Техническое обслуживание синхронных двигателей

Курсовая работа
Содержание скрыть

курсовая работа Обслуживание и ремонт электрических двигателей

Анализ основных типов и классификации электрических машин. Особенность испытания на стенде завода-изготовителя и на месте установки. Проведение ремонта синхронных двигателей. Характеристика объема работ по техническому обслуживанию и починке устройств.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.

Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.

Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 05.02.2017
Размер файла 311,7 K

Подобные документы

Общие понятия и определение электрических машин. Основные типы и классификация электрических машин. Общая характеристика синхронного электрического двигателя и его назначение. Особенности испытаний синхронных двигателей. Ремонт синхронных двигателей.

дипломная работа [602,2 K], добавлен 03.12.2008

Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

курсовая работа [1,6 M], добавлен 25.02.2010

Конструкция, принцип работы силовых масляных трансформаторов, синхронных турбогенераторов, синхронных явнополюсных двигателей и асинхронных двигателей. Расчет установившейся работы в узле нагрузки и при пониженном напряжении, оценка работы оборудования.

курсовая работа [3,0 M], добавлен 17.11.2009

Структура подразделений и служб электроснабжения АО «ВК РЭК» — поставщика электроэнергии на рынке Восточного Казахстана. Организация и технология техобслуживания и ремонта генераторов и двигателей, силовых трансформаторов, электрических и кабельных линий.

отчет по практике [963,5 K], добавлен 24.01.2013

Разборка машин средней мощности. Ремонт статорных обмоток машин переменного тока. Обмотки многоскоростных асинхронных двигателей с короткозамкнутым ротором. Ремонт якорных и роторных обмоток. Ремонт обмоток возбуждения. Сушка и пропитка обмоток.

учебное пособие [3,4 M], добавлен 30.03.2012

Общие сведения об электрических машинах. Неисправности, разборка, ремонт токособирательной системы электрических машин. Коллекторы. Контактные кольца. Щеткодержатели. Ремонт сердечников, валов и вентиляторов электрических машин. Сердечники. Вентиляторы.

реферат [104,0 K], добавлен 10.11.2008

Выбор мощности высоковольтных синхронных двигателей компрессоров по заданной производительности. Методика расчета электрических нагрузок. Выбор автоматических воздушных выключателей для защиты асинхронных двигателей и распределительного пункта.

курсовая работа [991,2 K], добавлен 02.10.2008

Виды и характеристика испытаний электрических машин и трансформаторов. Регулировка контакторов и магнитных пускателей, реле и командоаппаратов. Испытания трансформаторов после капитального ремонта. Выдача заключения о пригодности к эксплуатации.

реферат [29,3 K], добавлен 24.12.2013

Методы профилактики и модернизации электроустановок. Техническое обслуживание (осмотры) электрических сетей. Назначение заземляющих устройств. Расчет объема работ по обслуживанию электрооборудования. Выбор формы и структуры электротехнических служб.

курсовая работа [427,1 K], добавлен 27.12.2010

Назначение, виды и монтаж устройств защитного заземления. Ремонт обмоток электрических машин, бандажирование и балансировка роторов и якорей. Сборка и испытание электрических машин. Методы оценки увлажненности и сушки изоляции обмоток трансформатора.

контрольная работа [623,8 K], добавлен 17.03.2015

Источник

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/sinhronnyiy-elektrodvigatel/

Обслуживание и ремонт электрических двигателей

Анализ основных типов и классификации электрических машин. Особенность испытания на стенде завода-изготовителя и на месте установки. Проведение ремонта синхронных двигателей. Характеристика объема работ по техническому обслуживанию и починке устройств.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 05.02.2017
Размер файла 311,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Обслуживание и ремонт электрических двигателей

ГЛАВА 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ МАШИН

1.1 Основные типы и классификация электрических машин

ГЛАВА 2. ОБЩАЯ ХАРАКТЕРИСТИКА СИНХРОННОГО ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ И ЕГО НАЗНАЧЕНИЕ

ГЛАВА 3. ОСОБЕННОСТИ ИСПЫТАНИЙ СИНХРОННЫХ ДВИГАТЕЛЕЙ

3.1 Испытания на стенде завода-изготовителя и на месте установки

3.2 Ремонт синхронных двигателей

ГЛАВА 4. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ ЭЛЕКТРИЧЕСКИХ МАШИН

4.1 Объем работ по техническому обслуживанию и ремонту

4.2 Техника безопасности при ремонте электрических машин

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/sinhronnyiy-elektrodvigatel/

Прогресс в развитии электромашиностроения зависит от успехов в области теории электрических машин. Глубокое понимание процессов электромеханического преобразования энергии необходимо не только инженерам-электромеханикам, создающим и эксплуатирующим электрические машины, но и многим специалистам, деятельность которых связана с электромеханикой.

Электрические машины применяются во всех отраслях промышленности, на транспорте, в сельском хозяйстве и быту. Почти вся электрическая энергия вырабатывается электрическими генераторами, а две трети ее преобразуется электрическими двигателями в механическую энергию. От правильного выбора и использования электрических машин во многом зависит технический уровень изделий многих отраслей промышленности.

Электротехническая промышленность выпускает в год миллионы электрических машин для всех отраслей народного хозяйства. И конечно же от специалистов в области электромеханики требуются глубокие знания обслуживания и ремонта электрических машин, а также их правильной эксплуатации. Без электрических машин не может развиваться ни одна комплексная научная программа. Электрические машины работают в космосе и глубоко под землей, в океане и активной зоне атомных реакторов, в животноводческих помещениях и медицинских кабинетах. Без преувеличения можно сказать, что электромеханика определяет технический прогресс в большинстве основных отраслей промышленности.

Особая роль отводится электрическим машинам в космической, авиационной и морской технике. Электрические машины, работающие на передвижных установках, выпускаются в больших количествах. Эти машины должны иметь минимальные габариты при высоких энергетических показателях и высокую надежность. Отдельную область электромеханики составляют электрические машины систем автоматического управления, где электрические машины используются в качестве датчиков скорости, положения, угла и являются основными элементами сложнейших навигационных систем.

Невозможно для каждого заказчика выпускать отдельную машину, поэтому электрические машины выпускаются сериями. В нашей стране самой массовой серией электрических машин является общепромышленная серия асинхронных машин 4А. Серия включает машины мощностью от 0,06 до 400 кВт и выполнена на 17 стандартных высотах оси вращения. На каждую из высот вращения выпускаются двигатели двух мощностей, отличающиеся по длине. На базе единой серии выпускаются различные модификации двигателей, которые обеспечивают технические требования большинства потребителей. Большими сериями выпускаются синхронные машины, машины постоянного тока, микромашины и трансформаторы. Серийное изготовление машин позволяет модифицировать отдельные узлы и детали, применять поточные автоматические линии и обеспечивать необходимый выпуск электрических машин при минимальных затратах.

В настоящее время перед электромеханиками стоят трудные и интересные проблемы, которые требуют глубокого знания теории, проектирования и технологии изготовления электрических машин.

Электромонтер, осуществляющий деятельность в сфере электромеханике должен знать назначение и технические характеристики основных элементов и устройств систем электрических машин, а также электрооборудования, кабельные и электроизоляционные изделия, электрические аппараты, трансформаторы, полупроводниковые приборы, преобразователи и т.д., чтобы в свою очередь выполнять правильную эксплуатацию, обслуживание и своевременный ремонт, а также соблюдать электробезопасность.

В дипломной работе приведены технические данные по электрическим машинам как общего, так и специального назначения, широко применяемым в современном электроприводе. Рассмотрены вопросы технического обслуживания и техники безопасности при эксплуатации электрических машин.

В дипломной работе рассматривается теория одного из вида электрических машин — синхронный двигатель, его характеристики, устройство, переходные и установившиеся режимы работы. Теория электрических машин излагается на базе дифференциальных уравнений. Максимально используются современные достижения общей теории электрических машин; развивается классическая теория комплексных уравнений, векторных диаграмм и схем замещения.

Целью дипломной работы является изучение основных организационных и технических положений по обслуживанию и ремонту электрических двигателей.

В процессе изучения ставятся следующие задачи:

1. Дать общее представление об электрических машинах, их классификации;

2. Рассмотреть синхронный двигатель и его назначение;

3. Рассмотреть особенности испытаний синхронных машин;

4. Изучить технические условия ремонта и обслуживания электрических машин (синхронного двигателя);

5. Определить меры по технике безопасности при ремонте электрических машин.

При подготовке дипломной работы использовалась литература следующих авторов Копылов И.П. «Электрические машины», Клокова Б. К. «Справочник по электрическим машинам», Москаленко В.В. «Справочник электромонтера» и т.д.

ГЛАВА 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

1.1 Основные типы и классификация электрических машин

Электрические машины —

индуктивные, емкостные и индуктивно-емкостные

Для того чтобы электрическая машина работала, в ней должно быть создано вращающееся магнитное поле. Принцип образования вращающегося поля у всех машин один и тот же.

Простейшей электрической машиной является идеальная обобщенная электрическая машина (рис. 1), т. е. машина симметричная, ненасыщенная, имеющая гладкий воздушный зазор. На статоре и роторе такой машины расположены по две обмотки: ws б и ws в на статоре, wr б и wr в на роторе, сдвинутые в пространстве относительно друг друга на электрический угол, равный 90°. Если к обмоткам статора или ротора такой машины подвести токи, сдвинутые во времени на электрический угол 90°, то в воздушном зазоре машины будет вращающееся круговое поле. При симметричном синусоидальном напряжении поле будет синусоидальное, так как идеальная машина не вносит в зазор пространственных гармоник. Все реальные электрические машины в той или иной степени отличаются от идеальной машины, так как в воздушном зазоре реальной машины нельзя получить синусоидальное поле.

Рис. 1. Обобщенная электрическая машина

Для того чтобы МДС, необходимая для создания магнитного поля, не была чрезмерно велика, статор и ротор электрической машины выполняют из ферромагнитного материала, магнитная проводимость которого во много раз больше, чем проводимость неферромагнитной среды (µст >>µ0 ).

При этом магнитные силовые линии поля замыкаются по магнитопроводу машины и практически не выходят за пределы ее активных частей. Участки магнитопровода, в которых поток переменный, для уменьшения потерь на вихревые токи и гистерезис выполняют шихтованными из тонких листов электротехнической стали. Участки магнитопровода машин, в которых поток постоянный (например, полюсы и станины машин постоянного тока), могут быть выполнены массивными из конструкционной стали. [7, с. 6]

статора и ротора.

одномерными.

двухмерные

Рис. 2. Основные конструктивные исполнения электрических машин: а — асинхронная; б — синхронная; в — коллекторная; г — индукторная

торцевыми.

Электрические машины помимо вращательного могут иметь и возвратно-поступательное движение (линейные машины).

В таких машинах статор и ротор разомкнуты и магнитное поле отражается от краев, что приводит к искажению поля в воздушном зазоре.

Краевой эффект в линейных электрических машинах ухудшает их энергетические показатели. Низкие энергетические показатели ограничивают применение электрических машин с возвратно-поступательным движением.

Из обычной машины с цилиндрическим статором и ротором получаются машины с сегментным статором и линейные. Если увеличить диаметр ротора сегментной машины до бесконечности, получим линейный двигатель.

Линейные двигатели постоянного и переменного тока находят применение в промышленности для получения линейных перемещений.

Рис. 3. Модификация конструктивного исполнения электрических машин:

параметрическими или индукторными

переменного и постоянного тока.

Рис. 4. Индукторная машина с двумя роторами

синхронных

Ротор синхронной машины может быть явнополюсным, т. е. с явно выраженными полюсами, имеющими ферромагнитные сердечники с насаженными на них многовит-ковыми катушками возбуждения. Роторы синхронных машин, рассчитанных на частоту вращения 1500 и 3000 об/мин и выше, обычно выполняются неявнополюсными. При этом обмотка возбуждения укладывается в профрезерованные в роторе пазы. Обмотка переменного тока синхронных машин, как правило, распределенная, т. е. расположена равномерно по окружности внутреннего диаметра статора в пазах его магнитопровода. [7, с. 7]

асинхронных

На роторах асинхронных машин располагается либо фазная, т. е. имеющая обычно столько же фаз, сколько и обмотка статора, изолированная от корпуса обмотка, либо короткозамкнутая. Короткозамкнутая обмотка ротора состоит из расположенных в пазах ротора замкнутых между собой по обоим торцам ротора неизолированных стержней из проводникового материала. Она может быть также выполнена заливкой пазов алюминием. В зависимости от типа обмотки ротора различают асинхронные двигатели с фазными роторами или асинхронные двигатели с короткозамкнутыми роторами. [7, с. 8]

Нормальное исполнение асинхронных машин — с ротором, расположенным внутри статора. Однако для некоторых приводов, например привода транспортера, оказывается выгоднее расположить вращающийся ротор снаружи статора. Такие машины называют обращенными или машинами с внешним ротором. Они выполняются обычно с короткозамкнутыми роторами.

коллекторных

постоянного тока —

Конструкция машин постоянного тока более сложная, стоимость выше и эксплуатация более дорогая, чем асинхронных, поэтому двигатели постоянного тока применяются в приводах, требующих широкого и плавного регулирования частоты вращения, или в автономных установках при питании двигателей от аккумуляторных батарей. [7, с. 8]

Подавляющее число машин постоянного тока выполняется с коллектором — механическим преобразователем частоты. Но существует несколько типов и бесколлекторных машин, например униполярные генераторы (рис. 5), которые используются для получения больших токов (до 100 кА) при низких напряжениях. В таких машинах коллектор отсутствует, но они могут работать только при наличии скользящего контакта, который состоит из щеток 1 и колец 2. Постоянный магнитный поток, созданный токами обмотки возбуждения 5, замыкается по станине 3, массивному ротору 4 и двум зазорам. Постоянные токи наводятся в массивном роторе и снимаются щетками. Чтобы уменьшить электрические потери в роторе, в нем делают пазы, в которые укладывают медные стержни 6. Стержни, приваренные к контактным кольцам, образуют на роторе короткозамкнутую обмотку.

Рис. 5. Униполярная электрическая машина

В последние годы получили распространение также бесколлекторные машины постоянного тока с вентильным управлением, в которых механический преобразователь частоты заменен преобразователем частоты на полупроводниковых элементах.

Несмотря на большое число различных типов электрических машин и независимо от их конструктивного исполнения, рода и числа фаз питающего тока и способов создания магнитных полей преобразование энергии в машинах происходит только при следующем условии: во всех электрических машинах в установившихся режимах поля статора и ротора неподвижны относительно друг друга. Поле ротора, которое создается токами, протекающими в обмотке ротора, вращается относительно ротора. При этом механическая частота вращения ротора и частота вращения поля относительно ротора в сумме равны частоте вращения поля статора, поэтому частоты токов в статоре и роторе жестко связаны соотношением f 2 = f 1 s, (1)

где f 1, f 2 — частоты тока и напряжения статора и ротора; s — относительная частота вращения ротора или скольжение, определяемое частотой вращения поля статора n 1 и частотой вращения ротора машины n 2 :

s = (nl ± n 2 ) / n 1

В синхронных машинах обмотка возбуждения ротора питается постоянным током (f 2 = 0), и, следовательно, из (1) s = 0, откуда по (2) n= n 1 т. е. ротор синхронной машины вращается синхронно с полем, созданным токами обмотки статора.

Жесткая связь частоты тока и частоты вращения определила область применения синхронных машин. Синхронные генераторы являются практически единственными мощными генераторами электрической энергии на электростанциях. Синхронные двигатели с учетом трудностей их пуска применяются как приводы промышленных установок, длительно работающих при постоянной частоте вращения и не требующих частых пусков, например как приводные двигатели воздуходувок, компрессоров и т. п. [7, с. 9]

В асинхронных машинах ток в обмотке ротора обусловлен ЭДС, наведенной в проводниках обмотки магнитным полем статора.

Наведение ЭДС происходит только при пересечении проводниками магнитных силовых линий поля, что возможно лишь при неравенстве частот вращения ротора и поля статора (n 2 ? n 1 ).

Частота тока в роторе равна f 2 = f 1 s, что обеспечивает взаимную неподвижность поля токов ротора и поля статора, а частота вращения ротора при этом равна n 2 = n 1 (1 — s).

При скольжении s = l ротор неподвижен (f 2 = f 1 ), преобразования механической энергии не происходит и имеет место трансформаторный режим работы машины.

При питании обмотки ротора постоянным током машина переходит в синхронный режим работы. При питании ротора переменным током асинхронный двигатель может вращаться с частотой большей, чем частота поля статора. Такие режимы используются редко из-за сложности пуска машины: необходим разгонный двигатель либо преобразователь частоты. Примером двигателя этого типа являются двигатели Шраге — Рихтера, в которых для преобразования частоты тока ротора используется коллектор, соединенный с добавочной обмоткой ротора. Регулирование частоты вращения двигателя производится изменением добавочной ЭДС, вводимой в обмотку ротора, путем изменения положения щеток на коллекторе .

В машинах постоянного тока поле возбуждения создается постоянным током, а поле якоря — переменным. Преобразование постоянного тока сети в многофазный переменный ток якоря происходит с помощью механического преобразователя — коллектора. Частота переменного тока якоря определяется частотой его вращения, и магнитное поле, создаваемое током якоря, неподвижно относительно поля возбуждения машины. [7, с. 9]

Бесколлекторные (вентильные) машины постоянного тока, как правило, обращенные, т. е. их обмотки возбуждения, питаемые постоянным током, расположены на вращающемся роторе, а якорные обмотки — на неподвижном статоре. Частота питания якорных обмоток задается статическим преобразователем частоты. Условие взаимной неподвижности полей статора и ротора приводит к возможности регулирования частоты вращения вала двигателя изменением частоты питания его якорных обмоток. С этой точки зрения вентильные машины постоянного тока могут рассматриваться как синхронные, обмотки переменного тока которых питаются от преобразователя частоты.

В однофазных коллекторных машинах обмотки возбуждения питаются переменным током и создают пульсирующее поле. Коллектор преобразует однофазный ток питания в многофазный переменный ток с частотой, зависящей от частоты вращения ротора, при которой магнитные поля статора и ротора неподвижны относительно друг друга. Из-за затрудненной коммутации коллекторные машины переменного тока выполняются лишь небольшой мощности

ГЛАВА 2. ОБЩАЯ ХАРАКТЕРИСТИКА СИНХРОННОГО ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ И ЕГО НАЗНАЧЕНИЕ

Синхронные машины, как и другие электрические машины, обратимы, т.е. они могут работать как в двигательном, так и генераторном режимах. Однако электропромышленность выпускает синхронные машины, предназначенные для работы только в генераторном или только в двигательном режиме, так как особенности работы машины в том или ином режиме предъявляют различные требования к конструкции машины. [6, с. 431]

Синхронные двигатели чаще работают в пусковых режимах и должны развивать больший пусковой момент, чем генераторы. Это накладывает определенные условия на конструкцию ротора: демпферную (пусковую) обмотку синхронных двигателей рассчитывают на большие токи и более длительный режим.

Для возбуждения синхронных двигателей используется электромашинная система возбуждения или тиристорная система возбуждения. В электромашинных системах возбуждения якорь возбудителя — генератора постоянного тока — соединяется с валом синхронного двигателя жестко или в тихоходных машинах — через клиноременную передачу, которая обеспечивает увеличение частоты вращения возбудителя и снижение его массы. Системы возбуждения синхронных двигателей принципиально не отличаются от систем возбуждения генераторов.

Уравнения синхронного двигателя отличаются от уравнений синхронного генератора лишь тем, что в них изменяется знак момента сопротивления.

Чтобы из генераторного режима перейти в двигательный, надо изменить знак момента сопротивления, приложенного к валу синхронной машины. Тогда изменится знак угла и и направление активной мощности; машина начнет потреблять мощность из сети.

На угловой характеристике (рис. 6) область двигательного режима находится в зоне отрицательных углов и. Устойчивой частью угловой характеристики в двигательном режиме является область от 0 до — 90°. Номинальный момент, соответствующий и ном, находится в области 20-30°. Двигатель с неявнополюсным ротором имеет максимум момента при и = — 90°:

Максимальный момент зависит от размера воздушного зазора двигателя. Чем больше зазор, тем меньше xd и больше М эм мах . Однако при большом зазоре растут габариты машины. Предел статической устойчивости

Рис. 6 Угловая характеристика синхронной машины

Удельный синхронизирующий момент, как и в генераторном режиме, максимален при и = 0 и равен нулю при и = 90° .

Для явнополюсного двигателя зависимость Мс , Мэм = f (0) имеет такой же вид, как и для генератора, но располагается в зоне отрицательных углов и. [6, с. 432]

U-образные характеристики синхронных двигателей имеют тот же вид, что и для генераторов. При перевозбуждении синхронный двигатель по отношению к сети является емкостью, недовозбужденный двигатель потребляет из сети реактивную мощность, являясь по отношению к сети индуктивностью. При недовозбуждении реакция якоря в синхронном двигателе — подмагничивающая, при перевозбуждении — размагничивающая. Важное значение для исследования процессов преобразования энергии в синхронных двигателях имеют рабочие характеристики (рис. 7).

Рис. 7. Рабочие характеристики синхронного двигателя

С ростом нагрузки на валу двигателя увеличивается момент и ток в якоре, сначала по линейному закону, а затем из-за изменения параметров — по нелинейному закону. Если не изменяется If , cos ц может падать, расти или иметь максимум. Это зависит от значения If и может быть прослежено по U-образным характеристикам: при увеличении Р2 — переходе с одной U-образной характеристики на другую cos ц изменяется, так как из-за внутреннего падения напряжения кривая cos ц = 1 смещается в область больших нагрузок. При изменении Ifможно получить постоянное значение cos ц при разных Р2 (рис. 8).

Кривая 1 на рис. 8 соответствует работе синхронного двигателя с постоянным током возбуждения в зоне недовозбуждения на U-образных характеристиках, кривая 2 — работе синхронного двигателя с перевозбуждением; кривая 3 возможна при регулировании тока возбуждения.

Рис. 8. Зависимости cos ц синхронного двигателя от нагрузки

Зависимость КПД от нагрузки такая же, как и для всех электрических машин.

Характерным отличием синхронных двигателей является постоянство частоты вращения при изменении нагрузки. Синхронные двигатели имеют предельно жесткие механические характеристики. [6, с. 432]

Одним из основных недостатков синхронных двигателей являются плохие пусковые свойства, которые ограничивают их применение. Пуск синхронных двигателей может быть частотным, при помощи разгонного двигателя или синхронные двигатели могут включаться на полное напряжение сети (асинхронный пуск).

Наиболее распространенным является асинхронный пуск. Вследствие наличия короткозамкнутых контуров на роторе (демпферной обмотки, массивных полюсных наконечников) ротор разгоняется до частоты вращения, близкой к синхронной. Обмотка возбуждения при асинхронном пуске закорачивается на активное сопротивление. После подхода ротора к частоте вращения, близкой к синхронной ( s ? 0,05), обмотка возбуждения подключается к возбудителю и осуществляется грубая синхронизация машины.

Применяется также пуск с наглухо присоединенным возбудителем. В этом случае при частоте вращения, равной (0,5 ч 0,7) n ном , в обмотке возбуждения синхронного двигателя начинает протекать постоянный ток и машина втягивается в синхронизм. Пуск двигателя с наглухо присоединенным возбудителем сопровождается большими бросками токов и может осуществляться, если нагрузка не превышает (0,4-0,5) М ном . Однако схема пуска с наглухо присоединенным возбудителем более простая и находит все большее применение.

При тяжелых условиях пуска мощных синхронных двигателей применяется реакторный или автотрансформаторный пуск по схемам, рассмотренным для асинхронных двигателей.

При пуске синхронного двигателя с помощью разгонного двигателя синхронный двигатель доводится до почти синхронной частоты вращения. В качестве разгонного двигателя может использоваться асинхронный двигатель, имеющий большую, чем синхронный, синхронную частоту вращения или двигатель постоянного тока, если есть сеть постоянного тока. Пуск с помощью разгонного двигателя применяется редко, так как разгонный двигатель используется только при пуске. [6, с. 432]

При частотном пуске обмотка статора синхронного двигателя подключается к преобразователю частоты, который изменяет частоту от нескольких герц до номинальной частоты. При частотном пуске синхронный двигатель входит в синхронизм при малых частотах. Частотный пуск удобно использовать, если преобразователь частоты можно применять для пуска нескольких двигателей.

Сравнивая синхронные двигатели с асинхронными, следует отметить основное преимущество синхронных двигателей — возможность работать с cos ц = 1, а при перевозбуждении — и с опережающим cos ц

Максимальный момент синхронного двигателя пропорционален U, а асинхронного — U2 . Поэтому синхронные двигатели менее чувствительны к изменению напряжения сети и имеют большую перегрузочную способность. Регулирование потока возбуждения путем изменения тока возбуждения обеспечивает регулирование реактивной мощности при падении напряжения и уменьшении частоты сети.

Недостатком синхронных двигателей является их более сложная конструкция, необходимость в источнике постоянного тока и худшие по сравнению с асинхронными пусковые свойства.

При мощности двигателей от нескольких киловатт до 100 кВт проявляется еще один недостаток синхронных двигателей — склонность к качаниям. При определенном соотношении параметров синхронных двигателей ротор покачивается около синхронной частоты вращения.

Синхронные двигатели при условии легких пусков целесообразно применять при мощности свыше 200 кВт. Области применения синхронных двигателей непрерывно расширяются, и их мощности возрастают до 50 МВт.

Синхронные двигатели мощностью до 1-2 кВт выполняются с явнополюсным ротором без обмотки возбуждения. За счет различия проводимости по продольной и поперечной осям машины в таких машинах возникает реактивный момент, а асинхронный пуск обеспечивается демпферной обмоткой. [6, с. 433]

На рис. 9 показаны две наиболее распространенные конструкции роторов синхронных реактивных двигателей. Четырехполюсная конструкция ротора (рис. 9, а) имеет стальной шихтованный явнополюсный магнитопровод 1 и демпферную обмотку 2. Двухполюсный шихтованный ротор, залитый алюминием, дан на рис. 9, б. Сердечник ротора 3 заливается алюминием 4, который скрепляет сердечник и образует демпферную обмотку.

Рис. 9. Конструкции роторов синхронных реактивных двигателей

Реактивные двигатели имеют низкие cos ц и КПД (з = 0,3ч0,4), их масса больше, чем у обычных трехфазных асинхронных двигателей.

Вместо электромагнитного возбуждения можно применять постоянные магниты. Серии двигателей с постоянными магнитами выпускаются на мощности от десятков ватт до нескольких киловатт. Они имеют лучшие энергетические показатели по сравнению с реактивными.

Для обеспечения пускового момента двигатели с постоянными магнитами имеют пусковую обмотку в виде беличьей клетки, залитой алюминием. Ротор из магнитотвердого материала изготовляется путем литья из специальных сплавов. Этот процесс трудоемкий, поэтому ротор имеет

ГЛАВА 3. ОСОБЕННОСТИ ИСПЫТАНИЙ СИНХРОННЫХ ДВИГАТЕЛЕЙ

3.1 Испытания на стенде завода-изготовителя и на месте установки

На стенде завода-изготовителя производят приемо-сдаточные испытания каждой машины и приемочные головных (опытных) машин.

По действующим стандартам (ГОСТ 183-74, ГОСТ 533-85, ГОСТ 5616-81, ГОСТ 609-84) приемо-сдаточные испытания каждой машины включают: измерения сопротивлений изоляции обмоток относительно корпуса и между обмотками, изоляции заложенных температурных преобразователей, обмоток при постоянном токе в практически холодном состоянии, термометров сопротивления при постоянном токе в практически холодном состоянии; испытание изоляции обмоток относительно корпуса и между обмотками на электрическую прочность; определение характеристики установившегося замыкания (для гидрогенераторов на месте установки), холостого хода (для гидрогенераторов на месте установки); испытания при повышенной частоте вращения (для турбогенераторов); измерение сопротивления изоляции подшипников, температуры масла в подшипниках (для гидрогенераторов на месте установки); проверку состояния уплотнений вала в сборе и определение утечки воздуха при избыточном давлении не менее номинального давления водорода (для машин с водородным охлаждением).

[7, с. 209]

В приемочные испытания головных (опытных) образцов (для гидрогенераторов на месте установки) дополнительно включают: испытания на кратковременную перегрузку по току; определение КПД; испытание на нагревание; определение коэффициента искажения синусоидальности кривой напряжения, индуктивных сопротивлений и постоянных времени обмоток; испытание при ударном токе короткого замыкания, на нагрев; определение вибраций, номинального тока возбуждения и регулировочной характеристики; измерение уровня шума; проверку работы газо-масляной системы водородного охлаждения и определение утечки водорода (для машин с водородным охлаждением); проверку системы жидкостного охлаждения (для машин с жидкостным охлаждением).

В соответствии с действующими стандартами выполнение части приемочных испытаний возможно на месте установки машин.

Измерение сопротивления изоляции обмотки статора относительно корпуса машины и между обмотками

При измерении сопротивления изоляции обмоток генераторов с непосредственным водяным охлаждением вывод экрана мегаомметра соединяют с водяным коллектором, от которого отсоединяют внешнюю водяную систему. Сопротивление изоляции определяют поочередно для каждой ветви обмотки статора, при этом другие ветви соединяют с корпусом машины. При определении абсолютного значения сопротивления изоляции измерения проводят не менее чем через 60 с после приложения напряжения к изоляции. После измерения сопротивления изоляцию отдельных частей обмотки разряжают на корпус генератора.

Измерение сопротивления обмоток при постоянном токе, Измерение сопротивлений термометров сопротивления

Испытание (напряжением частотой 50 Гц) изоляции обмотки статора на электрическую прочность производят испытательным напряжением, кВ,

где UФ — номинальное фазное напряжение.

Испытание проводят для каждой из фаз по отношению к корпусу и двум другим заземленным фазам. Для генераторов с водяным охлаждением обмотки статора испытание изоляции выполняют при циркуляции дистиллята. Для испытания рекомендуется применять испытательные трансформаторы, мощность которых не менее 1 кВ * А на 1 кВ напряжения.

Испытательное напряжение измеряют на стороне высшего напряжения испытательного трансформатора через измерительный трансформатор напряжения. Для машин с номинальным напряжением 13,8 кВ и выше на стороне высшего напряжения испытательного трансформатора рекомендуется включать защитный разрядник, который настраивается на напряжение, равное 110% испытательного.

Согласно ГОСТ 11828-75 испытание рекомендуется начинать с напряжения не выше 1 /3 испытательного, при этом время, в течение которого производится подъем напряжения от половинного значения до полного, должно быть не менее 10 с.

Испытание выпрямленным напряжением изоляции каждой фазы обмотки статора

Испытательное напряжение в этих испытаниях согласно ГОСТ 11828-75 выдерживают в течение 1 мин, подъем напряжения производят не менее чем тремя ступенями, начиная с половинного испытательного напряжения. На каждой из ступеней измеряют ток утечки при установившихся показаниях приборов. После испытания измеряют сопротивления изоляции мегаомметром. электрический ремонт синхронный двигатель

Испытание междувитковой изоляции, Характеристика холостого хода

Предварительно напряжение машины увеличивают до 130% номинального. Характеристику снимают при плавном уменьшении тока возбуждения до нуля. При токе возбуждения, равном нулю, определяют остаточное напряжение.

У генераторов, работающих в блоке с трансформатором, снимается также характеристика холостого хода блока.

Одновременно со снятием характеристики холостого хода определяется симметрия напряжения, которая находится по отношению разности наибольшего и наименьшего измеренных линейных напряжений к среднему его значению.

Коэффициент искажения синусоидальности кривой напряжения

где А1 , Аi — амплитуды первой и i-й гармонических.

Характеристика установившегося короткого замыкания

основные параметры

По нормам МЭК машина считается выдержавшей испытания на внезапное короткое замыкание, если она может быть включена в сеть сразу же после испытания или после незначительного ремонта обмотки статора. Перед включением в сеть обмотка статора должна быть испытана на электрическую прочность напряжением, равным 80% испытательного напряжения, предусмотренного для новой машины. Незначительным считается ремонт крепления обмотки или внешних слоев изоляции, не связанный с заменой стержней.

На месте установки все турбо-, гидрогенераторы и крупные синхронные машины подвергаются приемо-сдаточным испытаниям, которые включают кроме приемо-сдаточных испытаний на стенде завода-изготовителя дополнительно испытания на нагрев; измерение вибраций подшипников; проверку работы газомасляной системы водородного охлаждения и определение утечки водорода (для машин с водородным охлаждением); проверку работы системы жидкостного охлаждения (для машин с жидкостным охлаждением).

[7, с. 213]

На месте установки проводят также испытания гидрогенераторов и других синхронных машин большого габарита, испытания которых на стенде завода-изготовителя или не представляются возможными, или требуют больших затрат на их проведение.

Испытание на нагревание.

Для измерения температуры воздуха на выходе из каждой секции воздухоохладителя устанавливают по одному термометру, а в зоне горячего воздуха — два термометра на генератор.

В соответствии с ГОСТ 5616-8IE в гидрогенераторах с помощью термометров также измеряют температуру сегментов подпятников и подшипников (устанавливают по два термометра на каждый сегмент) и температуру масла в ванне подпятника и каждого подшипника (по данным показаний двух термометров).

Определение температуры обмотки возбуждения производят по данным измерения сопротивления обмотки в нагретом и холодном состояниях. Если rr , rх — сопротивления обмоток в нагретом и холодном состояниях, а — температура обмотки в практически холодном состоянии, то превышение температуры обмотки возбуждения

Определение температуры активных и конструктивных элементов гидрогенераторов производят как методом непосредственной нагрузки, так и по данным испытаний в косвенных режимах.

При испытании методом непосредственной нагрузки определение превышений температуры обмоток и стали производят при трех-четырех различных нагрузках (от 0,6 номинальной и выше).

По данным испытаний строят зависимости превышения температур от квадрата тока статора, а с их помощью уточняют (или определяют) превышения температур при номинальной мощности. [7, с. 214]

Превышение температуры обмотки статора по данным измерений превышения температуры обмотки в косвенных режимах определяют в виде

где — превышение температуры в режиме короткого замыкания (обусловлено основными и добавочными потерями в обмотке, а также механическими потерями); — превышение температуры в режиме холостого хода (обусловлено потерями в стали и механическими) — превышение температуры в режиме холостого хода без возбуждения.

Определение номинального тока возбуждения., Определение КПД гидрогенератора.

Калориметрическим способом определяют потери механические, в стали, а также добавочные. С этой целью последовательно проводят опыты холостого хода без возбуждения, холостого хода с возбуждением до номинального напряжения и установившегося симметричного короткого замыкания с номинальным током в обмотке статора. Потери в каждом опыте определяют по количеству тепла, отводимого охлаждающей средой (или охлаждающими средами, если различные части машины охлаждаются различными охлаждающими средами), при установившемся тепловом состоянии машины по формуле

где Vc — объемный расход охлаждающей среды, м3 /с; Сv — объемная теплоемкость охлаждающей среды, кДж/м3 ; — температура охлаждающей среды на входе в машину и выходе из нее.

Для определения потерь испытуемый гидрогенератор приводится во вращение с номинальной частотой вращения в режиме незагруженного двигателя от другого гидрогенератора.

Рис. 10. К определению номинального тока возбуждения

Для определения потерь способом самоторможения частота вращения испытуемого гидрогенератора доводится до значения, несколько превышающего номинальное, после чего источник энергии отключается. При этом проводят три опыта: самоторможение без возбуждения; при холостом ходе и номинальном напряжении; в режиме симметричного короткого замыкания на выводах машины и номинальном токе в обмотке статора.

Из опыта самоторможения при осушенной полости турбины определяют механические потери всего агрегата. Суммарные механические потери в генераторе находят путем вычитания потерь на трение вращающихся частей турбины о воздух, которые рассчитывают по эмпирическим формулам. Потери в подпятнике и подшипниках либо принимают равными расчетным, либо измеряют калориметрическим способом.

В соответствии с требованиями ГОСТ 10169-77 каждый опыт проводится не менее 3 раз. Во всех опытах определяется время, в течение которого частота вращения машины изменится от 1,1 до 0,9 номинальной. Отсчеты по приборам, измеряющим электрические величины, производятся в момент прохождения испытуемой машиной синхронной скорости.

Для синхронных машин по требованиям действующих стандартов измеряется вибрация подшипников машин. Измерение вибрации (виброперемещений или эффективного значения вибрационной скорости) производят на верхних крышках подшипников в вертикальном направлении и у разъема в поперечном и осевом направлениях,

Для турбогенераторов эффективное значение вибрационной скорости не должно превышать 4,5 мм/с во всех режимах работы.

В гидрогенераторах вибрацию измеряют в горизонтальной плоскости крестовин. Согласно ГОСТ 5616-81Е до частоты вращения 100 об/мин допустимая вибрация составляет 180 мкм, свыше 100 до 187,5 об/мин — 150 мкм, до 375 об/мин — 100 мкм, до 750 об/мин — 70 мкм.

Вибрация контактных колец в турбогенераторах не должна быть больше 200 мкм. Для машин с водородным охлаждением производят определение утечки водорода. Испытание производят на опрессованных машинах и машинах, испытанных на газоплотность в неподвижном состоянии после сборки на месте испытания. Определение утечки должно выполняться при рабочем давлении газа внутри машины и при вращении с номинальной частотой вращения на холостом ходу без возбуждения.

Измерение сопротивления изоляции подшипников проводят при температуре окружающей среды мегаомметром на напряжение не менее 1000 В. [7, с. 214]. Измерение электрического напряжения между концами вала осуществляют на работающей машине с помощью вольтметра с малым внутренним сопротивлением, при этом прибор присоединяют непосредственно к концам вала.

3.2 Ремонт синхронных двигателей

В соответствии с Правилами технической эксплуатации в системе планово предупредительных ремонтов электрооборудования предусмотрено два вида ремонтов: текущий и капитальный.

Текущий ремонт, Капитальный ремонт.

Разборка электродвигателя производится в порядке, обусловленном особенностями конструкции электродвигателей. Последовательность разборки электродвигателей малой и средней мощности, имеющих подшипниковые щиты с подшипниками качения или скольжения. [6, с. 500]

Сборка электродвигателей после ремонта.

Источник

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/sinhronnyiy-elektrodvigatel/