«Растения- гениальные инженеры природы» — Разное — Методическая копилка — Каталог статей — ДИА «CREATIV»

Курсовая работа

На протяжении всей своей истории человечество было вынуждено бороться со стихийными силами природы за средства к существованию, уметь противостоять силам природы, с тем, чтобы выжить в этой трудной борьбе и победить. В настоящее время довольно много внимания уделяется бионике- науке, возникшей на стыке биологии и техники.

Бионика оформилась как наука сравнительно недавно, около двух десятилетий назад. Подавляющее большинство работ по бионике посвящено зоологическим объектам — тут и моделирование различных органов чувств и отдельных их элементов, исследования биомеханики движений, эхолокация и различные формы связи и многое другое. Однако в круг изучаемых бионикой явлений входят и более сложные объекты — сообщества организмов. Бионика исследует организацию и функционирование биологических систем. Она изучает процессы преобразования вещества, энергии, информации и на уровне организма, и на уровне экосистемы. Но удельный вес работ, связанных с изучением надорганизменного, экосистемного уровня, невелик, невелико и число публикаций, посвященных ботаническим объектам. В своей работе мы постарались восполнить этот пробел.

Целью работы является привлечение внимания инженеров к тем сторонам бионики, которые до сих пор в значительной мере оставались в тени: среди них проблема утилизации отходов и создание безотходных производств, экологический кризис и функционирование таких крупных саморегулирующихся систем, как растительные сообщества, вопросы расточительного расхода энергии и сырьевых ресурсов.

Основными задачами явились: изучение литературных источников по проблеме бионики и анализ фактов из опубликованных наблюдений ботаников.

В качестве литературных источников использовались монографии ученых и публикации на научно -популярных сайтах и электронных журналах. Анализ литературы показал, что данный вопрос еще недостаточно изучен, но вызывает определенный интерес у ученых- биологов и инженеров. По утверждению большинства из них человечеству еще есть чему поучиться у матушки-природы.

Собранный материал может использоваться в качестве дополнительного материала для учащихся, интересующихся биологией, преподавателей биологии и всех любителей природы.

РАСТЕНИЯ — ГЕНИАЛЬНЫЕ ИНЖЕНЕРЫ ПРИРОДЫ

2.1.Растения- архитекторы

Когда во второй половине прошлого века первые исключительно смелые инженерные сооружения из стекла, стали и бетона начали постепенно вытеснять постройки традиционных архитектурных стилей, то их появление ознаменовало глубокий переворот в зодческом искусстве. Успехи в строительной технике позволили создать новые, ранее неизвестные архитектурные формы и конструкции. Провозвестниками новомодных тенденций в зодчестве явились здания вокзала в Ливерпуле (1852 год), Парижская библиотека (1861 год) и Эйфелева башня, открытие которой было приурочено к Всемирной выставке 1889 года в Париже. Однако первым по-настоящему гениальным монументальным сооружением новой архитектуры был Хрустальный дворец в Лондоне, огромное здание павильонного типа, построенное целиком из стекла и металла.

16 стр., 7749 слов

Анализ устойчивости функционирования типичной газонаполнительной ...

... анализа устойчивости функционирования типичной ГНС при возникновении чрезвычайной ситуации. 1. ОБОСНОВАНИЕ ПОТЕНЦИАЛЬНОЙ ОПАСНОСТИ ОБЪЕКТА 1 Характеристика объекта Полное и сокращенное наименование организации. Наименование предприятия - Комсомольская газонаполнительная станция ... с ремонтно-механической мастерской электрощитовая (РЩ) компрессорная установка 1.3 Обоснование идентификации особо опасных ...

В архитектуре не было аналогов для подобного проекта, ибо новое не имеет образцов для подражания. Правда, инженеры, строители мостов, уже в течение почти целого столетия на практике демонстрировали конструктивные преимущества и высокую несущую способность стальных конструкций. Творению Пакстона надлежало быть изящным и легким. И тут бывший садовод-любитель вспомнил о некоей растительной конструкции, которая сочетала в себе, с одной стороны, малые затраты строительных материалов, а с другой — высокую устойчивость и столь же высокую грузоподъемность. В молодости Пакстону часто приходилось любоваться гигантскими плавающими листьями Виктории регии. Ее округлые листья достигают в диаметре 2 метров. Несмотря на незначительную толщину, они достаточно прочны, чтобы выдержать тяжесть взрослого человека. Своей столь высокой прочностью листья обязаны тому, что их нижняя поверхность усилена своего рода балками. Из центра листа лучами, напоминающими спицы в колесах, расходятся во все стороны толстые, сильно выдающиеся жилки, которые по мере приближения к краю листа становятся все более и более плоскими. Из-за того, что жилки многократно, до пяти раз, ветвятся, расстояние между ними у кромки листа остается небольшим. В результате из одной крупной жилки в центре листа у его периферии образуется до 32 жилок, скрепленных друг с другом более плоскими поперечными связками.

Решение было найдено. Именно таким образом должен конструировать свой Хрустальный дворец и он, Джозеф Пакстон. Основу составят немногочисленные крупные силовые балки, от них отойдут менее крупные распорки, которые соединят между собой многочисленные тонкие связи. Более изящной конструкции он создать не мог. Пятнадцатого июля 1850 года королевская комиссия телеграфом подтвердила выбор его проекта. Но если быть справедливым до конца, то истинным победителем в этом конкурсе надо считать не Джозефа Пакстона, а тропическую лилию. Когда техническая мысль приходит к тем же результатам, какие дает биологическая эволюция, или же когда в качестве образца она использует инженерные решения, найденные природой, мы можем быть полностью уверены в том, что созданная ею конструкция окажется целесообразной.

Существуют две возможности, позволяющие придать тонкому листу со значительной площадью поверхности, а именно таковы листья многих тропических растений, дополнительную жесткость.

С одной из них мы уже познакомились. Это — образование ребер жесткости. Для водных растений, как Виктория регия, этот метод вполне пригоден.

Другая – это принцип гофрирования, который широко применяется в технике для повышения прочностных свойств конструкционных материалов. Этим исключительно простым путем добиваются повышения прочности многих вещей: кровли, стенок металлических гаражей, фюзеляжей самолетов, кузовов автомашин (для чего используется гофрированная листовая сталь), балконов (с этой целью их облицовывают гофрированными асбоцементными или полиэфирными плитами), картона, идущего на производство упаковки, и даже плиссированных бумажных юбок для рождественских карнавалов. Однако к мысли искусственно создавать в рукотворных структурах разрывы, подобные тем, какие наблюдаются у многих видов пальм, инженеры пришли сравнительно поздно. Впервые эта идея была реализована в 1965 году при сооружении свободнонесущей конструкции защитного навеса при въезде в один из самых длинных и глубоких современных тоннелей — тоннель под Монбланом.

12 стр., 5849 слов

Реферат по технологии комнатные растения в интерьере

... Кое-что о комнатных растениях 2.1 Комнатные растения и экология жилища На протяжении всего эволюционного ... в колдовстве. Но эксперимент по созданию зимних садов оказался столь успешным, что вскоре европейские монархи в ... посредством информационных технологий напольные цветочные композиции, расположенные в просторных залах ... видел слой гари на нежных листьях своих любимых растений. Бормоча проклятия, он ...

Одним из важнейших архитектурных элементов, применяемых с очень давних времен, является колонна. Известна она и в растительном мире. На протяжении более чем четырех тысяч лет архитекторы создают ее с однородной внутренней структурой. В то же время природа испокон веков выращивает колонны, которые в принципе сконструированы столь же рационально, как и те армированные сталью бетонные опоры, с которыми человек знаком на протяжении чуть более 100 лет.

Изобретатель железобетона не был ни инженером, ни архитектором. Им оказался французский садовник Ж. Монье. В 1867 году, пытаясь изготовить для своих цветов кадки из цементного раствора, он впервые применил каркас из металлической сетки. Но и он не «изобрел», а скорее «открыл» железобетон, ибо, будучи садовником, Ж. Монье не мог не видеть, каким образом растения усиливают свои несущие конструкции.

Принцип армирования известен растениям на протяжении уже более 250 миллионов лет. У некоторых видов кактусов, в частности у цереусов, напоминающих своей формой гигантские канделябры, мягкие ткани после отмирания полностью разрушаются, открывая взору внутренний скелет растения. Как и в железобетонной конструкции, арматура кактуса располагается в непосредственной близости от поверхности ствола, вся же внутренняя часть тела растения свободна от каркаса. Иная, решетчатая форма расположения механических тканей характерна для другой разновидности кактусов — опунции (Opuntia bigelowii) . Но и здесь эти ткани находятся близ поверхности, в самом же теле опунции арматурные элементы отсутствуют.

Уже нескольким более 4 тысяч лет назад люди каменного века, обитавшие на берегах Цюрихского, Боденского, Женевского и Невшательского озер, на низких морских побережьях, в пойме реки По и в других столь же сырых местах возводили свайные постройки.

В природе столь рациональный метод строительных работ известен на протяжении многих миллионов лет. Остановимся на одном примере. Ходульные корни у пандана и мангровых растений, произрастающих в тропических болотах и в прибрежной полосе тропических морей и океанов, выполняют те же функции, что и сваи в свайных постройках. Однако в техническом отношении эти природные конструкции более совершенны, чем творения рук человеческих.

Как это часто случается в мире растений, корни-опоры во многом превосходят искусственно созданные человеком родственные конструкции и, прежде всего, тем, что обладают высокой аккомодационной способностью. Мангровые растения с их гораздо более тонкими опорами выдерживают натиск мощных прибойных волн: ходульные корни обладают высокой эластичностью, позволяющей им после спада волны занимать первоначальное положение.

11 стр., 5484 слов

Современная теория питания растений

... растений происходит благодаря усвоению углекислого газа через листья (так называемое «воздушное питание»), а воды, азота и зольных элементов -- из почвы через корни («корневое питание»). 3. Воздушное питание ... Фотосинтез является основным процессом, приводящим к образованию органических веществ в растениях. При фотосинтезе солнечная ...

Тяжелым конструкциям, если к тому же они обладают сравнительно небольшой площадью основания, присущи свои собственные статические закономерности. По этой причине их следует либо выполнять массивными, либо они должны иметь каркас, состоящий из вертикальных и горизонтальных элементов и раскосов, с тем, чтобы все сооружение в целом приобрело необходимые жесткость и прочность.

Итак, речь пойдет о каркасных конструкциях. Наиболее отчетливо они выражены у близких родственников обычных комнатных фикусов — у мощных старых экземпляров Ficus rumphii. Ветви этих гигантов растут не только «центробежно», но и «центростремительно». Они переплетаются и сращиваются между собой самым причудливым образом. Возникает крупноячеистая решетчатая конструкция, которая придает дереву необычайно высокую прочность, позволяющую растению иметь могучую крону.

Исключительно умелыми строителями каркасов показали себя фикусы-удушители, которые, не будучи истинными паразитами, избрали другие деревья лишь местом своего обитания. Семена этих фикусов заносятся в кроны деревьев, где они прорастают и закрепляются с помощью цепляющихся корней. Затем растение образует несколько питающих корней, которые спускаются свободно вдоль ствола дерева-опоры, пока, наконец, не достигнут почвы, где и укореняются. От вертикальных питающих корней отрастают горизонтальные воздушные корни. Они не только крепко оплетают ствол «хозяина», но и многократно срастаются друг с другом. Так возникает прочный живой каркас, который душит дерево, давшее приют фикусу, и оно в конечном итоге погибает. Сетчатая конструкция, образованная корневой системой фикуса-душителя, настолько прочна, что выдерживает его собственный вес и тогда, когда ствол-опора полностью сгнивает. Решетчатая структура ствола этого фикуса очень напоминает арматурный каркас железобетонных опор с той лишь разницей, что здесь арматура не заполняется сплошь материалом.

Выше приводились немногие примеры, взятые в основном из жизни тропических растений, и, прежде всего, семейства фикусовых, лишь потому, что каркасные структуры наблюдаются здесь в масштабах, приближающихся к принятым у людей. Но этот принцип можно видеть у растений и в миниатюре: практически каждый лист двудольных растений имеет каркасную конструкцию. Жилки листа образуют правильную решетку, придающую нежной поверхности листа прочность, аналогичную той, которую в современных небоскребах обеспечивает сравнительно тонким наружным стенам и внутренним перегородкам стальная арматура. Очень отчетливо решетчатая структура видна также в плоде физалиса.

Прочность конструкционных материалов, изготовляемых из пластических масс, можно повысить путем армирования их стекловолокном. Исследователи многих стран приложили немало усилий, чтобы определить, все ли виды стеклянных волокон и способы скрепления их между собой в нити и в ткани разного плетения одинаково хороши для эффективного армирования и нет ли здесь каких-либо существенных различий. Результат ошеломляет: стеклянные волокна тем прочнее, чем они тоньше. Но это вовсе не значит, что более тонкое волокно труднее рвется, просто при уменьшении диаметра волокна вдвое прочность на разрыв уменьшается в гораздо меньшей пропорции. Чтобы повысить долговечность пластмасс, целесообразнее применять стеклоткани, в которых тонких стекловолокон содержится больше, чем толстых. Но это лишь одно чрезвычайно важное открытие. Другое не менее важное знание состоит в том, что наиболее благоприятное соотношение длины и толщины стеклянной нити составляет 200:1. Большая длина уже не будет способствовать дальнейшему повышению прочности изделия.

14 стр., 6955 слов

Лекарственное растение и лекарственное растительное сырье: стандартизация ...

... лекарственное растение маклейя сердцевидная и лекарственное растительное сырье маклейи с точки зрения ботаники и фармакогнозии; провести сравнительный анализ изученной литературы в области стандартизации ... цветков опадает (рисунок 1.2). В цветках 25-30 тычинок. Гинецей ценокарпный, образованный ... наиболее экономически целесообразной в Краснодарском крае, где отмечена самая высокая урожайность сырья ...

Как же решили растения в процессе эволюционного развития проблему создания прочной клеточной оболочки? Ответ не будет неожиданным: эволюция дала такой же результат, как и разработка идеи стеклопластика. Структура стенки растительной клетки практически не отличается от структуры синтетических материалов, армированных стекловолокном. Для нас, людей, этот факт служит доказательством правильности наших научных изысканий.

Растения-мастера гидравлики

Через листву небольшой (100 метров x 100 метров) буковой рощицы, где насчитывается около 400 деревьев высотой 25 — 30 метров, каждые летние сутки испаряется в среднем 20 тонн воды, то есть такое количество, которое вмещает в себя крупная автоцистерна. Но до того, как вода испарится, она по стволу и веткам дерева будет поднята в среднем на высоту 20 метров. Но самое удивительное здесь то, что на ее выполнение деревья вообще не затрачивают собственной энергии. Рациональная конструкция делает этот процесс автоматическим. Наличие у растений водопроводящей системы, состоящей из большего числа микроскопических трубочек-капилляров, диаметр каждой из которых не превышает нескольких тысячных долей миллиметра, позволяет ему с необычайной легкостью совершать то, чего не в состоянии сделать ни один из созданных человеком вакуумных насосов: поднять самотеком воду на отметку более 10 метров. Не будь «изобретены» эти мельчайшие в мире капилляры-трубы, высота растений не могла бы превысить и 10 метров. Только благодаря им стали возможны деревья-великаны высотой более 100 метров. Из-за микроскопических размеров капилляров вода и растворенные в ней вещества поднимаются вверх по стволу сравнительно медленно. У хвойных пород скорость подъема составляет всего 1—2 метра в час. Интересен тот факт, что низкорослые растения, которые могут позволить себе роскошь иметь более крупные водопроводящие сосуды, не замедлили воспользоваться этим: вода в сосудах движется вверх намного быстрее. Так, в листьях ржи скорость «водного потока» может достигать 40— 50 метров в час.

Растения-передатчики информации

Растения добились многого в области статики сооружений, они успешно передвигаются по суше, по воде и по воздуху, являются мастерами своего дела в гидравлике и прикладной термодинамике, научились использовать энергию света, прекрасно чувствуют время и могут проводить точные химические анализы. Но до сих пор ничего еще не говорилось ни об измерительной технике, ни о технике передачи информации.

10 стр., 4578 слов

По физике «В мире энергии»

... находиться в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках ... год запланирован запуск ещё одной турбины. Общая установочная мощность двух турбин составит 28МВт. Проект позволит повысить самообеспечение ... металлургический комбинат является одним из крупнейших металлургических комбинатов мира и большим потребителем электрической энергии (около 40% всей ...

Под информационной техникой в узком смысле слова понимают передачу информации, а в широком — также ее получение, обработку и накопление. Но где же растениям приходится решать подобные задачи? Разумеется, там, где они вынуждены сотрудничать с другими живыми существами. Для того чтобы насекомые могли с наибольшей пользой для обеих сторон (для себя — получить как можно больше сладкого нектара, для растений — эффективно опылить их) перелетать от цветка к цветку, процесс опыления должен быть организован очень рационально. В качестве одного из самых важных средств приманивания насекомых или других животных природа широко использует оптическую сигнализацию. Нередко цветки насекомоопыляемых растений источают сильные гнилостные запахи, например, запах гниющего мяса, разлагающегося белка или казеина. Цветовая гамма, пятнистый рисунок, неприятный запах, значительные, как правило, размеры этих цветков (растение-паразит раффлезия имеет, по-видимому, самые крупные в мире цветки — более одного метра в поперечнике!) довольно убедительно для своих посетителей имитируют разлагающуюся, кровоточащую тушу погибшего животного, суля мухам богатую поживу.

Итак, наряду с формой и цветом, выступающих в качестве сигнала приманивания и различающихся в зависимости от того, на кого они рассчитаны, мы в данном случае столкнулись и с запахами как средством передачи информации. Особый интерес представляют цветы, окрашенные в ярко-красные тона. Вообще существует крайне мало насекомоопыляемых растений, цветки которых были бы однотонно алыми. Хорошо известно, что насекомые не могут различать красный цвет спектра. И все же такая расцветка у растений встречается. Но опыляют их не пчелы, мухи, жуки или бабочки, а птицы, например крошечные колибри, обитающие на Южноамериканском континенте, или столь, же миниатюрные медососы, живущие в тропических частях восточного полушария. Глаза этих птиц чрезвычайно чувствительны ко всему красному. Но особенно привлекает их пурпурно-красный цвет, который они в состоянии различать с большого расстояния.

Для тех летучих мышей, которые питаются сочными плодами и нектаром цветов и кормятся обычно в сумеречные часы, светлые тона оказываются особенно притягательными. Лепестки цветков одного из видов тропических лиан (Freycinetia), опыляемого только крыланами, или «летучими собаками», имеют светлую розовато-красную окраску. Сочные, с кислым привкусом, они являются для этих весьма прожорливых животных обычным кормом.

Цветки, сигнализация которых рассчитана на приманивание птиц, обладают характерным только для них строением. Как правило, это трубчатые цветки. Нектар спрятан глубоко в цветке. Достать его могут лишь птицы с помощью своего тонкого и длинного клюва и языка.

Сигналы подают и те цветки, которые уже опылены и у которых предшествующий посетитель забрал уже всю сладкую добычу. В большинстве случаев они быстро и резко меняют свою окраску или столь же быстро увядают. Вот почему те, кто содержит оранжереи с орхидеями, никоим образом не допускают насекомых в помещение: опылившись, орхидеи тотчас увянут.

В качестве приманивающего средства, помимо цвета, растения используют ароматические вещества, эффективность которых особенно высока в тех случаях, когда в густой растительности визуально трудно обнаружить цветок.

Тройная система эффективной сигнализации имеется у обыкновенного аронника — травянистого растения, обильно цветущего весной во влажных лесах речных пойм. В период цветения растение выпускает большое, напоминающее нос ладьи покрывало соцветия. С внешней стороны беловатое, иногда красноватое или зеленоватое, внутри оно фиолетово-коричневое. Если наклониться к цветку, то можно почувствовать навязчивый и неприятный запах гниения, ставящий в известность всех мух в округе о том, что здесь им есть чем поживиться. Более того, цветок аронника, как и многие виды его тропических сородичей, приманивает насекомых, излучая тепловые лучи, к которым мошкара и мелкие мухи в прохладные апрельские дни довольно чувствительны. Расходуя на интенсивное дыхание накопленный в организме крахмал, початочек действует подобно отопительному элементу, нагревая нижнюю сосудообразную часть обвертки соцветия до температуры 40°, что создает резкий контраст по сравнению с наружной температурой. Растение как бы предлагает насекомым теплое пристанище внутри соцветия, которое те охотно посещают, тем более что им там приготовили и хороший стол. Но попавшее туда насекомое прежде используется растением в своих корыстных интересах. Через кольцо тончайших волосков, которые могут сгибаться лишь в одну сторону, мелкие мушки проникают в цветок и становятся на время пленниками растения. Насекомое должно вначале опылить женские цветки, расположенные в самом низу «сосуда», той пыльцой, которую оно принесло с собой, затем над ним раскрываются мужские цветки, которые осыплют его свежей пыльцой, и только тогда волоски на входе свернутся в пружину, освобождая насекомому путь наружу. Как видим, помимо тройной системы сигнализации, аронник реализует еще один элемент техники связи: обработку поступающей информации. Функционирование механизма опыления у аронника напоминает нам управление производственным процессом в промышленности с помощью ЭВМ.

6 стр., 2552 слов

Подготовка почвы для разведения комнатных растений

... механического состава. Почва служит для растения не только источником питательных веществ, но и субстратом. Понятие «субстрат» происходит от латинского substratum - основа, грунт, питательная среда. Субстрат ... водопроницаемостью, теплопроводностью, он должен быть также оптимально влагоемким, чтобы растворенные в воде вещества использовались не сразу, а постепенно. Плодородие почвы в природе в ...

Растения-математики

Растения — подлинные рационалисты. И именно это их свойство объясняет, почему представители разных семейств растений неизменно «применяют» одни и те же оказавшиеся наиболее удачными архитектурные принципы. Особенно широко распространен в мире растений принцип наиболее рационального использования пространства, в первую очередь при закладке тех органов растения, которые затем развиваются в огромном количестве. При этом безразлично, идет ли речь о листьях на стебле, о чешуйках на шишках хвойных деревьев, об изобилии цветков, а затем семян в крупных корзинках подсолнечника или о пучках колючек на бородавчатых выростах у кактусов. Все они в процессе своего развития размещаются в пространстве таким образом, чтобы занять в нем минимальный объем. Постоянно повторяющаяся в природе и все же каждый раз по-новому воспринимаемая картина целесообразного размещения ее элементов в пространстве не могла не обратить на себя внимание человека.

Математически точно, геометрически правильно» — это лучшие оценки, которые можно дать той или иной технической конструкции. Выше уже приводились примеры того, с какой экономностью растения используют пространство. Не менее удивительна прецизионная точность геометрических форм растений.

Велико многообразие форм, громадных и микроскопически малых, которые выработал растительный мир за тысячелетия своего эволюционного развития. И все они построены из одного и того же материала — из живых клеток.

17 стр., 8421 слов

Загрязняющие вещества атмосферного воздуха и их влияние на морфофизиологические ...

... то сейчас разница между загрязнением и очисткой несопоставимо выше. Растения не обладают сформировавшейся в ходе ... человеком ископаемого топлива. Атмосфера обладает мощной способностью к самоочищению от загрязняющих веществ. Движение воздуха ... воды претерпевают изменения, различные химические превращения вплоть до образования весьма опасных соединений. Степень загрязнения атмосферного воздуха ...

Молодые клетки разнообразных растительных тканей похожи друг на друга как две капли воды. Лишь позднее, в процессе роста, клетки дифференцируются, все более и более изменяясь, пока их строение не станет полностью соответствовать той функции, которую им предстоит выполнять. Одновременно различные клетки оптимально взаимодействуют друг с другом. Разделение труда и координация усилий — это два понятия, которые в представлениях людей, к сожалению, часто исключают друг друга. Напротив, в мире растений оба принципа наилучшим образом реализованы на пути приспособления к окружающему миру.

Можно предполагать, что именно ограниченность в выборе конструкционного материала, по-видимому, вынуждает растение использовать его наиболее рационально, приводя в каждом конкретном случае к оптимальному решению благодаря постоянной обратной связи с окружающей средой. В этом допущении, быть может, скрыта одна из возможностей, которой человек должен воспользоваться уже в ближайшем будущем. По мере того как будут истощаться запасы природных материалов, мы будем вынуждены укрощать присущий нам дух расточительства. Нам следует серьезнее задумываться над тем, как можно, довольствуясь немногими средствами, решать многие стоящие перед нами задачи.

Растения- путешественники

Много путешествуют по воде и растения: по ручьям, рекам, морям, океанам. Но сколь совершенные меры безопасности предусмотрела для них природа! Их «суда» практически непотопляемы, выдерживают серьезные столкновения с плывущими по воде предметами, умеют противостоять силе прибоя и вовремя уклониться от встречи с торчащими из воды утесами.

В принципе растения «освоили» ту же технику плавания, какую освоил и человек. Им знаком и челн, то есть полый и открытый сверху поплавок; и понтоны, тот же полый поплавок, только полностью закрытый и плот, держащийся на воде не за счет связанных вместе понтонов, а исключительно благодаря свойствам материала, из которого он выполнен.

Весьма интенсивное «судоходство» поддерживают и растения внутренних водоемов, и среди них самые обыкновенные кувшинки. Их плавающие семена, доверившись волнам и течениям, гонимые ими, в конце концов пристают к новым берегам.

Но, расселяясь при помощи воды, сами растения остаются при этом пассивными. Они лишь используют морские течения и, не тратя собственной энергии, переносятся ими на большие расстояния. Но есть в мире растений и настоящие пловцы, которые передвигаются в воде достаточно активно.

Активно плавают в воде бактерии, одноклеточные Жгутиковые, половые клетки многих водорослей, грибов, мхов, папоротников. Большинство из них перемещается посредством довольно сложных гребных движений, производимых жгутиками.

Одуванчик посылает своих «парашютистов», только дождавшись хорошего ветра. Его крохотные летающие плодики -парашютики необычайно легки и приспособлены для переноса их ветром. Однако, созрев, они не отправляются тотчас же в полет с первым веянием ветерка. Они, подобно многим другим воздухоплавателям из мира растений, терпеливо ожидают того момента, когда потянет хороший ветер. И лишь тогда, когда будет достаточно сухо, когда станет в меру тепло и когда, наконец, воздух вокруг придет в движение и это будет не мгновенное легкое дуновение, а ровно и энергично дующий ветер, только тогда плоды-парашютисты рискнут покинуть отчий дом и отправиться в далекое воздушное путешествие. Для того чтобы не пропустить этот благоприятный момент, само растение регулярно «оценивает» состояние погоды: относительную влажность воздуха, температуру и силу ветра. Точно так же многие деревья, прибегающие к услугам воздушных потоков как к транспортному средству, выбрасывают десант из пыльцы или семян преимущественно в первые, как правило, ветреные послеполуденные часы. В этих случаях дальность полета бывает наибольшей.

20 стр., 9792 слов

Оценка риска здоровью человека при воздействии химических веществ ...

... концентрации этого элемента в сельскохозяйственных продуктах питания и питьевой воде. Это может вызвать серьезные заболевания людей. Загрязнителями воды являются и органические отходы. ... строгий контроль выбросов вредных веществ. Нужно заменять токсичные ... человека, животных и растений (рис.2). Термин "опасные отходы" применяют к любого рода отходам, ... В крупных городах и промышленных центрах воздух, ...

Но, как известно, полеты на парашютах не исчерпывают всех возможностей аэронавигации. Подняться в воздух позволяют также воздушные шары и крылатые летательные аппараты, использующие подъемную силу крыла либо винта. Человек освоил все эти виды передвижения в воздушном пространстве. Быть может, в этой области он опередил растения? Отнюдь нет, ибо растениям уже давно знакомы перечисленные выше способы. К тому же растения успешно применяют и некоторые другие, весьма необычные способы полета, до сих пор еще не освоенные человеком.

В тропиках высоко в кронах дерева-опоры обитает один из видов лиан Zanonia macrocarpa.. Крылатые семена лианы дают нам один из интереснейших примеров растительной аэронавтики. Летательный аппарат семян тропической лианы представляет собой планер типа «летающее крыло», то есть планер без хвостового оперения. В мае 1910 года новый летательный аппарат успешно поднялся в воздух. Его прототипом было летучее семя тропической лианы.

Познакомимся еще с одним летательным аппаратом типа «несущий винт». Это плод ясеня обыкновенного (Fraxinus excelsior).

Его «лопасть» односторонне не утяжелена, как это наблюдается у крылатки клена, а, подобно лопасти пропеллера самолета, несколько изогнута. Во-первых, самое широкое место у плода крылатки ясеня лежит намного дальше от центра вращения по сравнению с инженерной конструкцией. Во-вторых, «лопасть» крылатки, исключая первую треть ее длины (отсчет и здесь ведется от центра вращения), в пропорции значительно тоньше лопасти воздушного винта. Большая ширина лопасти там, где скорость ее вращения выше (то есть ближе к противоположному от точки вращения концу), обеспечивает увеличение площади поверхности, на которую воздействует встречный поток воздуха. В целом же более тонкая лопасть означает ощутимую экономию веса — факт, крайне важный при создании летательных аппаратов. Почему же в таком случае наши инженеры не воспользуются этими достоинствами летательной техники растений? Разумеется, они могут это сделать, но лишь принеся и жертву необходимую устойчивость конструкции, которая столь важна в авиации и которая не требуется растению.

Еще о двух типах летательных аппаратов можно просто упомянуть, не вдаваясь в детали. Это, во-первых, — дископланы, своего рода «летающие тарелки» в растительном мире. Они представляют собой исключительно легкие и хрупкие образования, по форме напоминающие диски, в центре которых находятся семена или плоды. Во-вторых, «воланопланы», названные так за их внешнее сходство с мячом для игры в бадминтон (заметим, что последние не столь уж и хорошие летуны).

Волан в данном случае играет скорее роль парашюта, задача которого уменьшить скорость снижения семени и не допустить его повреждения при ударе о землю. Короче говоря, нет ни одного сколько-нибудь достойного внимания принципа воздушного полета, который не наблюдался бы в мире растений.

Соцветия лопуха приспособлены к тому, чтобы разноситься животными с шерстным покровом. Они легко, целиком, ничуть не повреждаясь, отделяются от растения, как только шипики плодиков зацепятся за шерсть пробегающего мимо животного. Позднее они стряхиваются на землю и распадаются на отдельные семянки. Нередко происходит так, что отрывается не целиком вся корзинка, а только часть ее. В результате плодики лопуха, находящиеся внутри корзинки, освобождаются и успевают во время бега животного рассеяться по огромной площади.

Особый интерес представляет плод череды из рода Bidens, обладающий микроскопическими, размером в несколько миллиметров, «острожками». Размеры остей, усеянных крючочков, не превышают 3 миллиметров. Примеры с застежкой-репейником или острогой свидетельствуют о том, что при разработке простых механических конструкций человеку трудно найти новые формы, которые не встречались бы в мире растений.

Растения-химики

Каждое мгновенье в живом организме протекают химические реакции. Подобно людям, растения также пользуются «услугами» целого ряда высокоактивных посредников. Но в отличие от применяемых в технике большинство растительных катализаторов узко специализировано. К тому же подобная избирательность сопровождается исключительной эффективностью каталитических веществ. Если технический катализатор (платина) уменьшает время разложения перекиси водорода в 1000 раз, то каталаза, вещество, вырабатываемое растениями, ускоряет этот процесс еще в 1000 раз. Иными словами, продолжительность реакции сокращается в 1 000 000 раз!

Многие любители комнатных растений знают, что растущие вместе разные экземпляры одного вида растений открывают свои бутоны в один и тот же день и что позднее сформировавшиеся бутоны одного цветка в своем росте догоняют более развитые бутоны другого, и поэтому те и другие раскрываются обычно одновременно. Такое развитие событий полезно растениям, поскольку синхронное распускание цветков обеспечивает их одновременное опыление насекомыми.

В сухих степях и полупустынях борьба растений за воду — вопрос жизни и смерти. Свободного пространства в таких местообитаниях достаточно для развития большого числа растений, однако влаги в почве хватает лишь немногим. Поэтому в условиях засушливого климата растительные организмы постоянно ведут между собой настоящую войну. Своему соседу, который мог бы пользоваться водой с участка земли, расположенного рядом, они «осложняют жизнь», тормозят его рост, замедляют или вовсе прекращают прорастание его семян в непосредственной близости от себя.

Опытным путем удалось обнаружить, что поспевающие яблоки выделяют в атмосферу этилен, который ускоряет созревание плодов. В его присутствии, например, яблоки поздних сортов дозревают много быстрее. А вот рост бобовых в «яблочной атмосфере» замедляется, хотя сами растения становятся более крепкими. В настоящее время известен целый ряд растений-конкурентов, оказывающих влияние друг на друга. Определенную роль в этих процессах наряду с этиленом играют и многие другие биоактивные соединения. К сожалению, пока изучена лишь малая часть их.

Растения -анализаторы

Приспособиться к окружающей среде — это, прежде всего, означает уметь ориентироваться в ней. Выявить наличие токсичных веществ в воздухе, который мы вдыхаем, или в воде, которую мы пьем; определить оптимальную освещенность рабочего места или правильную выдержку при фотосъемках; обнаружить следы присутствия какого-либо вещества; измерить содержание влаги в ценных породах древесины, предназначенной для изготовления музыкальных инструментов, — вот лишь немногие из практически бесконечного перечня тех задач, которые мы не в состоянии решить, не обращаясь к помощи созданных нами высокочувствительных приборов.

Растение овладело техникой измерения разнообразных природных характеристик не хуже, если не лучше, человека, который с той же целью поставил себе на службу большое число самых чувствительных прецизионных приборов.

Хорошо известно о том, сколь чувствительны к содержанию химических веществ растущие кончики корней растений и некоторые одноклеточные организмы. Например, половые клетки папоротника реагируют на присутствие 0,000000028 миллиграмма яблочной кислоты. В литературе упоминается о способности некоторых бактерий обнаруживать ничтожнейшие следы кислорода, на которые не реагирует промышленная аппаратура. Химическую природу имеет, по-видимому, механизм распространения раздражений внутри растения, для его функционирования достаточны уже самые ничтожные количества химически активных веществ. Так, оксикислота, получаемая из выжимки листа мимозы, если ее разбавить в пропорции 1:100 000 000, уже вызывает заметную реакцию растения. Раствор такой концентрации соответствует содержанию 25 капель оксикислоты в объеме воды, которой заполнен бассейн размером 5 метров х 20 метров и глубиной 1,5 метра. Технические анализаторы химического состава окажутся здесь просто бессильными.

Растения настолько точно измеряют время, что изготовители всемирно прославленных швейцарских часов могли бы с полным правом отнести их к разряду «хронометров», отличающихся, как известно, исключительной точностью хода (об этой способности растений мы расскажем несколько далее).

Для вьющихся растений чрезвычайно важно уметь определять характер поверхности опоры. Когда их усики, совершающие в поисках подходящей подпорки круговые движения, касаются какого-либо предмета, они в состоянии тотчас распознать его природу и столь же быстро соответствующим образом отреагировать на него. Тактильная чувствительность специализированных цепляющихся органов растения во много раз превосходит остроту осязания у человека и оказывается намного выше чувствительности аптекарских весов. Микроаналитические весы позволяют взвешивать вещества с точностью до одной сотой миллиграмма. Усик же растения реагирует на раздражение, которое вызывает, например, небольшой шерстяной волосок весом всего 0,00025 миллиграмма, спустя уже несколько секунд после прикосновения и изгибается при этом столь энергично, что его движение можно наблюдать даже невооруженным глазом. В отличие от технических приборов даже очень незначительное раздражение дает возможность растению различать фактуру материала. Падающая капля воды или стеклянная палочка с абсолютно гладкой поверхностью, за которую нельзя уцепиться, не вызывают у растения никакой реакции.

Столь же удивительна способность растения реагировать на самое ничтожное количество света. Кончики побегов мышиного горошка (Vicia villosa) реагируют на свет электрической лампочки мощностью 25 ватт с расстояния 30 километров, а лампочки мощностью 100 ватт — с расстояния 70 километров.

Растения-утилизаторы

Буквально все произведенное нами вчера — сегодня отходы, а то, что мы вырабатываем сегодня, завтра пойдет на свалку. Свалки буквально «пожирают» ландшафт, отравляют грунтовые воды, превращаются в очаги новых эпидемий. Гораздо опаснее тех отбросов, какие свозятся на свалки, другие, вездесущие, но трудноустранимые: пыль, отработанные газы, сточные воды. Это уже не угроза будущему, а бич настоящего. Опасные отходы производства превращают реки, озера, моря в биологически мертвую среду, заражают пахотные угодья и пастбища, отравляют атмосферу.

По сравнению с людьми растения ежегодно, на протяжении вот уже многих миллионов лет, создают во много раз большее количество отходов. Но их уничтожение происходит незаметно, без применения дорогостоящих вспомогательных технических средств и не загрязняет ни почву, ни воды, ни атмосферу. Отходы ликвидируются бесшумно, неприятные запахи не досаждают людям. В растительном мире оба процесса — образование отходов и их уничтожение — хорошо уравновешены. Равновесная же система в состоянии функционировать безгранично долго. Человек практически никогда не отдавал себе отчета в том, насколько рационален процесс становления и отмирания в природе. Если бы человек более прилежно учился у природы, он вряд ли создал бы столь несбалансированный механизм промышленного производства.

Отходы в том смысле, в каком они знакомы нам, природе неизвестны. В мире растений практически нет резко выраженной границы между процессами становления и отмирания: созидание и разрушение постепенно и неприметно переходят друг в друга. Новообразование органов и распад не нужных более листьев, стеблей и цветков происходят в природе одновременно. Все синтезируемые в природе вещества легко и быстро расщепляются, а продукты распада утилизируются.

У вечнозеленых тропических деревьев и кустарником старые листья опадают после того, как появятся и достаточно окрепнут новые листья, но это не мешает последним хорошо развиваться: черешки стареющих листьев сильно прогибаются, опуская сам лист вниз, что уменьшает затенение молодой листвы. Интересно и другое. Прежде чем опасть, листья прямо на дереве желтеют и выцветают. Это явление характерно также для всех лиственных пород деревьев и кустарников умеренного климата. Выцветание листвы — внешний признак ее отмирания. Перед листопадом наблюдается отток из листьев я ткани стебля наиболее дефицитных соединений, прежде всего соединений, содержащих азот. Иными словами, растение перед тем, как сбросить ненужные листья — а это своего рода «отходы», — забирает из них наиболее пригодные для повторного использования строительные материалы.

Растения — гениальный потребитель отходов вообще, а не только тех отходов, которые тесно связаны с производством ими органического вещества. Исключительно быстро и без остатка бактерии перерабатывают животные отходы: экскременты, падаль. Так, полностью утилизируют птичий помет и многократно его используют поселяющиеся в кронах деревьев растения-эпифиты. Как мы видим, отходы — это ценный, а в отдельных случаях даже жизненно необходимый продукт.

ЗАКЛЮЧЕНИЕ

За 40 тысяч лет своей истории человек создал технику в том виде, в каком она существует сегодня. В наше время объем технических знаний удваивается каждые пять лет. За 40 тысяч лет человек сотворил многое, что существенно облегчает его жизнь. Но одновременно им содеяно немало и того, что эту жизнь затрудняет.

В нашей работе указано, что и у растений возникают всякого рода проблемы, которые они решают с помощью разнообразных технических средств. Но применяемая ими «техника» не порождает шумов, не загрязняет окружающую среду и не производит отходов, которые нельзя было бы использовать вновь. Она не отравляет атмосферы и не порождает стрессовых ситуаций, устранение которых требует вмешательства психиатров. Все недостатки созданных человеком технических систем (в сравнении с «техникой», применяемой растениями) в принципе являются следствием несовершенства конструктивного мышления человека. Если оценивать конечный результат, то становится очевидным, что немыслящая, недумающая природа действует намного рациональнее. Поэтому нашей ближайшей «конструктивной целью» должно стать осознанное приспособление найденных технических решений к окружающей природной среде.

Выводы:

1. Техника «должна найти в себе силы» сойти с позиции «диктаторского» господства принципов ее конструирования, абсолютно нейтрального по отношению к окружающей среде, и перейти на позиции понимания своей глубокой зависимости от условий реального мира.

2. Нам следует по возможности скорее и основательнее ликвидировать последствия вредного влияния техники на окружающую среду и создать все необходимые предпосылки для того, чтобы не допустить подобные воздействия в будущем.

3. Уже недостаточно просто определить размеры повреждений, наносимых природе в каждом конкретном случае. Важно предотвратить эти повреждения или, в крайнем случае, уменьшить их масштабы.

4. Природные возможности человека приспосабливаться к быстрым темпам развития техники уже давным-давно исчерпаны. Дальнейший технический прогресс, в традиционном смысле этого слова грозит уже самому его существованию.

Автор: Шпинева Юлия, ученица 9 класса МОБУ»СОШ №7 г.Соль-Илецка» , Оренбургская область