Конструирование утепленной ребристой плиты покрытия с фанерными обшивками

Курсовая работа

2. Проектирование сборных плит покрытия с деревянным ребристым каркасом

2.1 Исходные данные

2.2 Компановка поперечного сечения плиты

2.3 Расчётная схема плиты, нагрузка и усилия

2.4 Проверка прочности панели по нормальным напряжениям

2.5 Проверка растянутой обшивки с учётом сращивания листов фанеры на «ус» в расчётном сечении

2.6 Проверка сжатой обшивки на устойчивость

2.7 Проверка фанеры на скалывание по собственному клеевому шву

2.8 Проверка жёсткости панели в целом

3. Проектирование дощатоклееной балки

3.1 Исходные данные

3.2 Решение по 1 варианту из неармированного дощатоклееного пакета.

3.3 Решение по 2 варианту с продольной арматурой в растянутой зоне.

4. Проектирование дощатоклееных колонн поперечной рамы одноэтажного дома

4.1 Составление расчётной схемы двухшарнирной поперечной рамы и определение расчётных усилий в колоннах

4.2 Конструктивный расчёт стержня колонны

4.2.1 Проверка устойчивости колоны в плоскости поперечника

4.2.2 Проверка устойчивости колоны из плоскости поперечника

4.3 Расчёт и конструирование узла крепления колоны к фундаменту

4.4 Определение расчётных усилий в плоскости сопряжения с фундаментом

4.5 Расчёт фундаментных болтов

4.6 Расчёт соединительных болтов

1. ИСХОДНЫЕ ДАННЫЕ

Пролет поперечника в осях А — Б, L = 21 м;

  • Высота корпуса в чистоте, H = 10 м;
  • Температурно-влажностный режим эксплуатации соответствует А3;

Класс ответственности здания по назначению — III

Район строительства:

  • по снеговой нагрузке — IV;
  • по ветровой нагрузке — IV;
  • по типу местности соответствует С.

6. Материал — сосна I, II, III сорта, фанера строительная водостойкая марки ФСФ (принимается по сортаменту).

2.1 Проектирование сборных плит покрытия с деревянным ре б ристым каркасом.

2.1. Исходны

Рассчитать и сконструировать утепленную ребристую плиту покрытия с фанерными обшивками при следующих данных.

Номинальные размеры плиты в плане (из схемы расположения элементов) bхl=1.5 х 4.5 м, конструктивные — соответственно 1.48 х 4.48 м.

Материал ребер каркаса — сосновые доски 2-го сорта для продольных ребер и без ограничения для поперечных.

37 стр., 18434 слов

Проектирование Базы Данных для коммерческого предприятия

... примеров приложений нового поколения, которые определяют потребности в новых средствах разработки баз данных и возможностях применения их. Мы рассмотрим кратко пять таких приложений. 1.База ... науках требующих систематического подхода к работе с данными. Дальнейшее развитие компьютерных технологий и компьютеризация общества привела к тому что, базы данных стали разрабатываться практически во всех ...

Обшивки из березовой водостойкой фанеры марки ФСФ.

Утеплитель минераловатные в виде полужестких плит марки 75 на синтетическом связующем, толщина 100 мм (по теплотехническому расчету).

Пароизоляция из полиэтиленовой пленки толщиной 0.2 мм (масса 0.1 кг/м 2 ).

Кровля из 3-х слоев рубероида на битумной мастике (масса 0.1 кг/м 2 ).

Условия эксплуатации по температурно-влажностному режиму соответствуют А3.

Район строительства по снеговой нагрузке — IV.

Класс ответственности здания по назначению — III .

2.2 Компоновка поперечного сечения плиты

Предварительно принимаем продольные ребра из доски толщиной b р =40 мм.

При ширине плиты b=1480 мм целесообразно поставить четыре ребра. Тогда расстояние между ними в свету равно:

мм,

а между осями мм, что меньше 500 мм.

Удовлетворяет рекомендации.

Предварительно задаемся толщиной листа фанеры верхней обшивки

ф.в. = 10 мм, что составляет 1:46 шага ребер, близко рекомендуемой.

Проверяем достаточность толщины расчетом на местный изгиб сосредоточенной силой Р=1.2 кН.

Лист фанеры рассматриваем как балку-пластинку с рабочей шириной

100 см, защемленную по концам в местах приклейки к ребрам (Рис. 1).

Расчетный изгибающий момент (выровненный):

  • М=Ра /8=1.2*42.7/8=6.405 кНсм;

Момент сопротивления рабочего сечения обшивки:

W=1000.8 2 /6=10.7 см3 ;

Условие прочности обшивки :

max =M/W mн Rф . и .90

где m н =1.2 — коэффициент, учитывающий кратковременность

монтажной нагрузки [1, табл.6];

R ф.и.90 = 6.5 МПа = 0.65 кН/см2 — расчетное сопротивление

семислойной фанеры толщиной 10 мм изгибу из плоскости

листа поперек наружных волокон [1, табл.10].

Рис. 1. К расчету верхней обшивки на местный изгиб:

  • а — схема деформации балки пластинки;
  • б — расчетная схема и эпюра моментов.

Подставляем:

max = 6.405/10.7 = 0.6 кН/см2 < mн Rф.и.90 = 1.20.65 = 0.78 кН/см2 .

Условие прочности удовлетворяется.

Задаемся толщиной нижней обшивки 6 мм.

Размеры листов фанеры по сортаменту принимаем bl = 15251525 мм. Так как длина плиты равна 4500 мм, то необходимо сращивать листы по длине, совмещая стыки c поперечными ребрами.

Высоту сечения плиты назначаем в пределах

h п =(1/25…1/30)l=180…150 мм.

По сортаменту пиломатериалов принимаем ребра из досок 15040 мм.

После фрезерования кромок действительная высота плиты будет равна

h п =150-10+10+6=156 мм,

Дальнейшим расчетом проверяем достаточность принятых размеров.

Рис. 2. Конструкция клеефанерной плиты с ребристым каркасом из досок: 1 — продольные ребра; 2 — поперечные ребра;3 — обшивка верхняя; 4 — обшивка нижняя; 5 — утеплитель; 6 — продух; 7 — стык фанеры.

2.3 Расчетная схема плиты, нагрузка и усилия

Расчетная схема плиты на действие эксплуатационной нагрузки — балка на двух опорах, загруженная равномерно распределенной нагрузкой от собственной массы плиты с кровлей и снега (Рис. 3).

Расчетная длина l 0 = 0.98l = 0.984.5 = 4.41 м.

Вид нагрузки

Нормативная

f

Расчетная

кН/м 2

кН/м при b=1.5 м

кН/м 2

кН/м при b=1.5 м

1.

2.

3.

4.

5.

6.

Постоянные: 1.От собственной массы каркаса плиты:

— четыре продольных ребра и шпунтовые рейки из сосновых досок ( см = 500 кг/м3 )

5(0.040.144.48)500 = 62.72 кг

— четыре поперечных ребра

4(0.040.141.48)500=16.6 кг

— фанерные обшивки

при см =700 кг/м3

(0.006+0.01)1.484.48700=

= 74.26 кг

Общая масса отнесенная к 1м 2

(62.72+16.6+74.26)/(4.51.5)= 22.75 кг/м 2

2.От массы утеплителя слоем 100 мм при см = 75кг/м2

[4, прил.III]

3.Масса трехслойной рубероидной кровли

4.Пароизоляция полиэтиленовая

0.2275

0.075

0.10

0.001

0.341

0.113

0.150

0.0015

1.1

1.2

1.3

1.2

0.25

0.09

0.130

0.0012

0.375

0.135

0.195

0.0018

Итого :

q см н = 0.606 кН/м

q см = 0.707 кН/м

Временная:

Снеговая для II снегового района по [1], табл.4 с учетом

п. 5.7*

1.71

2.56

1.4

2.4

3.6

Всего :

q н = 3.166 кН/м

q = 4.307 кН/м

*В соответствии с п. 5.7 при отношении постоянной нагрузки к снеговой 0.606/3.6 = 0.168<0.8 принят f =1.6.

Расчетные усилия :

  • кНм;

кН.

Рис. 3. К расчету плиты на эксплуатационную нагрузку:

  • а — схема опирания плиты на стропильные балки;
  • б — расчетная схема плиты и усилия;
  • 1 — плита;
  • 2 — стропильные балки.

2.4 Проверка прочности панели по нормальным напряжениям

Расчетное поперечное сечение показано на Рис. 4. Так как

l 0 = 4480 > 6a = 6467 = 2800 мм,

то вводимая в расчет ширина обшивок

b расч = 0.9 b = 0.9148 = 133 см.

Суммарная ширина дощатых ребер

b р = 44 = 16 см.

Модули упругости древесины Е д = 1000 кН/см2 , фанеры семислойной марки ФСФ при ф = 8 мм, Еф = 850 кН/см2 , при ф = 6 мм, Еф = 950 кН/см2 . Принимаем усредненно Еф = 900 кН/см2 , тогда коэффициент приведения древесины к фанере nд/ф = 1000/900 = 1.11.

Расстояние от низа плиты до центра тяжести приведенного сечения:

см,

а от верха плиты до центра тяжести приведенного сечения:

см.

Приведенные геометрические характеристики:

см 3 ;

см 3 .

Рис. 4. Расчетное поперечное сечение плиты

Расчетные сопротивления фанеры березовой семислойной по [1, табл.10] растяжению вдоль волокон: R ф.р = 14 МПа = 1.4 кН/см2 , сжатию вдоль волокон при толщине листа 8 мм: Rф.с = 12 МПа = 1.2 кН/см2 . Вводим поправочные коэффициенты. Для условия работы А3 по [1, табл.5] mв = 0.9. Для зданий II класса ответственности по [2, с. 34] n = 0.9. Поправочный множитель к расчетным сопротивлениям:

2.5 Проверка растянутой обшивки с учетом сращивания листов фанеры на «yс» в расчетном сечении

кН/см 2 ,

что меньше чем

= 0.6 1.4 1 = 0.84 кН/см 2 ,

где m ф = 0.6 — коэффициент, учитывающий снижение прочности фанеры

при наличии стыков в расчетном сечении.

Прочность растянутой обшивки обеспечена.

2.6 Проверка сжатой обшивки на устойчивость

Предварительно, согласно [1, п. 4.26], вычисляем ф .

При а 0 /ф = 467/10 = 46.7< 50, находим

ф = .

Условие устойчивости:

Подставим значения:

кН/см 2 ;

кН/см 2 ;

кН/см 2 .

Устойчивость сжатой обшивки обеспечена.

2.7 Проверка фанеры на скалывание по собственному клеевому шву

Предварительно находим статические моменты сдвигаемых частей относительно центра тяжести приведенного сечения.

Сдвигается верхняя обшивка,

S сж отс = 133 1 (7,1 — 10.5) =877,89 см3 .

Сдвигается нижняя обшивка,

S р отс = 133 0.6 (8,5 — 0.60.5) = 654,3 см3 .

Наибольшим сдвигающим напряжениям соответствует

S max отс = Sсж отс = 877,89 см3 верхней обшивки.

По [1], табл.10 при ф = 10 мм расчетное сопротивление скалыванию в плоскости листа вдоль волокон наружных слоев Rф.ск = 0.8 Мпа = 0.08 кН/см2 .

Проверяем условие [1], (42):

кН/см 2 < Rф.ск 1 = 0.8 кН/см2

Прочность клеевого шва достаточна.

2.8 Проверка жесткости панели в целом

Наибольший относительный прогиб панели как двухопорной балки по середине пролета вычисляем по формуле:

Условие жесткости

[1],

табл.16 удовлетворяется.

3. Про ектирование дощатоклееной балки

Для двухскатного малоуклонного покрытиятребуется рассчитать и сконструировать стропильную балку в двух вариантах: 1-дощатоклееная не армированная; вариант 2 — дощатоклееная с продольным армированием.

3.1 Исходные данные

Пролет поперечника в осях L = 21 м, шаг балок В = 4.5 м.

Настил из сборных клеефанерных плит. Нагрузка от собственной массы плит с кровлей: нормативная — 0.404 кН/м 2 ; расчетная — 0.471 кН/м2 .

Снеговая нормативная нагрузка — 1.71 кН/м 2 .

Класс ответственности здания — III.

Температурно-влажностный режим соответствует A3.

Пиломатериал — сосновые доски 2-го и 3-го сортов.

Предельный прогиб балки посередине [f/l] = 1:300.

3.2 Решение по варианту 1 из неармированного дощатоклееного пакета

Расчетная схема балки на рис.6.

Уклон крыши i = 1:15.

Расчетный пролет l 0 = L — hк = 21 — 0.6 = 20.4 м.

Нагрузку от собственной массы балки со связями найдем, приняв

К св = 6

кН/м 2

Подсчет нагрузок на балку приведен в таблице.

Вид нагрузки

Нормативная

f

Расчетная

кН/м 2

кН/м

при В=4.5м

кН/м2

кН/м при

В=4.5 м

Постоянная:

от плит настила и кровли от собственной массы балки и связей

0.40 4

0.295

1.818

1.329

1.2

0.471

0.355

2.12

1.593

Итого:

0. 699

3.147

0.826

3.715

Временная: снеговая

1. 71

7.695

1.4

2.4

10.8

Всего:

10.862

14.51

*Коэффициент надежности по снеговой нагрузке f = 1.4 принят в соответствии с п. 5.7 [2] при qн п /pн с = 0.699/1.71 = 0.408 < 0.8.

Высоту балки по середине пролета h предварительно определим из условия надежности по деформациям с учетом выражения для прогиба и известной формулы прогиба балки постоянной высоты при равномерно распределенной нагрузке

, где .

После подстановки и решения относительно h получим

где b — ширина сечения пакета;

  • поправочный коэффициент.

Задавшись предварительно рекомендуемыми отношениями h 0 /l = 1/15 и

h 0 /h 0.5, по формулам вычисляем

;

Тогда

Шириной досок для пакета зададимся: b =

Подставив значения получаем

м.

Принимаем h = 167 см.

0 = h — 0.5l0 i = 1.67 — 0.520.41/15 = 0.99м, что > 0.4h = 0.668.м.

Проверим сечение балки из условий прочности.

По [1,табл. 3] находим требуемые расчетные сопротивления: при изгибе для древесины 2-го сорта R и =15 МПа = 15 кН/см2 ; при скалывании вдоль волокон для 3-го сорта Rск = 1.5 МПа = 0.15 кН/см2 .

Коэффициенты условий работы:

— для условий эксплуатации A3 по

б = 0.8;

сл = 1.

Коэффициент надежности по назначению для зданий II класса

Поправочные коэффициенты при расчетах:

на изгиб

на скалывание.

Поперечная сила в опорном сечении

Q max = 0.5ql0 = 0.514.5120.4 =148.1 кН.

Минимальная высота балки в опорном сечении из условия прочности на скалывание:

см,

h 0 = 99 > 85 см.

Прочность на скалывание обеспечена.

Расстояние

м.

Изгибающий момент в сечении x р = 6.05 м равен:

кНм.

Высота балки в расчетном сечении:

см.

Момент сопротивления расчетного сечения:

см 3 .

Проверим условие устойчивости, задавшись предварительно коэффицие

кН/см 2 ,

что < R и mi = 1.50.8 = 1.2 кН/см2 .

Условие устойчивости удовлетворяется. При этом фактическая величина коэффициента

Найдем расстояние между связями в плоскости сжатой кромки, при кот

м

см,

ф = 1.13 и — коэффициенты.

Примем расстояние между связями l р = 255 см из условия расстановки.

Поперечное сечение балки компонуем из досок в заготовках

3.3 Решение по варианту 2 с продольной арматурой в ра

Задаемся арматурой из 2

Из условия расположения стержней

Требуемый момент инерции среднего сечения для обеспечения жесткости б

I =I = = 6792133.54 см2

Комплексное металлодеревянное сечение приведем к однородному с помощью коэффициента

S / Еd =20 .

Коэффициент

= = =0.0021

Для I

см

В опорном сечении

h 0 =h — 0.5l0 i = 1.606 — 0.5211/15 = 0.906м >м, из расчета по прочности на скалывание (см. вариант 1).

0 =90.6 см, не изменяя средней высоты.

Уклон при этом равен: , что находится в рекомендуемых пределах.

Положение расчетного нормального сечения находим по

м .

Изгибающий момент:

кНм.

Высота расчетного сечения

см.

Приведенные геометрические характеристики расчетного сечения :

см 4 ,

см 3 ,

и mi = 1.50.8 = 1.2 кН/см2 .

Допустимый коэффициент

при этом расстояние между связями в плоскости сжатой кромки должно быть не больше

см.

Стержни 2 O2

Проверяем прочность на скалывание древесины по периметру клеевого шва.

см 4 ,

см 3 ,

см,

кН/см 2 ,

что <

Прочность на скалывание по клеевому шву обеспечена.

см =3.0 МПа.

При ширине опорной площадки b=17.5см требуемая длина ее

см.

Расчёт опорного узла с вклееными поперечными стержнями

Расчётная несущая способность одного стержня

Принимаю стержень

причём

  • учитывает неравномерность по длине

=1 при одном стержне; 0,9-при двух ; 0,8- при трёх в ряд. Если 2 и 3 стержня расположены в 2 ряда, уменьшается на 0,1.

Рекомендуется на опоре в 2 ряда с центральной прокладкой

  • на срез независимо от сорта древесины.

Требуется

Проверяем условие жесткости :

Г де

;

;

см 4 ,

4. Проектирование дощатоклееных колонн попереч ной рамы одноэтажного здания

4.1 Составление расчетной схемы двухшарнирной поперечной рамы и определение усилий в колоннах

Схема поперечника показана на Рис. 5. Поперечное сечение колонн принято b

15.6 см. Кровля рубероидная. Стены панельные навесные толщиной 15.4 см, конструктивно подобны плитам покрытия.

Рис. 5. Расчетная схема поперечной рамы: а — вертикальные нагрузки на поперечную раму; б — параметры ветрового давления; в — статическая расчетная схема (основная система)

Расчетные нагрузки от собственной массы конструкций:

  • от плит покрытия с рулонной кровлей q п = 0.471 кН/м2 .
  • от стропильных балок со связями q б = 0.354 кН/м2 .
  • от стеновых панелей q ст = 0.341 кН/м2 .

Расчетная снеговая нагрузка p сн = 2,4 кН/м2 .

Ветровой район строительства — IV. Тип местности — C.

Расчетная схема поперечника представляет двухшарнирную П-образную раму. Стойками рамы являются колонны, защемленные в фундаментах, а ригель — — условно недеформируемая стропильная балка, шарнирно опертая на колонны.

При подсчете расчетных нагрузок на раму используем разрез и план здания. Шаг рам В = 4.5 м, свес карниза C = 1 м.

Постоянные нагрузки:

  • от покрытия

кН;

  • от навесных стен

кН,

гдеh = 1.262 м — величина участка выше верха колонны;

  • от собственной массы со связями при

m = 500 кг/м3 и f = 1.3:

кН.

От снега на покрытии:

кН.

Нормативное ветровое давление на уровне земли для III ветрового района принимаем по [2, табл. 5] 0 = 0.48 кН/м2 . На высоте Z от поверхности земли, согласно [2], ветровое давление вычисляется по формуле:

z = 0 k,

где k — коэффициент, характеризующий изменение ветрового давления на

высоте, принимаемый по [2, табл. 6].

Для местности типа C значение k и вычисление соответствующих z приведены ниже :

Неравномерное ветровое давление z на участке высотою Нк заменяем эквивалентным равномерным эк . Допускается использовать при этом условие равенства площадей эпюр z и эк .

кН/ 2 .

Расчетное давление ветра на 1 п.м. вычисляем с участка стены шириной В с учетом аэродинамических коэффициентов с:

где f =1.4 — коэффициент надежности по ветровой нагрузке по [2, п. 6.11];

  • В = 4.5 м.

Значения аэродинамических коэффициентов, соответствующие профилю поперечника (см. Рис. 5) находим по [2, прил. 4, схема 2]: с наветренной стороны с е = 0.8, с подветренной се3 = — 0.6. При этом:

  • с наветренной стороны q = 0.192 0.8 1.4 4.5 = 0.968 кН/м;
  • с подветренной q = — 0.192 0.4 1.4 4.5 = — 0.726 кН/м.

Ветровое давление с участков стен, расположенных выше верха колонн:

c наветренной стороны

W = ((0.4015+0.42043)/2 ) 1.262 0.8 1.4 4.5 = 2.614 кН;

с подветренной

W = — 0.411 1.262 0.6 1.4 4.5 = — 1.96 кН.

Расчетная схема поперечника с усилием в лишней связи X 1 показана на рис.8, в.

Вычисляем продольное усилие в стропильной балке:

;

кН.

Рис. 6. Расчетные схемы и расчетные усилия в колоннах.

Рассматриваем далее левую и правую стойки как статически определимые и для каждой из них определяем усилия в расчетных сечениях. Основными для расчета являются сечения в уровне низа и верха колонн. Заметим при этом, что при изменении направления ветра на противоположное, усилия в каждой из стоек станут также зеркальным отображением противоположной. На рис.9 показаны обе схемы загружения и эпюры N и M.

Левая стойка:

  • верх:

кН;.

  • низ :

кН;

Правая стойка:

  • верх: N п 0 = 165.4 кН;
  • M п 0 = 0;
  • низ: N п max = 190.7 кН;

Расчетные усилия:

N 0 =165.4 кН; Nmax = 190.7 кН; Mmax = 63.364 кНм.

4.2 Конструктивный расчет стержня колонны

Производим проверку сечения дощатоклееной колонны (рис.8, а) из условий устойчивости в плоскости и из плоскости поперечника. Сечение колонны

b к = 17.5 см, hк = 80 см. Пиломатериал — сосновые доски 2-го сорта толщиной 33 мм. По [1, табл.3] Rс = 15 МПа. Прикрепление к фундаменту выполнено с помощью анкерных болтов — жесткое в плоскости поперечника и условно-шарнирное из плоскости.

Коэффициенты условий работы:

в = 0.9;

б = 0.9;

сл = 1.0.

Коэффициент надежности по назначению для зданий

4.2.1 Проверка устойчивости колонны

Предварительно вычисляем:

см 2 ;

см 3 .

Расчетная длина

l ох = 2.2Hк = 2.2 960 = 2112 см;

радиус инерции

r х = 0.289hк = 0.289 80 = 23.12 см;

гибкость

х = lох / rх = 2112/23.12 = 91.349

что удовлетворяет условию

х < max = 120.

Вычисляем коэффициент продольного изгиба :

Вычисляем:

где кН/см 2 .

Изгибающий момент по деформированной схеме:

кНм.

Проверяем условие устойчивости:

кН/см 2 ,

что < R c = 1.35 кН/см2 .

Устойчивость в плоскости поперечника обеспечена.

4.2.2 Проверка устойчивости колонны из плоскости поперечника

Предварительно определим y в предположении, что промежуточных связей нет:

Расчетная длина

l оy = Hк = 960 см;

радиус инерции

r y = 0.289bк = 0.289 17.5 = 5.0575 см;

гибкость

y = lоy / ry = 960/5.0575 = 189.817.

Так как

y = 189.817 > max = 120,

то постановка промежуточных связей необходима .

Проверяем устойчивость при одной промежуточной связи.

Гибкость

y = 0.5 960/5.0575 = 94.909, что < max = 120.

Вычисляем коэффициент продольного изгиба при > 70:

Проверяем условие устойчивости:

кН/см 2 , что < Rc = 1.35 кН/см2 .

Устойчивость из плоскости поперечника обеспечена.

4.3 Расчет и конструирование узла крепления колонны к фундаменту

Требуется спроектировать опорный узел дощатоклееной колонны с металлическими траверсами по типу показанного на рис.10.

Рис. 7. Узел соединения колонны с фундаментом: а — конструкция узла; б — расчетная схема; 1 — фундаментные болты; 2 — траверсы; 3 — болты; 4 — вклеенные стержни; 5 — эпоксидная шпаклевка

Исходные данные: поперечное сечение колонны b к х hк = 17.5 х 80 см. Доски из древесины сосны 2-го сорта толщиной 33 мм.

Определение расчетных усилий в плоскости сопряжения с фундаментом.

кНм;

кН.

Вычисляем эксцентриситет:

м.

Так как е = 1.325 м больше h к /6 = 0.80/6 = 0.133, то имеется отрывной участок по плоскости сопряжения, следовательно, требуется расчет фундаментных болтов и элементов траверс.

4.5 Расчет фундаментных болтов

Вычисляем максимальное и минимальное напряжения в опорном сечении (см. Рис. 7, б):

кН/см 2

max = 0.52 кН/см2 ;

min = — 0.42 кН/см2 — отрывной участок.

Определяем высоту сжатой зоны:

см.

Задаемся d б = 20 мм и находим (см. рис.10, а):

а = 0.5 S 2 + S1 = 4.75 dб = 4.75 2.0 = 9.5 см;

см.

Принимаем фундаментные болты из стали марки ВСт3 кп 2 по ГОСТ 535-88 (см. табл. 60 [5]) с расчетным сопротивлением R y = 185 МПа = 18,5 кН/см2 .

Находим требуемую площадь одного болта в нарезной части:

см 2 .

Принимаем болт диаметром d ан = 27 мм, которому соответствует

F нт = 4,59см2 > 4,06 см2 .

Расстояние между фундаментными болтами в плане (см. Рис. 7, а) получим с учетом принятых а = 95 мм и d ан = 27мм:

мм;

мм.

4.6 Расчет соединительных болтов

Расчетную несущую способность соединительных (глухих) болтов для крепления траверс к колонне находим по формуле как наименьшее из двух значений:

Т гл =0.5 bк dгл = 0.5 17.5 2 = 17,5 кН/шов.

Т гл = 2,5 d2 гл =2,5 22 = 10 кН/шов.

Определяем количество болтов:

шт.

Принимаем 8 болтов, размещаем их в два ряда с шагом:

S 1 7 dб = 7 20 = 140 мм;

S 2 3.5 dб = 3.5 20 = 70 мм;

S 3 3 dб = 3 20 = 60 мм.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[Электронный ресурс]//URL: https://inzhpro.ru/kursovaya/plityi-pokryitiya/

СНиП II-25-80. Деревянные конструкции: Нормы проектирования /Госстрой СССЗ. — М.: Стройиздат, 1983. -31с.

СНиП 2.01.07-85. Нагрузки и воздействия /Госстрой СССР. -М.: ЦИТП Госстроя СССР, 1986. -36 с.

Зубарев Г.Н. Конструкции из дерева и пластмассы: Учебное пособие для студентов вузов, обучающихся по специальности «Промышленное и гражданское строительство». — 2-е изд., перераб. и доп. — М.: Высшая школа, 1990. -287 с.

Проектирование и расчет деревянных конструкций: Справочник /Под ред. Н.М.Гриня. -К.: Будивельник, 1988. -240 с.

Рекомендации по проектированию панельных конструкций с применением древесины и древесных материалов для производственных зданий / ЦНИИСК им. Кучеренко. — М.: Стройиздат, 1982. -12 с.

Серия 1.265 — 1. Деревянные панели покрытий общественных зданий. Вып. 3./ ЦНИИЭП учебных зданий. — М., 1979. — 28 с.

ГОСТ 20850 — 84. Конструкции деревянные клееные. Общие технические условия.

ГОСТ 24454 — 80 Е. Пиломатериалы хвойных пород. Размеры.

СТ СЭВ 4409 — 83. Единая система проектно-конструкторской документации СЭВ. Чертежи строительные. Правило выполнения чертежей деревянных конструкций.