1.1 Компоненты, входящие в резиновую смесь
Для получения резины основным компонентом является каучук, который, соединяясь в процессе вулканизации с вулканизирующим веществом, образует резину. В качестве вулканизирующего вещества обычно применяют серу; тиоколовые каучуки вулканизируют перекисями металлов (перекись марганца, перекись свинца); полйсйлоксаиы вулканизируют с помощью органических перекисей (перекись бензола); фтор-каучуки вулканизируют органическими перекисями или диаминами.
Для повышения механической прочности и износоустойчивости в состав резиновой смеси обычно вводят упрочняющий наполнитель. К числу таких наполнителей принадлежат вещества с предельно малой величиной частиц и высокоразвитой поверхностью. Наиболее распространенными упрочняющими наполнителями являются сажи.
В производстве светлоокрашенных резин и резин, предназначенных для работы при повышенных температурах, в качестве упрочняющего наполнителя применяют окись кремния, окись титана, которые находятся в столь же мелкодисперсном состоянии.
В резиновую смесь вводят ускорители вулканизации, применяя для этого дифенилгуанидии и др. Иногда для повышения пластичности резиновой смеси и морозостойкости готовых изделий в резиновую смесь добавляют пластификаторы (стеариновая и олеиновая кислоты, парафины и др.).
Против старения (процесса соединения резины с кислородом воздуха) в резиновую смесь вводят противоокислители (противо-старители), а для придания цвета добавляют красители (охра, ультрамарин).
1.2 Технология изготовления резины. Вулканизация
Процесс изготовления резины и резиновых деталей состоит из приготовления сырой резиновой смеси, получения из нее полуфабрикатов или деталей и их вулканизации.
Технологический процесс включает в себя следующие операции: вальцевание, каландрирование, получение заготовок, формование и вулканизацию, обработку готовых деталей.
Для приготовления сырой резины каучук разрезают на куски и пропускают через вальцы для придания пластичности (рис. 180).
Затем, в специальных смесителях каучук смешивают с порошкообразными компонентами, входящими в состав ре3ины (вулканизирующие вещества, наполнители, ускорители вулканизации и т.д.), вводя их в резиновую смесь точно по весовой дозировке. Перемешивание можно производить и на вальцах. Таким образом получают однородную, пластичную и малоупругую массу — сырую резину. Она легко формуется, растворяется в органических растворителях и при нагревании становится клейкой.
Химическая технология изготовления пластмассы и резины
... с металлами, сплавами, деревом. Основная масса пластмассовых изделий производится из синтетических пластмасс. Имея очень ... и оргтехники, смарт-карт), бутадиеновый каучук (производство автомобильных шин, кислото- и щелочестойкой резины, эбонита), ацетат целлюлозы (производства фото- и ... пластификатора и ускорителя отверждения. При изготовлении цветных пластмасс в их состав вводят минеральные ...
Провальцованная резиновая смесь поступает на каландр для получения листов заданной толщины—процесс получения листовой резины. Из каландрованных листов заготовки деталей получают вырезкой по шаблонам, вырубкой штанцевыми ножами, формированием на шприцмашине.
Для изготовления резиновых деталей формовым способом используются гидравлические вулканизационные прессы с электрообогревом. Прессование производят в пресс-формах методами прямого и литьевого прессования. Литье под давлением применяют для изготовления деталей сложной конфигурации. Детали, изготовленные литьем под давлением, имеют повышенную вибростойкость и хорошо воспринимают знакопеременные нагрузки.
Формование резин имеет много общего с формованием отвердевающих пластических масс, однако есть и некоторые отличия. Вследствие высокой пластичности резиновых смесей для заполнения форм, даже сложной конфигурации, не требуется давление выше 5 МПа (50 кгс/см2).
В большинстве случаев изделия формуют под давлением 1—2 МПа (10—20 кгс/см2).
Для получения высокоэластичных прочных изделий (покрышек, трансмиссионных лент, ремней, рукавов) резиновую смесь наносят на высокопрочные ткани (корд, белтинг) из хлопчатобумажного волокна, полиамидного или полиэфирного волокна. Для сцепления резины с тканью применяют способы напрессовывания или пропитывания. В первом случае тонкие листы каландрованной сырой резины на специальных дополнительных дублировочных каландрах напрессовывают на ткань. Во втором случае ткань пропитывают раствором резиновой смеси (резиновым клеем) и сушат для удаления растворителя. Прорезиненную ткань раскраивают, собирают в пакеты и прессуют в изделия.
Многие резиновые изделия армируют металлическими деталями. Металлы или сплавы (за исключением латуни) не обладают адгезией (прилипаемостью) к резине, поэтому легко вырываются из изделия. Для придания адгезии металлической арматуры к резине на металл наносят клеевую пленку или осуществляют латунирование. Наиболее высокая прочность сцепления металла с резиной достигается путем нанесения на металлическую поверхность пленки изоционатного клея «лейконат» или ее латунирования.
Любой процесс формования заканчивается процессом вулканизации. Каучук состоит из линейных молекул. При нагревании с серой (вулканизации) происходит укрупнение молекул и образование сетчатой структуры молекул, при этом каучук превращается в резину. В резине кроме линейных есть и трехмерные молекулы.
Усложнение и укрупнение молекул приводит к тому, что вещество приобретает упругость, не снижая эластичности, а кроме того, и стойкость к температурным и химическим воздействиям. Резина примерно на одну треть состоит из сажи, которая создает кристалличность строения вещества, увеличивает его прочность.
Вулканизацию осуществляют с нагревом и без нагрева. Длительность и температура вулканизации определяются рецептурой резиновой смеси (типом каучука и эффективностью введенного ускорителя); но обычно вулканизацию проводят при температуре 120—150
Производство резинотехнических изделий
... 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техническими требованиями к изделию, технологией производства, экономичностью и другими соображениями. Технология производства изделий из резины включает смешение каучука с ингредиентами в смесителях ...
При формировании деталей вулканизация их производится в пресс-формах на вулканизационных гидравлических прессах с паровым или электрическим обогревом. Формовой метод вулканизации дает более плотную, однородную структуру, более точные размеры и более чистую поверхность резинового изделия. При невозможности вулканизации в пресс-форме особенно изделий, полученных на шприцмашине накатыванием и дублированием, вулканизацию проводят в вулканизационном котле.
Почти все синтетические каучуки получают методом эмульсионной полимеризации в водных средах. Образующийся в этих условиях полимер получается с частицами, близкими к размерам коллоидных частиц. В присутствии специально вводимых веществ (эмульгаторов) частицы полимеров образуют устойчивую эмульсию полимера в воде, которая называется латексом.
В настоящее время выпускается большое количество латексов, из которых непосредственно можно изготовлять резиновые изделия. Они применяются для получения фрикционных изделий, для пропитки корда, для изготовления абразивных шлифовальных камней, резиновых нитей, волосяных эластичных подушек, маканых изделий (перчатки, шары-пилоты), толстостенных изделий, для замены клеев латексными пастами, для получения резиновых пеноматериалов.
Для получения резиновых изделий толщиной не более 0,2 мм форму (обычно стеклянную) несколько раз погружают в латекс. После каждого погружения на форме остается слой латекса, из которого удаляют воду высушиванием.
Процесс изготовления изделий из латексов состоит из следующих операций: смешения латекса с вулканизирующими агентами и другими компонентами резиновой смеси: высаживания резины на форму в виде пленки по мере испарения воды; вулканизации.
Вулканизированные резиновые детали, в зависимости от предъявляемых к ним требований, подвергают дополнительной обработке. В большинстве случаев достаточно удаления облоя (заусенцев), что может выполняться и небольшими ножницами с загнутыми концами. При наличии в деталях сквозных отверстий применяют вырубные ножи. Для окончательного удаления следов облоя проводят дополнительную зашлифовку. В некоторых случаях для получения точных размеров требуется обточка и шлифовка всей поверхности детали. Эти операции проводятся в токарном патроне с помощью абразивных или фетровых кругов.
1.3 Свойства и основные виды резины
Применение резины в машиностроении обусловливается ее ценными свойствами. Резина обладает высокой упругостью и способностью поглощать вибрации, хорошо сопротивляться истиранию и многократному изгибу. Резина газо- и гидронепроницаема, стойка против воздействия масел, жидкого топлива и ряда других сред. Резина является диэлектриком. Резина в готовом изделии находится в термостабильном состоянии, она нерастворима (но обладает способностью набухать) в растворителях и не пластична. Исходная же невулканизированная резиновая смесь обладает хорошей пластичностью, обеспечивающей возможность формообразования разнообразных изделий;
- Свойства вулканизированных резин в значительной степени определяются характеристикой каучуков.
Резины из СКВ (синтетического бутадиенового каучука) имеют удовлетворительную механическую прочность и морозостойкость, ограниченную теплостойкость, сравнительно малую эластичность, легкую окисляемость, ограниченную химическую стойкость и газонепроницаемость. Резина применяется для изготовления почти всех видов резиновых деталей, особенно для изготовления автомобильных шин.
Производство резинотехнических изделий (2)
... смесей, конструкции и размеров изделия, разделение крупносерийного и мелкосерийного производства. Расширение ассортимента специальных химикатов - добавок для облегчения обработки смесей и создание резин с улучшенными свойствами из имеющихся каучуков. ...
Нейритовые резины обладают высокой прочностью, теплостойкостью до 110—120° С, малой набухаемостью в бензинах и маслах, достаточной атмосферостойкостью и химической устойчивостью. Они применяются преимущественно для изготовления маслоупорных и бензоупорных, а также термостойких изделий: спецодежды, обкладки для химической аппаратуры и валов, транспортных лент, оболочки аэростатов, противогазных шлемов, оболочки электрических кабелей, различных клеев и заменителей кожи.
Полисульфидные резины имеют невысокую прочность, морозостойкость и теплостойкость, повышенную бензо- и маслостойкость, высокую газонепроницаемость и применяются для изготовления шлангов, труб, рукавов, прокладок для бензина, масла и бензола.
Изопреновые резины обладают высокой прочностью при растяжении и при истирании, эластичностью и морозостойкостью, ограниченной теплостойкостью (80—100° С), повышенной окисляемостью, набухаемостью в бензинах и маслах, ограниченной химической стойкостью и газонепроницаемостью, пригодны для изготовления изделий общего назначения.
В резине не все линейные молекулы скреплены в трехмерные, поэтому она не теряет эластичности каучука. Если содержание серы в резине довести до 30—35%, то атомы серы скрепляют все нитевидные молекулы каучука в трехмерные. При этом молекулы каучука становятся крупнее, эластичность уменьшается, твердость увеличивается, образуется материал — эбонит.
Эбонит хорошо обрабатывается на токарном, сверлильном и других станках. Он инертен, водостоек и широко используется в автотракторной, химической, электрорадиотехнической промышленностях как диэлектрик.
Если соединения молекул каучука производить не через атомы серы, а прямо — углерод с углеродом (такая реакция соединения молекул каучука происходит при температуре выше 300° С), получается твердое вещество — эскапон, обладающее исключительными электроизоляционными свойствами. Эскапон — прозрачная, стеклообразная масса, хорошо обрабатывается и полируется. Он обладает высокой химической стойкостью, выдерживает нагревание до 400—500° С, нашел применение как высокочастотный диэлектрик в радиолокации и радиотехнике и для изготовления лаков.
На способности каучука абсорбировать газы и на его газопроницаемости основано производство пористых резин. В качестве порообразователя применяется двууглекислый натрий, вводимый в резиновые смеси в количестве 10—15%. Как упругий материал, хорошо поглощающий удары, пористая резина применяется для амортизации в качестве теплоизоляции, звукоизоляции и как материал для фильтров. Она используется в автомобильной и химической промышленностях, в холодильных установках, в производстве изделий санитарии и гигиены, медицинских приборов, спортивных товаров.
1.4 Силиконовая резина, Силиконовая резина
Основная структура силиконовой резины, в отличие от обычных видов резины, – это цепи из атомов кремния и кислорода с редкими поперечными сшивками. Этим обстоятельством обуславливается присущий ей в некоторой степени неорганический характер.
Остальные связи кремния заняты органическими радикалами (R), в первую очередь метильными, чем объясняется сходство с обычными сортами резины.
Наряду с метильными группами полимерная цепь содержит небольшой процент алкиленовых групп, в первую очередь – винильных, что повышает реакционную способность при перекисном образовании сетчатых структур.
Устойчивость к экстремальным температурам
Силиконовая резина сохраняет свои свойства практически неограниченное время при температурах от -50°C до +180°C.
Её можно использовать при температурах, близких к +250°C в течение нескольких сотен часов без появления хрупкости.
Особо термостойкие типы силиконовой резины имеют достаточно долгий срок службы при температуре выше +200°C.
Точно также особые сорта применимы при температурах до -100°C.
Зависимость свойств от температуры
Как и у всех силиконов, большинство свойств силиконовой резины зависят от температуры в меньшей степени, чем у органических материалов. Благодаря этому силиконовую резину можно с успехом использовать при более высоких и более низких температурах. К таким свойствам относятся, например, сохранение формы, эластичность, упругость, прочность, жёсткость и предельное удлинение. Среди электрических характеристик, которые также в меньшей степени зависят от температуры, следует назвать пробивную прочность, диэлектрические показатели, объёмное сопротивление.
Электрические свойства
Силиконовая резина при комнатной температуре обладает отличными изоляционными свойствами. Как уже отмечалось, эти свойства зависят от температуры лишь в малой степени. Поэтому силиконовая резина при температурах выше +100°C превышает по своим изоляционным показателям все традиционные эластомеры.
Следует также отметить, что при хранении в воде отмечаются лишь ничтожные изменения электрических свойств.
При сгорании изоляции из силиконовой резины остаётся непроводящий слой SiO 2 , благодаря чему обеспечивается более высокая защита электрических приборов и установок при нежелательных перегрузках.
Химическая стойкость
Силиконовая резина устойчива к растворам солей, кипящей воде, спиртам, фенолам, различным минеральным маслам, слабым кислотам и щелочам, а также к перекиси водорода. В определённых условиях при контакте с алифатическими углеводородами наблюдается сильное набухание силиконовой резины, но после их испарения к ней возвращаются первоначальные механические свойства, так как она не содержит экстрагируемых составных частей.
Физиологическое воздействие
Силиконовая резина не токсична, если она обработана по всем правилам. Поэтому она является идеальным материалом для медицинской техники и пищевой промышленности. Однако некоторые вулканизирующие средства могут оказывать на неё неблагоприятное воздействие. Эти средства вулканизации и продукты их распада устраняются путём достаточно длительного воздействия высоких температур.
Свойства силиконовой резины в отличие от натурального каучука не меняются под воздействием света и воздуха в нормальных температурных диапазонах. Дождь, снег, морская вода также практически не оказывают воздействия на свойства силиконовой резины. Поэтому её можно считать устойчивой к атмосферным воздействиям.
Она устойчива даже к озону, благодаря чему приобретает особенно важное значение для электротехнической промышленности. Кроме того, силиконовая резина устойчива к таким явлениям, как электрическая корона и дуга.
Глава
2.1 В промышленном производстве
В производстве используются следующие виды резиновых изделий.
Техническая листовая резина, Резиновый шнур, Резинотканевые, Плоские ремни, Рукава (шланги) и трубы.
Резинотканевые напорные рукава применяются в качестве гибких трубопроводов для перемещения под давлением газов, жидкостей и сыпучих материалов; они состоят из внутреннего и наружного резиновых слоев и.одной или нескольких прокладок из прорезиненной ткани.
Резинотканевые паропроводные рукава состоят из внутреннего слоя резины, промежуточных прокладок и наружного слоя резины. Они применяются в качестве гибких паропроводов для насыщенного пара при давлении до 0,8 МПа (8 кгс/см2) и температуре 175° С.
Технические резиновые трубки, Резинотканевые шевронные, многорядные уплотнения
Резиновые уплотнения применяются для валов, для работы в среде минеральных масел и воды при избыточном давлении.
Резиновые уплотнительные кольца—для соединительных головок тормозных рукавов, изготовляемых формованием; для гаек пожарных рукавов формованные.
Сальниковые набивки предназначаются для заполнения сальниковых уплотнений с целью герметизации места выхода движущейся детали механизма от рабочего пространства одной среды и одних параметров в пространство другой среды и других параметров; пропитанные набивки обеспечивают смазку подвижной детали механизма.
Возможности применения силиконовой резины чрезвычайно разнообразны и охватывают все отрасли промышленности.
В электротехнике
электротехнического машиностроения
самолёто- и судостроении
В машиностроении
Транспортёры покрывают силиконовой резиной в тех случаях, когда они транспортируют горячие или липкие изделия. Для текстильной промышленности незаменимое значение приобрели термостойкие и антиадгезионные покрытия из силиконовой резины для валов. Силиконовые резины используются для раскатки клеевых слоев. В стекольной промышленности по роликам из силиконовой резины осуществляется транспортировка горячих стеклянных заготовок.
2.2 Применение в медицине
При конструировании и производстве медицинских изделий за частую используют различные полимерные материалы, такие как: силиконовая резина, полиуретан, полиэтилен, поливинилхлорид, полиамид и др. Наибольшее значение и применение в медицине находят силиконовая резина и полиуретан.
Силиконовые каучуки и, соответственно, силиконовые резины на их основе относятся к классу кремнийорганических полимеров (называемых также силиконы, полиорганосилоксаны).
В упрощенном виде макромолекулы силиконовых каучуков представляют собой цепочки чередующихся атомов кислорода и кремния, обрамленного различными радикалами.
Начало широкого практического применения кремнийорганических полимеров, включающих жидкости, каучуки, резины, смолы, пластмассы, относится к сороковым годам ХХ в. Эти полимеры нашли полезное применение в разных областях техники, в том числе, в производстве разнообразных медицинских изделий. В этой сфере силиконовая резина практически не имеет себе равных среди других полимерных материалов благодаря комплексу уникальных свойств.
Биоэнертность и биостабильность, Гемосовместимость, кальцинация, Устойчивость к стерилизационным воздействиям.
Силиконовые резины достаточно химически инертны, хорошо противостоят действию слабых кислот и щелочей, растворов солей, аммиака, этилового спирта, ацетона, перекиси водорода, однако сильно набухают в бензине, ароматических растворителях и хлорированных углеводородах (набухание имеет обратимый характер).
Перечисленные свойства силиконовых резин определили ее применение в медицинской технике. Можно сказать, что практически нет ни одной области хирургии, в которой не использовались бы изделия из силиконовых резин и нет ни одной области человеческого тела, в которую бы эти изделия не вводились на различные сроки. Изделия из силиконовых резин применяются в общей хирургии, сердечно — сосудистой хирурги, грудной хирургии, нейрохирургии, челюстно-лицевой хирургии, отоларингологии, офтальмологии, ортопедии, урологии, стоматологии, гинекологии, анестезиологии.<.p>
— Особо необходимо отметить, что уже более двадцати лет при изготовлении медицинских изделий используется прогрессивный каталитический («платиновый») метод вулканизации силиконовых резин взамен перекисного метода. В мировой практике этот метод используется при получении ответственных медицинских изделий, таких как имплантаты, эндопротезы и др.
В разные годы создана и внедрена в серийное производство широкая серия медицинских изделий из силиконовых резин различного назначения:
- Имплантируемые провода — электроды для электростимуляторов сердечной деятельности
- Модель искусственного сердца, доведенная до стадии экспериментов на животных
- Первые отечественные трубки, зонды, дренажи из силиконовой резины
- Имплантируемые системы для лечения гидроцефалии
- Силиконовые имплантаты для глазной хирургии для склеропластических операций, проводимых по поводу отслойки сетчатки
- Ларингеальные маски и др.
Приложение
Табл. 1 Свойства натурального и синтетического каучуков, применяемых при производстве резин
Каучук |
Плотность, кг/м 3 |
Временное сопротивление δ, МПа | Относительное удлинение при разрыве ε, % | Остаточное удлинение θ, % |
Рабочая температура, °С |
Температура хрупкости, °С | Стойкость в органических растворителях Бензин, масло) |
910—940 | 25 | 800 | 20 | 80—130 | -70 | Нестойкий | |
Бутадиеновый (СКБ) | 900—920 | 15 | 600 | 40 | 80—150 | -50 | » |
Бутадиенстирольный (СКС) | 940 | 18 | 500 | 15 | 80—130 | -70 | » |
Изопреновый (СКИ) | 910—920 | 25 | 700 | 18 | 130 | -70 | » |
Хлоропреновый (наирит) | 1200 | 12 | 650 | 25 | 100—130 | -35 | » |
Бутадиеннитриль-ный(СКН) | 945—986 | 13 | 400 | 15 | 100—177 | -50 | Стойкий |
Силоксановый (СКТ) | 1700—2000 | 2,5 | 200 | 20 | 250—325 | -70 | Не стойкий |
Фторсодержащий (СКФ) | 1800—1900 | 12—20 | 60— 200 | 15 | 250—325 | -25 | Стойкий |
Табл. 2 Физико-механические свойства резин
Марка резины | Каучук | Временное сопротивление δ, МПа | Относительное удлинение при разрыве ε, % | Остаточное удлинение θ, % | Твердость, Н/м 2 | Температура хрупкости, °С | Отношение к органическим растворителям (бензин, масло, керосин) |
56 | НК | 10 | 450 | 32 | 45—^0 | -50 | Не стойкая |
15-РИ-10 | НК | 20 | 600 | 30 | 0,3—0,4 | -55 | » |
14-РИ-324 | НК | 17 | 610—630 | 30 | 0,7-1,4 | -56 | » |
3826 | СКН-26 | 8 | 320 | 20 | 1,0-1,4 | -28 | Стойкая |
НО-68-1 |
Наирит + СКН |
9 | 250 | 12 | 0,7-1,2 | -55 | » |
В-14-1 | СКН | 12 | 14 | 8 | 1,6-1,9 | -50 | » |
ИРП-1287 | СКФ-26 | 12 | 120 | 10 | 1,2-1,9 | -25 | » |
ИРП-1338 | СКТВ | 5,0 | 300 | 10 | 0,7—1,2 | -70 | » |
Температура (°C) | Долговечность (-50% удлинения при разрыве) |
-50 — +100 | неограниченно |
+120 | 10-20 лет |
+150 | 5-10 лет |
+205 | 2-5 лет |
+260 | 3 месяца — 2 года |
+316 | 1 неделя — 2 месяца |
+370 | 6 часов — 1 неделя |
+420 | 10 минут — 2 часа |
+480 | 2-10 минут |
Заключение, Список используемой литературы
1. Кузьмин В. А., Самохоцкий А. И., Кузнецова Т. Н. Металлургия и материаловедение в машиностроении., М., 1977.
2. Дальский А. М. Технология конструкционных материалов., М., 2005.
3. Мозберг Р. К. Материаловедение., М.,1991.
Интернет-ресурсы:
www.wikipedia.ru
www.matins.ru
www.penta-91.ru