Введение. “Техническое обслуживание ПК”

Курсовой проект

Буквально ещё совсем недавно компьютеры были диковинным чудом техники, которое было доступно совсем немногим. Но, как быстро изменилась ситуация. На сегодняшний день компьютеры прочно вошли в деловую жизнь и в наш быт. Сейчас практически любая семья стремится обзавестись компьютером, иногда и не одним. Ведение домашней бухгалтерии, получение различной информации через Интернет — в этом компьютер просто незаменим.

Практически для всех компаний и организаций компьютеры настолько необходимы, как и собственные служащие. Иногда даже без какого-либо важного сотрудника компания какое-то время может обходиться, а без компьютера нет.

В современных компьютерах находят место для воплощения самые передовые технологии. И, как любые, технически сложные и хрупкие

устройства, компьютеры ломаются. И вот, на повестке дня самым важным вопросом, не терпящим отлагательств, становится ремонт компьютеров.

Как и любые другие технические устройства, компьютеры имеют свои стандартные поломки. Имеется в виду те неисправности, которые чаще всего появляются с течением времени. Даже опытный пользователь не застрахован от ошибок в установлении неисправности, а тем более, в установлении её причины. И, особенно, если неисправностей сразу несколько. Часто самостоятельные попытки заменить вышедшую из строя деталь компьютера или провести более сложный его ремонт заканчиваются очень плачевно — перестают работать многие программы и т д.

Целью данного курсового проекта является разработка методики проведения технического обслуживания системы охлаждения системных блоков.

Задачи:

1. Обзор литературы по теме проекта.

[Электронный ресурс]//URL: https://inzhpro.ru/kursovoy/tehnicheskoe-obslujivanie-pk-2/

2. Строение системного блока.

3. Описание технологии технического обслуживания системы охлаждения системных блоков.

4. Описание возможных неисправностей системы охлаждения.

1. Описательная часть

Описание конструкции системного блока ПК

Системные блоки различаются по внешнему виду (корпусу) и по внутреннему строению, эффективности и скорости работы и т.д.

По своей конструкции системные блоки можно разделить на несколько видов конструкции сборки, такие как офисные, домашние и мультимедийные.

4 стр., 1502 слов

Проектирования и конструирование системы охлаждения двигателя автомобиля ВАЗ

... данной курсовой работы – рассмотреть основные особенности конструкции и работы системы охлаждения двигателя а/м ВАЗ 2106, схематично продемонстрировать устройство каждой детали с описанием и особенностями технического обслуживания. 1.Описание конструкции и работы системы охлаждения двигателя а/м ВАЗ 2106 1.1 Описание конструкции системы охлаждения двигателя а/м ВАЗ 2106 Системы охлаждения ...

Системный блок, собранный для офиса довольно дешевый и экономичный, такие компьютеры не выделяются хорошим быстродействием, но вполне подходят для решения простых задач.

Сборка домашних компьютеров уже подразумевает под собой определенные характеристики, что бы на нем можно было работать, играть в видео игры и просматривать фильмы.

Мультимедийные компьютеры собранные для высокой производительности уже в разы лучше других выше упомянутых компьютеров, и уже используются не только для игр, а в большей части для создания больших видео фильмов, где требуется большая производительность от видео карты и процессора, объема большой оперативной памяти и немалым объемом жесткого диска, такие компьютеры по сравнению с другими дороже, да и качество и производительность гораздо выше.

В связи с тем что компьютеры очень массово используются в настоящее время во всех направлениях следует знать, как проводить аппаратное техническое обслуживание.

Строение системного блока.

Системный блок состоит из:

  • Корпус
  • Материнской платы
  • Процессор
  • ОЗУ
  • HDD
  • Дисковод
  • Блока питания

Корпус — это функциональный элемент, защищающий внутренние компоненты компьютера от внешнего воздействия и механических повреждений, поддерживающий необходимый температурный режим внутри, экранирующий создаваемые внутренними компонентами электромагнитное излучение и являющийся основой для дальнейшего расширения системы. Корпуса массово изготавливают заводским способом из деталей на основе стали, алюминия и пластика. Для креативного творчества используются такие материалы, как древесина или органическое стекло.

Так же корпуса могут иметь разные формы — вертикальную и горизонтальную.

Вертикальные формы корпуса:

  • Mini-tower
  • Midi-tower
  • Big-tower

Горизонтальная форма корпуса называется desktop

Mini-tower — достаточно невысокий по высоте корпус. Поначалу, в эпоху господства системных плат формата Baby АТ, был самым хорошо распространенным, но сегодня он встречается значительно реже, т.к. с размещением в нем полноразмерных системных плат АТХ могут появиться проблемы, остаются лишь малогабаритные платы форматов micro-ATX и flex-АТХ. Такие корпуса чаще всего используется в компьютерах самых простых конфигураций и применяются в качестве офисных машин или сетевых терминалов.

Midi-tower — наиболее распространенный сегодня формат корпуса — midi (middle) — tower АТХ. Он обеспечивает использование большого числа накопителей и практически всех типов системных плат при приемлемых габаритных размерах. Данный вид корпуса подходит практически для всех домашних и офисных машин и применяется везде.

Big-tower — являются самыми крупногабаритными корпусами и обеспечивают расположение системных плат любых размеров и самого большого количества устройств формата 5,25″, чаще всего 4 — 6. Помимо того, они чаще всего комплектуются блоками питания повышенной мощности. Основная сфера применения таких корпусов — рабочие станции, небольшие серверы и компьютеры для продвинутых пользователей.

14 стр., 6893 слов

Техническое обслуживание, поиск и устранение неисправностей материнских плат

... для ремонта и диагностики системных плат. Объектом нашего исследования является системная плата персонального компьютера, а предметом - техническое обслуживание, поиск и устранение неисправностей материнских плат. Научная новизна данной работы - это систематизация знаний по методам ремонта и диагностики системных плат. Курсовая работа ...

Desktop-размещается обычно под монитором. Выглядит такая конструкция очень изящно. Однако собирать и ремонтировать компьютер на базе «десктопа» трудно и неудобно. К тому же объем горизонтального корпуса значительно меньше, а блоки питания отличаются малой мощностью. Здесь можно сделать вывод — время корпусов типа “десктоп” неумолимо проходит, уступая место новому поколению “tower”.

Материнская плата — сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера либо сервера начального уровня (центральный процессор, контроллер ОЗУ и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода).

Именно материнская плата объединяет и координирует работу таких различных по своей сути и функциональности комплектующих, как процессор, оперативная память, платы расширения и всевозможные накопители. Это второй по важности компонент системного блока.

Форм-фактор системной платы — стандарт, определяющий размеры системной платы для персонального компьютера, места ее крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, разъёма центрального процессора и слотов для оперативной памяти, а также тип разъема для подключения блока питания.

  • Устаревшие: Baby-AT;
  • Mini-ATX;
  • полноразмерная плата AT;
  • LPX.
  • Современные: АТХ;
  • microATX;
  • Flex-АТХ;
  • NLX;
  • WTX, CEB.
  • Внедряемые: Mini-ITX и Nano-ITX;
  • Pico-ITX;
  • BTX, MicroBTX и PicoBTX

Центральный процессор — электронный блок либо микросхема — исполнитель машинных инструкций (кода программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.).

11 стр., 5121 слов

Сборка компьютера

... сборки компьютера можно разделить на несколько этапов: ·Сборка «скелета» нашего компьютера, т.е. установка процессора и оперативной памяти на материнскую плату. ·Подготовка корпуса и установка перфорирующих устройств (CD/DVD-привода, ... металлической части оборудования (например, задней панели системного блока). Повторяйте «разрядку» время от времени в ходе работы. Вынимайте диск из антистатической ...

Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Так же все центральные процессоры имеют свойство нагреваться, благодаря чему используют разные системы охлаждения.

Оперативная память — энергозависимая часть системы компьютерной памяти, в которой, исходя из названия, временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти.

Обмен данными между процессором и оперативной памятью производится:

1. Непосредственно

2. Либо через сверхбыструю память, 0-го уровня — регистры в АЛУ, либо при наличии кэша — через него.

Содержащиеся в оперативной памяти данные доступны только тогда, когда на модули памяти подаётся напряжение, то есть, компьютер включен. Пропадание на модулях памяти питания, даже кратковременное, приводит к искажению либо полному пропаданию содержимого ОЗУ.

система охлаждение системный блок

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. Для сохранения содержимого ОЗУ в таком случае, применяют запись содержимого оперативной памяти в специальный файл (в системе Windows XP он называется hiberfil. sys)

В общем случае, оперативная память содержит данные операционной системы и запущенных на выполнение программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Жесткий диск — произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферримагнитного материала, чаще всего двуокиси хрома — магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм [1] ), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации совмещён с накопителем, приводом и блоком электроники и (в персональных компьютерах в большинстве случаев) обычно установлен внутри системного блока компьютера.

14 стр., 6673 слов

«Ремонт и техническое обслуживание системы охлаждения стационарного ...

... цикл. Чем ширина шины памяти больше, тем выше скорость работы; Версия DirectX - интерфейс программирования приложений, обеспечивающий взаимодействие программ с железом компьютера, ... видеокарты работают и взаимодействуют между собой; Система охлаждения - устройство, осуществляющее отвод и ... курсовом проекте по ТоиР видеокарты будут рассмотрены: Назначение, технические характеристики и принцип работы ...

Оптический привод — устройство, имеющее механическую составляющую, управляемую электронной схемой, и предназначенное для считывания и (в некоторых моделях), записи информации с оптических носителей информации в виде пластикового диска с отверстием в центре (компакт-диск, DVD и т.д.); процесс считывания/записи информации с диска осуществляется при помощи лазера.

Разработанный в конце 1970-х первоначально для чтения компакт-дисков, для абстрагирования от формата и типа диска, в обиходе называется обобщающим названием, по принципу чтения информации с носителя.

Существуют следующие типы приводов:

  • привод CD-ROM (CD-привод)
  • привод DVD-ROM (DVD-привод)
  • привод HD DVD
  • привод BD-ROM
  • привод GD-ROM

Сам по себе, оптический привод может быть в виде составляющей конструкции в составе более сложного оборудования (например, бытового DVD-проигрывателя) либо выпускаться в виде независимого устройства со стандартным интерфейсом подключения (PATA,SATA, USB), например для установки в компьютер.

Видеокарта — устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение, и в первую очередь под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа.

Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA,VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ).

В этом случае устройство, строго говоря, не может быть названо видеокартой.

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты такие как Nvidia и AMD осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Компьютерный блок питания — вторичный источник электропитания (блок питания, БП), предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, а также преобразования сетевого напряжения до заданных значений.

В некоторой степени блок питания также:

  • Выполняет функции стабилизации и защиты от незначительных помех питающего напряжения;
  • Будучи снабжён вентилятором, участвует в охлаждении компонентов внутри системного блока персонального компьютера.

Мощность, отдаваемая в нагрузку существующими БП, в значительной степени зависит от сложности компьютерной системы и варьируется в пределах от 50 (встраиваемые платформы малых форм-факторов) до 1800 Вт (большинство высокопроизводительных рабочих станций, серверов начального уровня или геймерских машин).

4 стр., 1959 слов

Газ 3307 система питания

... грузовика ГАЗ-3307 (образца 2008 года) Двигатель модель ЗМЗ-5231.10 описание: V-образный, 8-цилиндровый, 4-тактный бензиновый двигатель с жидкостным охлаждением, с карбюраторной системой питания и системой рециркуляции отработанных газов ... некоторое распространение удлинённые кабины со спальным местом для междугородных перевозок. Данный реферат составлен на основе .

Стандарт (AT)

В блоках питания компьютера AT выключатель питания находится в силовой цепи и обычно выводится на переднюю панель корпуса отдельными проводами, питание дежурного режима с соответствующими цепями отсутствует в принципе.

Однако почти все материнские платы стандарта АТ+ATX имели выход управления блоком питания, а блоки питания, в то же время, вход, позволяющий материнской плате стандарта АТ управлять им (включать и выключать).

Блок питания стандарта AT подключается к материнской плате двумя шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным является подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы.

Стандарт (АТХ)

Повышены требования к +5VВС — теперь БП должен отдавать ток не менее 12 А (+3.3 VDC — 16,7 А соответственно, но при этом совокупная мощность не должная превысить 61 Вт) для типовой системы потребления мощностью 160 Вт. Выявился перекос выходной мощности: раньше основным был канал +5 В, теперь были продиктованы требования по минимальному току +12 В.

Требования были обусловлены дальнейшим ростом мощности комплектующих (в основном, видеокарты), чьи требования не могли быть удовлетворены линиями +5 В из-за очень больших токов в этой линии.

Описание конструкции и принципа действия различных видов системы охлаждения ПК

Система охлаждения играет важную роль в работе системного блока. Система охлаждения компьютера — это набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов. Система охлаждения бывает пассивной и активной.

Тепло в конечном итоге может утилизироваться:

В атмосферу (радиаторные системы охлаждения):

  • Пассивное охлаждение (отвод тепла от радиатора осуществляется за счёт естественной конвекции)
  • Активное охлаждение (отвод тепла от радиатора осуществляется за счёт его обдува вентиляторами)

2. Вместе с теплоносителем (проточные системы водяного охлаждения)

3. За счет фазового перехода теплоносителя (системы открытого испарения)

По способу отвода тепла от нагревающихся элементов, системы охлаждения делятся на:

1. Системы воздушного (аэрогенного) охлаждения

2. Системы жидкостного охлаждения

3. Фреоновая установка

4. Системы открытого испарения

Система воздушного охлаждения.

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких как термосифон и испарительная камера).

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью — радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности жёсткие диски, установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры).

16 стр., 7828 слов

Применение жидкостных систем охлаждения для регулировки тепловых ...

... данной дипломной работы является исследование схемотехнических решений системы охлаждения ПК, разработка ... Материнская плата работает на своей температуре и установленный на ней радиатор выполняет свою функцию охлаждения гораздо эффективнее. Из этого следует, что модернизация основного охлаждения влияет на работу ПК, ... (или блока питания) (рис.3). Рис.3. Воздушные системы охлаждения Вентиляторы могут ...

Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.

Система жидкостного охлаждения.

Принцип работы — передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда — масло, антифриз, жидкий металл, или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

  • Помпы — насоса для циркуляции рабочей жидкости
  • Теплосъёмника (ватерблока, водоблока, головки охлаждения) — устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости
  • Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным
  • Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Введение. “Техническое обслуживание ПК” 1

Рис.1. Принципиальная схема системы жидкостного охлаждения

Фреоновые установки

Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

  • Необходимость теплоизоляции холодной части системы и борьбы с конденсатом
  • Трудности охлаждения нескольких компонентов
  • Повышенное электропотребление
  • Сложность и дороговизна

Техническое обслуживание системы воздушного охлаждения.

Вследствие перепадов скоростей системные блоки компьютеров становятся настоящими пылесборниками. Скорость воздуха, идущего через входные отверстия, многократно превышает скорость потоков внутри корпуса. Кроме того, воздушные потоки часто меняют направление, огибая компоненты ПК. Поэтому большинство (до 70%) приносимой извне пыли оседает внутри корпуса; необходимо хотя бы раз в год производить чистку.

Чтобы в корпус попадало меньше пыли существуют волокнистые фильтры. Волокнистые фильтры перехватывают более 70% пыли, что позволяет чистить корпус значительно реже.

Зачастую в корпуса современных ПК устанавливают несколько вытяжных вентиляторов диаметром 120 мм, при этом воздух поступает в корпус через множество входных отверстий, рассредоточенных по всей конструкции, — их суммарная площадь много меньше площади вентиляторов. Устанавливать фильтр в такой корпус без доработки бессмысленно.

Практическая часть

Описание технологии сборки системного блока ПК

Установка CPU и кулера.

Процессор.

Первым и одним из самых ответственных шагов в деле сборки компьютера является правильная установка центрального процессора в сокет. Естественно, CPU должен поддерживаться материнской платой, о чем необходимо помнить при покупке, точнее, выбранная модель процессора определяет платформу. Особенно это хорошо заметно у AMD: Low-End CPU — SocketA, Middle-End CPU — Socket734, High-End CPU — Socket939, Ultra High-End CPU — Socket940. Для корректной установки CPU на материнскую плату существует специальный ключ, который показывает, как должен быть сориентирован процессор при установке на место. Сам ключ сделан в виде скошенного уголка, как на сокете, так и на основании процессора (или же это может быть маленький треугольник).

Также нужно ознакомиться с тем, как происходит открытие/закрытие самого разъема для CPU, о чем можно узнать в документации к материнской плате. Особое внимание надо обратить на CPU, предназначенные для установки в LGA775, поскольку очень тонкие площадки и контактные разъемы (до которых вообще не стоит дотрагиваться) в силу своих малых размеров могут испортиться, и тогда восстановить первозданное состояние будет практически невозможно. В процессе закрепления CPU нужно обратить внимание на тот факт, что сам процессор должен входить в сокет очень свободно, при этом все углы подложки должны быть на одинаковом уровне относительно сокета. Надо быть осмотрительным с ножками, которые имеют обыкновение гнуться или даже отламываться по углам при неосторожном обращении. Если это случилось (погнуты один или несколько контактов), выгибать обратно их стоит крайне плавно и аккуратно.

Выбор кулера также зависит от платформы. Для SocketA и Socket478 существует множество различных моделей кулеров, причем можно найти универсальные устройства, которые поддерживают установку на оба типа разъемов. К процессорам на базе AMD Athlon 64 (Socket 939/940) подходит один и тот же вид охлаждения, а вот с LGA775 могут возникнуть определенные проблемы, поскольку для этой платформы весьма сложно найти охлаждающее устройство (жидкостные системы тоже подходят не все).

Единственным универсальным кулером, подходящим под все вышеописанные платформы, является Thermaltake Silent Tower, который без труда будет поддерживать комфортный тепловой режим любой системы. Закрепление кулера перед фиксацией радиатора с вентилятором на CPU сначала рекомендуется проделать пробную операцию без процессора, с пустым сокетом, дабы оценить жесткость пружины и понять, как и с какой стороны удобнее держать охлаждающее устройство, какую силу прикладывать при защелкивании застежек (особенно это актуально для CPU с открытым ядром).

Перед установкой кулера на процессор следует намазать его термопастой (например, АЛСИЛ-3 или КПТ-8), причем перед этим лучше всего будет протереть спиртом обе контактирующие площадки (для обезжиривания и, следовательно, улучшения теплоотдачи).

Термопаста наносится тонким слоем (чем тоньше, тем лучше), цель — заполнить микроцарапины. Далее радиатор плотно прижимается к CPU одной рукой, а другой рукой защелкивается зажим. При этом действии очень важно не перекосить кулер на какой-либо бок, чтобы не повредить сам процессор. Бывает, что производители материнских плат не задумываются о величине теплообменника, и располагают около сокета множество мешающих установке элементов (как правило, катушки стабилизации и конденсаторы), в такой ситуации не стоит бояться аккуратно, отогнуть выпирающие детали. Иногда возникает потребность в обратном действии, то есть снятии кулера и процессора. Главное здесь — постараться не погнуть ножки, а для этого нужно, чтобы CPU выходил равномерно со всех сторон и двигался вертикально вверх относительно материнской платы. При демонтаже радиатора с Athlon 64 зачастую бывает, что кулер снимается вместе с процессором. В этом случае после извлечения системы из сокета обе части (радиатор и процессора) нужно медленно покрутить вокруг своей оси и тогда все без проблем разлепится. С повторными подсоединениями стоит быть особенно аккуратным на платформе LGA775, поскольку, по некоторым сведениям, примерно через 20 раз площадки изнашиваются.

Подключение вентилятора.

Очень важно банально не забыть запитать вентилятор кулера! Если присоединение к электрической цепи происходит посредством разъема Molex 8981-04Р (белая четырехконтактная колодка), в BlOS’e не будет отображаться информация о скорости вращения лопастей, но иногда присутствует дополнительный желтый провод, который является выводом тахометра и подсоединяется к разъему CPU_FAN на материнской плате. При правильном включении будет показываться частота, с которой крутится вентилятор. Некоторые же системы охлаждения можно подключать через реобас, регулятор, термодатчик или сопротивление, снижающее обороты (и, соответственно, издаваемый шум) — при таком раскладе rpm показываться не будет (однако это бывает не всегда, и существуют аппаратные индикаторы вращения).

Настройка BIOS Еще перед тем как процессор намазан термопастой и окончательно установлен в сокет вместе с кулером, очень важно выяснить рабочие параметры процессора, то есть тактовую частоту и напряжение питания, частоту шины и максимальную рабочую температуру. Все это узнается через маркировку на корпусе CPU. В дальнейшем выясненные значения должны быть выставлены в BIOS (меню «Frequency/Voltage Control»), поскольку автоматическое определение не всегда работает корректно, и часто бывает так, что мощный процессор работает вполовину своих возможностей. Также обязательно зайди в меню «PC Health» и посмотри на температуру CPU. Если кулер был установлен плохо (перекошен или имеет плохой контакт с ядром), это будет сразу видно: температура будет слишком высокой для данной модели процессора, что через некоторое время повлечет за собой его выход из строя. Следует помнить, что в случае процессоров AMD необходимо ориентироваться на реальную частоту, а не на рейтинг. В разных BlOS’ax частота шины может выставляться, как в виде номинальной (реальной) частоты, так и в виде эффективной. Тактовая частота процессора должна получиться умножением множителя на частоту системной шины. Приобретенный процессор может оказаться бракованным (такое случается даже в крупных солидных магазинах) или уже сгоревшим (при покупке «с рук»), и тогда на посткодере (который встраивается в современные материнские платы) при включении все время будет гореть «00».

Вставляем память.

Оперативная память, которая сейчас имеется в продаже, бывает пяти основных типов: DDR, DDR II, DDR III, Registered DDR, Dual Channel DDR. Выбор типа памяти и способ ее установки также зависят от платформы. Socket478 поддерживает работу памяти в двухканальном режиме. Как правило, CPU с частотой FSB 800 МГц требуют обязательной работы RAM именно в Dual DDR mode (LGA775).

Организовать такую связку на высокой частоте (двухканальная память — процессор) способен чипсет NVIDIA nForce2, который нормально поддерживает Dual DDR. Обычно, чтобы задействовать дуальный режим, установка модулей памяти происходит через слот (например, в первый и третий), причем большинство производителей материнских плат специально окрашивают парные слоты в одинаковый цвет, а за более точной информацией стоит обратиться к руководству пользователя. В общем случае (при условии поддержки материнской платой) Dual DDR можно организовать на платформах Socket478, SocketA, Socket939 — для остальных требуется специальная память или же работа RAM только в обычном режиме. Так, например, контроллер памяти у AMD Athlon 64 (подключающийся к Socket754) не имеет возможности работы в двойном режиме (поскольку на процессоре физически «не хватает» количества лапок), тогда как под Socket940 необходима специальная Registered DDR (с технической точки зрения на русский язык это правильно переводить как «буферизированная», а не «регистровая» память).

Из-за внешнего сходства различных модулей пользователи иногда вставляют в слот неподходящую память. Также бывает, что пользователи вставляют планку не той стороной. Такие ошибки могут привести к сгоранию или поломке модуля и платы. Чтобы этого избежать, перед приобретением нужно прочитать в User’s Guide материнской платы, какая память подходит для данной модели платы и как правильно производить установку.

Настройка памяти в BIOS.

Это важная операция, поскольку от настроек памяти напрямую зависит производительность системы (в целом можно выиграть около 5% по сравнению с заниженными значениями «по умолчанию»).

К сожалению, единого названия всех нужных нам опций нет, и каждый производитель материнских плат сам выбирает, в каком меню они находятся, можно лишь привести некоторые наиболее распространенные заголовки. При покупке модуля памяти обычно пишется некая последовательность чисел (иначе ее называют формулой), которые обозначают временные промежутки в работе чипов. Формула памяти состоит из трех цифр, например, 5-2-2, и обозначает, соответственно, RAS-RAS_to_CAS-CAS время доступа к адресным ячейкам. Выставлять данные значения следует напротив соответствующих названий параметров (например, часто употребляется «DRAM RAS# Latency», «Tras», «Row Address Strobe» для обозначения первой цифры).

Также из-за неправильной настройки частоты шины или временных параметров возможны проблемы при включении компьютера (происходит начальная инициализация, после чего сбой в виде перезагрузки, выключения или зависания).

В такой ситуации необходимо увеличить одно или все значения таймингов или понизить частоту шины. В любом случае нужно стремиться к оптимальному их значению — чем меньше время доступа, тем быстрее обрабатываются данные.

Видеокарта.

Видеоплаты и особенности их подключения также довольно разнообразны, поэтому здесь следует быть не менее аккуратным, чтобы не ошибиться при выборе и установке. Существует два слота для подключения графических карт — это AGP и PCI Express 16x. Первый — более старый, работает на меньшей скорости и поддерживает всего одно устройство такого типа (кроме спецификации за номером 3.0, где их может быть два).

Стандарт AGP 3.0 описывает четыре скорости работы (от 1х — 266 Мб/сек до 8х — 2 Гб/сек).

Существует его расширение — AGP Pro (увеличенная длина слота для подачи дополнительного питания, однако на деле плат под этот разъем очень мало).

Платы AGP совместимы с разъемом AGP Pro. Главное отличие второй шины (PCI Express 16x) в том, что она является последовательной и поддерживает скорость передачи данных до 8 Гб/сек. Также возросла электрическая мощность, которая может подаваться по этой шине, так что новые видеокарты вполне могут обойтись без дополнительного питания. При установке современного графического ускорителя не стоит забывать о требующемся дополнительном питании и подключить разъем (Molex) от БП. Симптомы, сигнализирующие о его отсутствии, выражаются в виде сообщения на экране перед загрузкой компьютера, попискиваниями из PC Speaker’a, отсутствия изображения (способ извещения пользователя различается у разных производителей).

Установки AGP в BIOS.

В BlOS’e желательно изменить некоторые параметры, касающиеся слота AGP, которые, однако, не имеют критического влияния на производительность. Если в системе одновременно установлены PCI-адаптер и AGP-адаптер, в опции «Init Display First» можно выбрать, какой из них будет инициализироваться первым (на него будут выводиться системные сообщения до загрузки ОС).

«AGP Aperture Size» (размер апертуры AGP) лучше задать в 64-128 Мб, хотя для новых моделей это ни на что не влияет, поскольку эта функция остается незадействованной. По некоторым данным при меньшем значении возможны проблемы в современных играх. «AGP Speed» — при наличии поддержки высокой скорости передачи данных значение 8х будет оптимальным, чтобы не занижать производительность графической подсистемы.

Подключаем питание.

Для подачи напряжения на материнскую плату предназначен разъем АТХ (широкая 20-контактная колодка), однако этим многие системы не ограничиваются. Для SocketA, чаще всего, ничего больше не нужно, и компьютер включится без проблем, а вот Socket478 может отказаться работать без подсоединения колодки ATX12V (четыре контакта, расположенные квадратом).

Процессоры же, имеющие 754/939/940/1155/1156 ножек, заработают только с 12-вольтовым разъемом питания, так как потребляют повышенную мощность. С LGA775 вообще отдельная история, и здесь уже возможны два способа:

Первый — это когда на материнской плате имеется целых три колодки, а именно: стандартный ATX, ATX12V, Molex, и все их требуется подключить к блоку питания.

Второй случай — удлиненная на 4 контакта колодка АТХ, правда, такие блоки питания еще мало распространены, но в продаже уже можно встретить переходники (в обе стороны), которые позволяют использовать и стандартный разъем (тогда не нужно подключать Molex).

Иногда у блока питания может иметься дополнительный провод желтого цвета с разъемом FAN (трехконтактный), предназначенный для индикации скорости вращения вентилятора в самом БП, и тогда, присоединив его к соответствующему разъему материнской платы, можно будет отслеживать этот показатель. Зачастую блоки питания, предназначенные для поставки в разные страны, имеют переключатель напряжения сети (на задней панели), который встречается и в неправильном 110-вольтовом положении, и если прозевать этот момент и оставить все как есть, можно поплатиться сгоревшим предохранителем. Если же перемычка отсутствует, значит стоит обратить внимание на стикеры на корпусе, где указаны рабочие режимы блока (чтобы убедиться в пригодности устройства).

Стоит напомнить, что при переподключении любых устройств обязательно отключать БП от сети, поскольку даже в выключенном состоянии (режим сна) он подает дежурное напряжение на материнскую плату.

Первое включение

После подключения CPU, кулера, памяти, видеоадаптера и питания еще вне системного блока для оценки работоспособности железа необходимо осуществить контрольный запуск системы. Материнскую плату при этом следует положить на антистатический пакет. Если все в порядке, из динамика должен раздаться короткий одиночный сигнал, а на экране появится приглашение нажать для входа в BIOS какую-нибудь клавишу, где необходимо произвести описанные выше настройки CPU, памяти и AGP.

Сборка в корпус.

Убедившись в корректном функционировании базовых узлов компьютера, приступим к установке всего в системный блок. Делать это следует, не снимая память, процессор и кулер с материнской платы, поскольку в системном блоке подключать их будет неудобно. Главное в процессе не применять силы, а крепежные винты сильно не затягивать, дабы избежать деформации платы.

Винчестеры.

Подключение HDD может быть различно в зависимости от имеющегося оборудования — на данный момент в домашних условиях наиболее распространены IDE и SATA варианты.

IDE. Для определения места подключения этих устройств стоит заглянуть в руководство к материнской плате, поскольку у многих современных материнских плат имеется встроенный RAID-контроллер, из-за чего добавляется еще несколько IDE-разъемов. При подключении двух устройств на один IDE-канал обязательно нужно определить одно из них как Master, а другое как Slave. Делается это с помощью перемычек на корпусе устройства. Подсоединять жесткие диски следует 80-жильным шлейфом, для CD/DVD достаточно 40-жильного. Определить первую ножку на плате и на устройстве можно по маркировке, а на шлейфе первый провод обозначается красным или синим цветом. На разъемах обычно есть ключ — выпуклость и отсутствие отверстия для одной ножки на кабеле, вырез и отсутствие ножки на плате или устройстве.

SATA. Здесь все проще, поскольку отсутствует проблема определения главного-подчиненного (к одному разъему может быть подключено лишь одно устройство), но определенные проблемы возникают с подсоединением питающего провода. Часть SATA-дисков имеет старый разъем, типа стандартного Molex’a, и тогда никаких трудностей нет, но стандарт предполагает другой вид разъема, и может возникнуть ситуация, когда потребуется специальный переходник. Провод с нужным разъемом может оказаться в комплекте с материнской платой или же продаваться совместно с HDD, однако нередко бывает, что необходимый кабель вообще отсутствует, в такой ситуации потребуется дополнительно его приобрести.

Винчестеры в BIOSe. Для задействования SATA-винчестеров в BlOS’e нужно включить SATA-контроллер, поскольку в противном случае диски SATA не будут определяться системой, причем в списке IDE-устройств они также не появятся. Кроме того, неплохо вручную задать параметры дисков (в разделе «Standart CMOS Features»), чтобы при загрузке компьютера автоматическое определение каждый раз не отнимало дополнительное время. Если имеется лишь один HDD или отсутствует потребность в создании RAID-массива, встроенные контроллеры, обеспечивающие эти функции, отключаются. В противном случае при включении компьютера каждый раз будет запускаться микропрограмма, пытающаяся инициализировать дополнительные диски, что, опять же, отнимает время.

Вcтроенные устройства.

В BlOS’e имеется меню «Integrated Peripherals», которое позволяет управлять устройствами, встроенными в материнскую плату. Бывает так, что имеется, внешняя звуковая карта, и надобность во встроенной отпадает. Тогда напротив «Onboard Audio» стоит выставить «Disabled», чтобы избавиться от проблем с определением устройства в Windows и установкой дополнительных драйверов. Такую операцию стоит проделать со всеми встроенными устройствами, не требующимися в работе.

Подключение корпуса.

На системном блоке имеется индикационная панель, которая содержит несколько светодиодов, отображающих режимы работы компьютера и обращения к жесткому диску, а также кнопки управления питанием. Для того чтобы их задействовать, предназначен ряд контактов на материнской плате (расположены рядом и объединены одним названием, обычно это «F_PANEL», «PANEL», «PANEL1», «JFP1/2») и несколько проводков, подключенных к передней панели системного блока. На разных материнских платах контакты в гребенке располагаются различно, однако всегда соблюдается количество и положение колодок, а для того чтобы определить, что к чему относится, имеется специальная маркировка, как на плате, так и на разъемах. Также провода различаются и по цветам, причем на землю всегда идет черный провод (маркировка «GND», «-«, «Pull-Down», «Cathode», «Negative»), сигнальный же контакт может быть разных цветов, но как правило, это красный (обозначается, как «VCC», «Anode», «+», «Pull-Up», «Positive»).

Полярность важно соблюдать у световых индикаторов, так как они являются диодами и при неправильном включении просто не будут функционировать. Для кнопок и динамика ориентация коннектора роли не играет. Обозначение элементов передней панели создается из сокращения до нескольких букв названия и добавки в виде указания полярности, например PW_SW_GND обозначает «земля» кнопки включения компьютера (расшифровывается, как Power Switch Ground) или HDD_LED_ANODE (положительный провод индикатора винчестера).

В общем случае стоит посмотреть на схему расположения контактов, которую можно найти в руководстве к материнской плате.

Заключительный этап.

При правильном подключении устройств и настройках BIOS после включения компьютер должен подать одиночный звуковой сигнал из внутреннего динамика и продолжить загрузку.

В случае каких-либо проблем необходимо по сообщениям BIOS на экране или POST-кодам определить участок, на котором они возникают, и проверить подключение соответствующих устройств и настройки в BlOS’e.

Стоит еще раз проверить характеристики железа, корректность подключения и исправность шлейфов.

Если компьютер перестал включаться после изменения параметров BlOS’a, сбросить настройки можно специальной перемычкой (которая находится около батарейки на материнской плате, точно можно посмотреть в руководстве пользователя).

В итоге, после установки операционной системы обязательно нужно поставить все драйвера, которые можно найти на дисках, прилагающихся вместе с оборудованием, поскольку стандартные (включенные в ОС) не всегда обеспечивают реализацию всех аппаратных возможностей. Также сразу необходимо провести проверку системы комплексными пакетами типа SiSoftware Sandra, и проверить ее на стабильность при помощи бенчмарков.

При этом необходимо установить фирменную утилиту мониторинга состояния материнской платы и настроить ее на отключение ПК при достижении определенных порогов температур (если температура превысила 80 градусов Цельсия, в CPU могут начаться необратимые изменения).

Мониторинг системы следует производить еще в течение месяца, чтобы выявить проблемы, которые могут возникнуть не сразу.

Описание технологии поиска и устранения неисправностей системы охлаждения ПК

Поиск неисправностей системы воздушного охлаждения представлена в таблице 1.1

Таблица 1.1

Описание неисправности. Возможные причины. Способы устранения.
Один из кулеров не крутиться в системном блоке 1. Не плотно подсоединены разъемы питания к материнской плате. 2. Бракованный или сгоревший кулер. 3. Загрязнение кулера. 1. Проверить плотность подключения разъемов питания или пере подключить их. 2. Заменить кулер. 3. Почистить и смазать маслом кулер.
Кулер крутится медленно или рывками 1. Загрязнение кулера. 2. Надрыв одного из проводов питания кулера. 1. Почистить и смазать маслом кулер. 2. Попробовать восстановить разрыв, или заменить кулер.
Кулер крутиться, но плохо охлаждает систему. 1. Загрязнение радиатора пылью. 1. Очистить радиатор от пыли, смазать термопастой.

Описание технологии текущего технического обслуживания системы охлаждения ПК

В связи с большим количеством пыли в помещениях, необходимо время от времени очищать системный блок, а именно систему охлаждения, периодичность очистки корпуса зависит от места, где установлен ПК. Если он установлен в хорошо проветриваемом помещении, то очистку следует проводить раз в 3 года. Если в квартире, где регулярно моют полы — раз в год. В офисе — раз полгода. А если он стоит под столом — то раз в 3-4месяца.

В корпусах типа ATX и совместимых с ними вентилятор блока питания обычно нагнетает воздух в корпусе компьютера (пассивное охлаждение процессора).

Если закрыть всасывающее отверстие сеткой, то количество пыли в корпусе заметно уменьшится.

Корпус спроектирован с таким расчетом, чтобы проходящий через корпус воздух охлаждал все компоненты, а затем выходил из него.

Не вдаваясь в тонкости происходящих процессов можно сказать — пыль отлагается, в первую очередь, в местах где происходит резкое изменение давления (или скорости воздушного потока).

Поэтому стоит обращать внимание на места отложения пыли, они говорят о критических точках системы охлаждения, это лопасти вентилятора, пыль на них отлагается всегда за счет завихрений воздушных потоков. Но если на них происходит срыв воздушного потока, отложение резко усиливается. Это происходит тогда, когда давление создаваемое вентилятором меньше чем аэродинамическое сопротивление корпуса компьютера. В этом случае расход воздуха через вентилятор падает и происходит срыв воздушных потоков на вентиляторе, появляются зоны перепадов давления и в них захватываются пылинки, которые сталкиваясь с движущимися на большой скорости лопастями, внедряясь в их поверхность. Если обратить внимание отложения получаются достаточно плотные, т.е. характеристики вентилятора не согласованы с импедансом устройства и работает неэффективно. Это требует доработки системы вентиляции или замены вентилятора. Между ребрами радиатора. В этом случае в межреберном зазоре имеет место падение скорости воздушного потока, что снижает эффективность охлаждения, причинами могут быть слишком большая шероховатость поверхности ребер, вентилятор недостаточной производительности, проблема решается заменой куллера (блока радиатор — вентилятор).

Непосредственно за входными отверстиями охлаждающего воздуха (обычно на дне системного блока).

В этом месте, когда воздух проходя через небольшое отверстие попадает во много раз большее сечение внутреннего объема имеет место именно резкое падение давления или снижения скорости воздушного потока. Аналогично происходит на выходе воздушного потока из межреберного пространства куллера. Простейшим выходом из имеющейся ситуации является установка фильтра. Но это сопряжено с некоторыми проблемам. Для чистки системного блока применяются следующие инструменты: пылесос со щеткой на раструбе — несколько кистей разных размеров с упругим волосом — баночку для снятого крепежа — отвертку (крестовую).

Большая кисть имеет упругий натуральный волос длинной 55 мм.

Она удобна для чистки всех узлов системного блока, не мнется и хорошо очищается от пыли.

Малую кисть можно использовать для чистки лопастей вентиляторов и видеокарты.

Кистью можно согнать пыль с загрязненной поверхности, но она снова сядет на детали компьютера, поэтому чистку необходимо проводить с постоянным отсосом воздуха и с ним, сметенной пыли.

Для отсоса можно использовать любой пылесос. Главное, чтобы всасывающий раструб имел по периметру щетку.

Пыль отлагается на поверхностях узлов направленных вверх, это днище, верхние поверхности fdd, hdd, cd-r, видеокарты, пыль отлагается так же в каналах радиаторов и на выходе из них или прилегающих к выходу из каналов поверхностях.

Между куллером и центральным или видео процессором наносится тонкий слой термопасты для улучшения охлаждения. При замене старой термопасты используют качественную теплопроводящую пасту, размазанную тонким слоем, это в дальнейшем, не приведет к перегреву процессоров.

Сначала проводится очистка корпуса, потом очистка видеокарты и других устройств, потом осмотр и окончательная чистка корпуса перед установкой крышки.

Видеокарту и другие устройства установленные в слоты, необходимо чистить вынимая их из корпуса, такая чистка считается более качественной.

Переднюю панель можно очистить с помощью обычной влажной тряпочки.

Ни в коем случае нельзя использовать средства, содержащие ацетон или другие растворители. Они влияют на состояние пластмассы и могут привести к порче передней панели и приводов дисководов.