рисок или находится между рисками, то размеры конуса правильны. Но может случиться, что калибр войдет в деталь настолько глубоко, что обе риски войдут в отверстие или оба торца уступа выйдут из него наружу. Это показывает, что диаметр отверстия больше заданного. Если, наоборот, обе риски окажутся вне отверстия или ни один из торцов уступа не выйдет из него, то диаметр отверстия меньше требуемого.

Обработка наружных конических поверхностей поперечным сдвигом задней бабки

Смещение корпуса задней бабки производят, используя деления, нанесенные на торце опорной плиты, и риску на торце корпуса задней бабки.

Если на торце плиты делений нет, то смещают корпус задней бабки, пользуясь измерительной линейкой.

Преимущество обработки конических поверхностей путем смещения корпуса задней бабки заключается в том, что этим способом можно обтачивать конусы большой длины и вести обтачивание с механической подачей.

Недостатки этого способа: невозможность растачивать конические отверстия; потеря времени на перестановку задней бабки; возможность обрабатывать лишь пологие конусы; перекос центров в центровых отверстиях, что приводит к быстрому и неравномерному износу центров и центровых отверстий и служит причиной брака при вторичной установке детали в этих же центровых отверстиях.

34 стр., 16518 слов

Штукатурка. Окраска по деревянным поверхностям

... качество штукатурного покрытия становится низким, покрытие покрывается трещинами. Такие растворы приходится выбрасывать. Деревянные и гипсовые поверхности медленно ... поставлять на объект жесткими с осадкой по стандартному конусу от 3 до 5 см с введением дополнительного ... Виды растворов Прочность сцепления штукатурных покрытий с основанием, зависит от технологии производства работ, а в том числе ...

Неравномерного износа центровых отверстий можно избежать, если вместо обычного применять специальный шаровой центр. Такие центры используют преимущественно при обработке точных конусов.

3. Обработка конических поверхностей с применением конусной линейки

Для обработки конических поверхностей с углом уклона а до 10—12° современные токарные станки обычно имеют особое приспособление, называемое конусной линейкой.

К станине станка прикреплена плита, на которой установлена конусная линейка. Линейку можно поворачивать вокруг пальца под требуемым углом а к оси обрабатываемой детали. Для закрепления линейки в требуемом положении служат два болта. По линейке свободно скользит ползун, соединяющийся с нижней поперечной частью суппорта при помощи тяги и зажима. Чтобы эта часть суппорта могла свободно скользить по направляющим, ее отсоединяют от каретки, вывинчивая поперечный винт или отсоединяя от суппорта его гайку.

Если сообщить каретке продольную подачу, то ползун, захватываемый тягой, начнет перемещаться вдоль линейки. Так как ползун скреплен с поперечными салазками суппорта, то они вместе с резцом будут перемещаться параллельно линейке. Благодаря этому резец будет обрабатывать коническую поверхность с углом уклона, равным углу б поворота конусной линейки.

После каждого прохода резец устанавливают на глубину резания с помощью рукоятки верхней части суппорта. Эта часть суппорта должна быть повернута на 90° относительно нормального положения.

Если даны диаметры оснований конуса D и d и его длина l, то угол поворота линейки можно найти по формуле.

Подсчитав величину tg б, легко определить значение угла б по таблице тангенсов.

Применение конусной линейки имеет ряд преимуществ:

1) наладка линейки удобна и производится быстро;

2) при переходе к обработке конусов не требуется нарушать нормальную наладку станка, т.е. не нужно смещать корпус задней бабки; центры станка остаются в нормальном положении, т.е. на одной оси, благодаря чему центровые отверстия в детали и центры станка не срабатываются;

3) при помощи конусной линейки можно не только обтачивать наружные конические поверхности, но и растачивать конические отверстия;

4) возможна работа е продольным самоходом, что увеличивает производительность труда и улучшает качество обработки.

Недостатком конусной линейки является необходимость отсоединять салазки суппорта от винта поперечной подачи. Этот недостаток устранен в конструкции некоторых токарных станков, у которых винт не связан жестко со своим маховичком и зубчатыми колесами поперечного самохода

4. Технология обработки фасонных поверхностей и отделочных работ на токарных станках

1. Обработка фасонных поверхностей фасонными резцами.

2. Обработка фасонных поверхностей по копиру.

3. Накатывание рифлений.

Обработка фасонных поверхностей при одновременном действии продольной и поперечной подач резца.

15 стр., 7227 слов

Токарные станки, классификация резцов

... На таких станках можно выполнять практически все виды токарных работ, за исключением нарезания резьбы резцом. Техническими параметрами, по которым классифицируют токарно-винторезные станки, являются наибольший диаметр обрабатываемой заготовки (детали) ... заклинивается между поверхностями, образованными пазом на основании ... шпинделя и суппорта станка для обеспечения ... радиальному пазу, тем самым изменяя ...

Обработка фасонных поверхностей при одновременном действии продольной и поперечной ручных подач резца производится при небольшом количестве обрабатываемых деталей или при сравнительно больших размерах фасонных поверхностей. В первом случае изготовление даже обыкновенного фасонного резца нецелесообразно, во втором — потребовался бы очень широкий резец, работа которым неизбежно вызвала бы вибрации детали. Фасонная поверхность детали обрабатывается рассматриваемым способом обычно в три приема, сущность которых будет ясна из приводимого ниже порядка обработки рукоятки.

Снятие припуска производится остроносым чистовым или проходным резцом. Для этого перемещают (вручную) продольные салазки влево и одновременно поперечные салазки суппорта вперед и назад. При обработке сравнительно небольших фасонных поверхностей продольную подачу осуществляют используя верхние салазки суппорта, установленного так, чтобы направляющие их были параллельны центровой линии станка; для поперечной подачи применяют поперечные салазки суппорта. В том и другом случаях вершина резца будет перемещаться по кривой. После нескольких проходов резца и при правильном соотношении величин подач (продольной и поперечной) обрабатываемая поверхность получит требуемую форму. Для выполнения этой работы нужен большой навык. Опытные токари, обрабатывая фасонные поверхности рассматриваемым способом, пользуются автоматической продольной подачей, перемещая одновременно с этим поперечный суппорт вручную.

5. Технология нарезания резьбы резцами

1. Изучение режимов резания. Контроль качества. Заточка резьбового резца.

2. Настройка станка на режим работы при нарезании треугольной резьбы. Установка резьбовых резцов. Выверка резца относительно детали.

3. Нарезание треугольной резьбы. Нарезание многозаходной резьбы.

4. Нарезание прямоугольной резьбы.

5. Нарезание трапецеидальной резьбы.

6. Нарезание упорной резьбы.

Резьбонарезные резцы оснащают пластинами из быстрорежущей стали и твердых сплавов. Предварительно деталь обтачивают таким образом, чтобы ее наружный диаметр был меньше наружного диаметра нарезаемой резьбы. Для метрической резьбы диаметром до 30 мм эта разница ориентировочно составляет 0,14… 0,28 мм, диаметром до 48 мм — 0,17…0,34 мм, диаметром до 80 мм — 0,2…0,4 мм. Уменьшение диаметра заготовки обусловлено тем, что при нарезании резьбы материал заготовки деформируется и в результате этого наружный диаметр резьбы увеличивается.

Нарезание резьбы в отверстии производят или сразу после сверления (если к точности резьбы не предъявляют высоких требований), или после его растачивания (для точных резьб).

Диаметр отверстия (мм) под резьбу:

d0 = d-P,

где d — наружный диаметр резьбы, мм; Р — шаг резьбы, мм.

Диаметр отверстия под резьбу должен быть несколько больше внутреннего диаметра резьбы, так как в процессе нарезания резьбы металл деформируется и в результате этого диаметр отверстия уменьшается. Поэтому результат, полученный по приведенной выше формуле, увеличивают на 0,2…0,4 мм при нарезании резьбы в вязких материалах (стали, латуни и др.) и на 0,1…0,02 мм при нарезании резьбы в хрупких материалах (чугуне, бронзе и др.).

20 стр., 9784 слов

Разработка маршрутной технологии изготовления детали ‘Крышка’

... резьба. Наружные поверхности детали имеют диаметры Æ64 мм, Æ39 мм. На детали точится конус. Фрезеруются лыски. Размеры являются технологичными. Деталь «Крышка подшипника» жесткая, так как , следовательно, отклонения min. Наружные поверхности детали обрабатываются резцами. ...

В зависимости от требований чертежа резьба может заканчиваться канавкой для выхода резца. Внутренний диаметр канавки должен быть на 0,1 …0,3 мм меньше внутреннего диаметра резьбы, а ширина канавки (мм):

b=(2…3)P.

В процессе нарезания болтов, шпилек и некоторых других деталей при отводе резца, как правило, образуется сбег резьбы.

Для более удобного и точного нарезания резьбы на торце обрабатываемой детали выполняют уступ длиной 2…3 мм, диаметр которого равен внутреннему диаметру резьбы. По этому уступу определяют последний проход резца, после окончания нарезания резьбы уступ срезают.

Точность резьбы во многом зависит от правильной установки резца относительно линии центров. Для того чтобы установить резец по биссектрисе угла профиля резьбы перпендикулярно к оси обрабатываемой детали, используют шаблон, который устанавливают на ранее обработанной поверхности детали вдоль линии центров станка. Профиль резца совмещают с профилем шаблона и проверяют правильность установки резца по просвету. Резьбонарезные резцы следует устанавливать строго по линии центров станка.

На токарно-винторезных станках резьбу нарезают резцами за несколько проходов. После каждого прохода резец отводят в исходное положение. По нониусу ходового винта поперечного движения подачи суппорта устанавливают требуемую глубину резания и повторяют проход. При нарезании резьбы с шагом до 2 мм подача составляет 0,05…0,2 мм на один проход. Если резьбу нарезать одновременно двумя режущими кромками, то образующаяся при этом стружка спутывается и ухудшает качество поверхности резьбы. Поэтому перед рабочим проходом резец следует смещать на 0,1…0,15 мм поочередно вправо или влево, используя перемещение верхнего суппорта, в результате чего обработка ведется только одной режущей кромкой. Число черновых проходов — 3…6, а чистовых — 3.

Заключение

резец конический токарный суппорт

Раздел отчёта, в котором студент высказывает своё мнение о предприятии, об организации и эффективности практики в целом, социальной значимости своей будущей специальности. На основе изученного практического материала во время практики студенту следует выявить как положительные, так и отрицательные стороны деятельности организации базы- практики, а также предложить мероприятия по устранению выявленных недостатков и дальнейшему совершенствованию работы организации. Формулировать их нужно кратко и чётко. В конце заключения ставится дата сдачи отчёта и подпись автора.

Литература

[Электронный ресурс]//URL: https://inzhpro.ru/otchet/tehnologiya-obrabotki-konicheskih-poverhnostey/

1. Т.А. Багдасарова Токарь универсал АКАДЕМА 2005

2. А.Г. Холодкова Общая технология машиностроения АКАДЕМА 2005.

3. А.М. Бродский Черчение АКАДЕМА 2004.

4. С.А. Зайцев допуски посадки и технические измерения АКАДЕМА 2004.