Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Курсовая работа
Содержание скрыть

Йодоформ (CHI3) – мелкокристаллический порошок лимонного цвета, практически нерастворимый в воде, легко растворимый в эфире, хлороформе, мало растворимый в спирте, бензине, органических маслах. Температура плавления кристаллов йодоформа 1190С.

Химические свойства йодоформа не отличаются от свойств остальных галогеналканов, и подробно рассмотрены ниже; они обусловлены спецификой

Вследствие высокой электроотрицательности галогена связи углерод-галоген являются сильно полярными Сd+®Id-. Естественно, атомы йода, связанные с электронодефицитным углеродом, можно легко заменить на частицу, богатую электронами, – реагент – нуклеофил Nu. Кроме того, характерной для галогеналканов, в частности, для йодоформа, является реакция отщепления (элиминирования).

Помимо этого, галогеналканы образуют магнийорганические соединения R-MgX, чрезвычайно важные в синтетическом отношении.

В продаже существуют йодоформа:

1. Iodoform crystallisatum. Твердые кристаллы. Получают его перекристаллизацией обычного йодоформа из спирта. Для этого берут отходы производства других сортов, отсев, сметки и т.д. Кристаллический йодоформ применяется редко, преимущественно в Англии и англоговорящих

2. Iodoform pulvis levissium. Представляет собой смесь мелкого порошка и нежных листочкообразных кристаллов. При этом сорте главное значение имеет легкость порошка.

3. Iodoform farinosum. Мелкие очень легкие листочкообразные кристаллы с небольшим количеством пороша.

4. Iodoform pulvis subtilis. Светложелтый порошок почти без кристаллов. Он тяжелее, чем другие сорта, и применяется преимущественно на фабриках перевязочных средств для производства неиодоформенной марли и ваты.

молекулы йодоформа представлена на рис. 1.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Рис. 1.1. Структура и пространственная ориентация молекулы йодоформа.

Применение хлороформа

Активное изучение обнаружило ряд уникальных свойств йодоформа. Под влиянием света и воздуха, тканевых выделений йодоформ медленно разлагается с выделением йода. Йод имеет антимикробное, дезорирующее, противовоспалительное и рассасывающее действие, способствует грануляции и очищению раны. На поверхности ран образуются альбуминаты йода, в результате проявляется вяжущее и анестезирующее действие, предотвращается раздражение рецепторов.

13 стр., 6448 слов

Жидкие кристаллы; их свойства и применение

... множество применений - от хроматографии до телевидения; построены заводы, выпускающие изделия, в которых работают жидкие кристаллы. За эти годы создана физика жидких кристаллов, ... новых жидких кристаллов, в том числе много практически важных, создана промышленность, производящая жидкие кристаллы. Жидким кристаллам найдено ...

Таким образом, все эти свойства обуславливают широкое применение йодоформа в различных областях терапевтической и операционной медицины, сельского хозяйства и др.: лечение инфицированных и послеоперационных ран, язв, свищей, дерматитов, тендовагинитов, санитарной обработке скота перед убоем. Йодоформ применяют наружно в форме присыпки. Препарат наносят тонким слоем на инфицированные, послеоперационные раны, язвы или свищи с захватом здоровой ткани на расстояние 2–3 см. Повторные обработки проводят по хирургическим показаниям.

Для обработки свищей, ран с кармашками, а также для лечения ожогов бактериальной этиологии йодоформ растворяют в эфире. Для этого непосредственно перед применением готовят 10 % раствор препарата. В зависимости от величины ран и свищей количество раствора должно быть таким, чтобы полностью смочить обрабатываемую поверхность с учетом карманов и полостей ран.

При отитах раствор йодоформа заливают в ушную раковину животным, в зависимости от их размера в количестве от 1 до 5 мл. Обрабатывают обе ушные раковины, даже если в другой не выражены признаки заболевания. Обработку проводят однократно. Повторные обработки проводят по показаниям через 7 – 10 дней.

При лечении флегмон, лимфаденитов, дерматитов, тендовагинитов йодоформ смешивают с вазелином из расчета 5 – 10% йодоформа. Обработку проводят 1 – 2 раз в день в течение 5 –7 дней без перерыва.

После проведения санитарной обработки скота из-за устойчивого специфичного запаха препарата убой животных на мясо разрешается через 3 суток после обработки. При вынужденном убое животных ранее оказанного срока мясо используют на корм пушным зверям или перерабатывают на мясо-костную муку. Молоко дойных животных запрещается использовать для пищевых целей в течение 3-х суток после обработки. Оно может быть использовано после термической обработки в корм плотоядным животным.

Меры предосторожности при работе с йодоформом

Лица, работающие с йодоформом должны пользоваться спецодеждой. Во время работы запрещается курить, пить и принимать пищу. При попадании препарата на кожу или на слизистые оболочки его следует немедленно смыть обильным количеством проточной воды с мылом. При попадании внутрь – выпить несколько стаканов воды и вызвать рвоту, после чего выпить несколько стаканов воды с 2 – 3 таблетками активированного угля или другого адсорбента. Запрещается транспортировка и хранение йодоформа вместе с продуктами питания и фуражом, а также использование тары из-под него для бытовых целей.

По степени воздействия на организм при нанесении на кожу препарат относится к 3 классу умеренно опасных веществ по ГОСТ 12.1.007-76. Не обладает местно-раздражающим и резорбтивно-токсическим действием.

Синтезы йодоформа

1.4.1. На основе карбоната натрия, йода и этилового спирта [1]

К раствору 20г кристаллического Na2CO3 в 100 мл воды прибавляют 10 г этилового спирта и нагревают на водяной бане до 700С. В нагретую смесь вносят при тщательном перемешивании небольшими порциями 10 г измельченного йода (раствор приобретает желто-бурую окраску, которая, однако, вскоре исчезает).

После того, как внесен весь йод и жидкость обесцветилась, реакционную массу оставляют (под тягой) на 4-5 ч (можно и на ночь).

Выпавший осадок отфильтровывают, многократно и тщательно промывают водой на фильтре и сушат на воздухе в темном месте. Выход около 2,5 г (30% от теоретического, считая на взятый в реакцию йод); т. пл. 1190С (после перекристаллизации из небольшого количества спирта).

14 стр., 6953 слов

Промышленные воды

... Биохимическое разложение белков и углеводов приводит к появлению в водах органических кислот, аминокислот, аминов, спиртов и др. Жирные кислоты образуются также путем биохимического окисления ... сложных эфиров -- к появлению фенолов, спиртов, органических кислот. Таким образом, закономерно, что органические кислоты в подземных водах чрезвычайно широко распространены, а количественное содержание ...

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

1.4.2. На основе ацетона, йода и щелочи [2]

Соединения типа Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов или Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов при обработке свежеприготовленным раствором йода и едкой щелочи переходят в йодоформ, причем промежуточно получаются трийодзамещенные продукты. Например:

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Это действие йода в щелочном растворе служит качественной реакцией на ацетон, этиловый спирт, ацетальдегид и т.д. и может служить также для количественного определения ацетона, спирта, молочной кислоты, окисляемых сначала до ацетальдегида (йодоформная реакция Либена).

1.4.3. Электролитический способ [3]

Получение йодоформа электролитическим путем. 50 частей йодистого калия растворяют в 300 частях воды и к этому раствору прибавляют около 30 частей 96%-ного спирта. Этот раствор подвергают электролизу при нагревании и непрерывном пропускании двуокиси углерода. Йодоформ выделяется в виде кристаллического порошка. Для получения йодоформа в форме больших кристаллов йодистый калий растворяют в 20%-ном спирте и подвергают электролизу, как указано выше.

Процесс протекает по уравнению:

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Действующим агентом здесь, однако, является гипойодит щелочного металла: Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В виде побочной реакции здесь идет главным образом образование йодата.

Для понижения скорости образования йодата и соответствующего значительного повышения выхода йодоформа прибавляют избыток йодида и особенно йодата.

1.4.4. На основе ацетона, йодистого калия, гипохлорита калия, этилового спирта [4]

Реактивы : ацетон 8г (10мл), йодистый калий 30г, гипохлорит натрия 25 г, этиловый спирт 300мл.

Аппаратура:, Методика:

Йодоформ получают действием на ацетон йодистого калия в пристутствии йода, действием на этиловый спирт, изопропиловый спирт или ацетон йодистого калия ил окислителей, таких, как гипохлориты и ли дихлорамины в щелочной среде. Электрохимический метод получения йодоформа заключается в электролизе раствора йодистого калия, содержащего карбонат натрия, в присутствии этилового спирта.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

1.4.5. Промышленная методика производства йодоформа [5]

Молекулярный вес 394. Удельный вес 2,0. Лимонно-желтые гексагональные листочки или кристаллы в виде столбиков неприятного, сильно прилипчивого запаха. Растворимрим в 14000 ч. воды при 150С в 70 ч холодного винного спирта и в 10ч при 800, а также в эфире, хлороформе и сероуглероде. Выше 1200 разлагается. Получение соединяют с получением йодистого калия. Если йод, ацетон и едкое кали действуют друг на друга, то приблизительно 40% взятого йода превращаются в йодоформ, остаток дает йодистый калий и йодноватокислый калий. Сырьем для производства йодоформа служат:

Технический йод. Выбирают такие сорта, которые растворяются в едком кали с малым остатком и свободны от хлористого йода. На последнее обстоятельство нужно особенно обращать внимание в случае японского йода.

Ацетон. Берут такое количество, которое требуется для производства пороха.

Раствор едкого кали. Обычный продажный раствор технического едкого кали.

Спирт. Для некоторых сортов йодоформа для осаждения нужен спирт; он не участвует в процессе образования йодоформа, но служит только для получения определенных его сортов. Соответственно спиртовому законодательству различных стран его можно получать свободно, если он денатурирован метиловым спиртом или самим йодоформом.

Литературный обзор, Реакции нуклеофильного замещения галогеналканов

Благодаря доступности галогеналканов и легкости, с которой они вступают в реакции, круг этих реакций очень широк. Наиболее важные из них приведены в таблице 1.

Метилгалогениды CH3-X, первичные RCH2-X, вторичные R1R2CH-X, третичные R1R2R3-X алкилгалогениды взаимодействуют с нуклеофильными реагентами по разным механизмам в зависимости алкила.

Таблица 1.

Реакции нуклеофильного замещения

Нуклеофил Nu Продукт реакции R-Nu

НО- или Н2О

R1O- или R1OH

Спирт ROH

Простой эфир ROR1

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Сложный эфир Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

NєC- Нитрил карбоновой кислоты R-CєN
NO2- Нитросоединение R- NO2
NH3 Соль первичного амина RNH3+X-
R1NH2, R1R2NH

Соль вторичного или третичного амина

RR1NH2+X-, RR1R2NH+ X-

R1CєC- Алкины R1CєC-R
R1C- R1C-R
I- Иодиды R-J

Бимолекулярное нуклеофильное замещение

Типичный механизм взаимодействия метилгалогенидов и первичных алкилгалогенидов с Nu — бимолекулярное нуклеофильное замещение SN2. По такому механизму протекает реакция бромметана с едким натром.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Стадии процесса.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

а б в

Рис.2.1. Бимолекулярное нуклеофильное замещение:а — исходные соединения: заряд локализован на атоме кислорода; б — переходное состояние (активированный комплекс), отрицательный заряд распределен между атомом кислорода и атомом брома; в — продукты реакции

Энергетическая диаграмма

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Рис.2.2. Диаграмма изменения потенциальной энергии в реакции бимолекулярного нуклеофильного замещения, SN2 — процесс согласованный одностадийный: а — энергия исходных веществ, б — энергия переходного состояния, в — энергия продуктов реакции.

Скорость реакции., Концентрация нуклеофильного реагента., Растворитель.

а) достаточно хорошая растворимость реагентов,

б) лучшая сольватация переходного состояния по сравнению с исходными соединениями,

в) предотвращение побочных реакций.

Реакции, в которых из нейтральных молекул образуется полярное переходное состояние, значительно ускоряются при увеличении полярности растворителя: более полярный растворитель в большей степени стабилизирует полярное переходное состояние, чем исходную систему (рис.2.3.а).

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Рис.2.3. Влияние полярности растворителя на скорость SN2: а — повышение полярности растворителя стабилизирует АК в большей степени, чем исходное соединение, энергия активации уменьшается, скорость реакции увеличивается, б — повышение полярности растворителя стабилизирует исходную систему в большей степени, чем АК, энергия активации увеличивается, скорость реакции уменьшается.

Если в исходной системе имеется нуклеофил с полным отрицательным зарядом, то этот заряд стабилизируется в определенной степени в результате электростатического притяжения между молекулами полярного растворителя и ионом Nu- .

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В активированном комплексе заряд распределен между атомом, образующим новую связь, и уходящей группой. Полярный растворитель будет стабилизировать и активированный комплекс и исходное состояние. Увеличение полярности растворителя несколько замедлит реакцию, так как замена менее полярного растворителя на более полярный увеличит в большей степени стабильность исходного соединения, в меньшей — активированного комплекса (рис. 2.3, б).

Наиболее подходящими для синтеза соединений и изучения механизма SN2 являются апротонные биполярные растворители, т.е. растворители с высокой диэлектрической проницаемостью, но не способные к образованию водородных* связей:

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Апротонные растворители не могут сольватировать анионы за счет образования водородных связей с ними и химики называют их «голыми». Биполярные апротонные растворители особенно необходимы для осуществления реакций SN2 в случае применения малоактивных нуклеофилов. В реакции бромэтана (SN2) с гидроксиданионом лучшим растворителем является водный раствор этанола с массовой долей 80%; добавление воды к этанолу служит для предотвращения побочной реакции отщепления бромоводорода.

Уходящие группы

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В этом ряду сила основания увеличивается, а способность быть хорошей уходящей группой уменьшается. Наилучшими уходящими группами являются ионы — сопряженные основания* сильных кислот, так как они являются очень слабыми основаниями (отрицательный заряд распределен).

*Водородная связь — связь между молекулами за счет электростатического притяжения между сильно протонированным атомом водорода одной молекулы и электроотрицательным атомом другой молекулы. Для образования водородной связи необходимо, чтобы электроотрицательными атомами были F, O, N.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Cтереохимия

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Конфигурация исходного 2-бромоктана при атаке хирального атома углерода с тыла меняется на противоположную, молекула субстрата выворачивается. Полное обращение конфигурации хирального углерода может служить доказательством SN2-механизма.

Обозначение конфигурации:

правила старшинства.

Правило старшинства 1.

Если два атома являются изотопами одного элемента, то преимущество имеет атом с большим массовым числом. Например, в хлориодметансульфо- кислоте атомы, согласно их старшинству, располагаются последовательности: I > С1 > S > Н; в a-дейте-роэтилбромиде — Вг > С > О > Н.

*Всякое основание и кислота, между которыми существует соотношение называются сопряженными. Чем сильнее кислота, тем слабее сопряженное основание.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Правило старшинства 2.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Поскольку углерод имеет больший атомный номер, чем водород, то С2Н5 старше. Таким образом, во втор-бутилхлориде заместители, согласно своему старшинству, располагаются образом: С1 >С2Н5>СН3 > Н.

В З-хлор-2-метилпентане атомы С, С и Н изопропильной группы старше С, Н и Н этильной группы и полная последовательность заместителей будет следующей: С1 > изопропил > этил > Н.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В 1,2-дихлор-З-метилпентане группа СН2Cl старше (С1, Н, Н) изопропильной (С, С, Н).

Хлор имеет больший атомный номер, чем углерод, и то, что имеется два атома углерода и только один С1, не имеет значения. (один больший номер значит больше, чем два или три меньших.)

Правило старшинства 3.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Например, в глицериновом альдегиде ОН-группа является старшей; СНО (О, О, Н) старше СН2ОН (О, Н, Н).

Полная последовательность заместителей будет –ОН > –СНО > –СНаОН > –Н.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Фенильная группа С6Н5 рассматривается в виде одной Кекуле:

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В 1-амино-2-метил-1-фенилпропане, например, фенильная группа (С, С, С) старше изопропильной (С, С, Н), но младше, чем N, который имеет больший атомный номер. Последовательность будет NН2 > С6Н5 > С3Н7 > Н.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Обозначение конфигурации соединений с несколькими асимметрическими атомами:

Рассмотрим, например, 2,3-дихлорпентаны. Каждый асимметрический атом углерода, С-2 и С-3, рассматривается по порядку без учета существования другого центра. Согласно правилам старшинства для С-2 получают последовательность С1 > СН3СН2СНСl > СНз > Н, а для С-3 — С1 > СН3СНС1> СН3СН2 > Н. (Почему СН3СНСl —«старше», чем СН3СН2—?)

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

При рассмотрении модели определенного стереоизомера сначала концентрируют внимание на С-2 (игнорируя С-3), а затем на С-3 (игнорируя С-2).

Стереоизомер I обозначают как (2S, 3S)-2,3-дихлорпентан, а другие изомеры — как (2R, ЗR), (2S, ЗR) и (2R, 3S).

Рассмотрим таким же образом 2,3-дихлорбутан. В этом случае два асимметрических aтома углерода эквивалентны, и нет необходимости их нумеровать.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Например, в случае СНСlВгI с асимметрическим атомом углерода связаны четыре различных атома, и старшинство их зависит только от атомного номера, причем, чем больше атомный номер, тем старше заместитель. Таким образом, в порядке уменьшения их старшинства атомы располагаются порядке: I > Вг > С1 > Н.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Затем молекулу располагают, так, чтобы младшая группа была направлена от наблюдателя, и рассматривают расположение оставшихся групп. Если старшинство этих групп уменьшается по часовой конфигурацию обозначают символом R (от латинского rectus — правый); если же старшинство этих групп уменьшается против часовой конфигурацию обозначают символом S (от латинского sinister — левый).

Таким образом, конфигурации I и II выглядят образом:

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

и обозначаются соответственно символами R и S.

Полное название оптически активного соединения отражает и конфигурацию и направление вращения, как, например, (S)-(+)-втор-бутилхлорид. Рацемическую модификацию можно обозначить символом R,S, например (R,S)-втор-бутилхлорид.

Конечно, нельзя путать направление оптического вращения соединения (такого же физического свойства реального вещества, как температура кипения или плавления) с направлением нашего взгляда, когда мы мысленно располагаем молекулу каким-то определенным условным образом. Пока для определенного соединения экспериментально не установлена связь между конфигурацией и знаком вращения, нельзя сказать, знак (+) или (–) соответствует (R)- или (S)-конфигурации.

Сила нуклеофила.

Активность аниона выше, чем активность нейтральной молекулы.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Нуклеофильный реагент, предоставляющий пару электронов электронодефицитному атому углерода, способен подавать эту пару атому водорода и отщеплять его, превращаясь в кислоту, т.е. каждый нуклеофильный реагент является основанием. Нуклеофильная реакционная способность и основность изменяются параллельно у реагентов, в которых пара электронов находится на одном и том же атоме или неподеленная пара электронов находится у атомов элементов, принадлежащих одному периоду.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Реакционная способность нуклеофилов с атомами, находящимися в одной группе, зависит от положения элемента в этой группе: чем больше электроотрицательность атакующего атома, тем более реакционноспособен нуклеофил.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В протонных растворителях нуклеофильность аниона тем выше, чем больше размер иона.

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

Такой порядок изменения нуклеофильности в протонном растворителе объясняется тем, что анионы разного размера в