Аграрное общество

Курсовая работа
Содержание скрыть

В современную эпоху, когда компьютерные технологии и математическое моделирование стали катализаторами прогресса во многих областях науки, их использование в исторической науке остается еще очень ограниченным. По существу, математические методы активно используются лишь для статической обработки и анализа социологических и исторических данных, в клиометрических исследованиях. Применение математических моделей в исторических исследованиях является редкостью. Причина этого заключается в сложности моделирования социально-исторических процессов, в слабой формализуемости многих понятий и факторов социальной эволюции.

Имеющиеся в настоящее время модели можно условно разделить на 3 группы:

модели-концепции, основанные на выявлении и анализе общих исторических закономерностей и представлении их в виде когнитивных схем, описывающих логические связи между различными факторами, влияющими на исторические процессы. Такие модели обладают высокой степенью обобщения, но имеют не математический, а чисто логический, концептуальный характер;

частные математические модели имитационного типа, посвященные описанию конкретных исторических событий и явлений. В подобных моделях основное внимание уделяется тщательному учету и описанию факторов и процессов, оказывающих влияние на рассматриваемые явления. Как правило, применимость таких моделей ограничена достаточно узким пространственно-временным интервалом; они “привязаны” к конкретному историческому событию и их невозможно экстраполировать на протяженные периоды времени;

математические модели, являющиеся промежуточными между двумя указанными типами. Эти модели описывают некоторый класс социальных процессов без претензии на детальное описание особенностей для каждого конкретно-исторического случая. Их задачей является выявление базовых закономерностей, характеризующих протекание процессов рассматриваемого вида. В соответствии с этим данные математические модели называют базовыми .

С точки зрения моделирования тенденций и направленности социальной эволюции, анализа причин и последствий тех или иных исторических событий наибольший интерес представляют базовые модели, поскольку они обладают способностью к обобщению и вместе с тем позволяют учесть историческую конкретику. Основой создания таких моделей является математическое описание социальной самоорганизации и эволюции с учетом сложившихся конкретно-исторических условий в рассматриваемом регионе.

5 стр., 2280 слов

Технологический процесс в социальной работе

... работы социальных служб и органов социальной защиты населения. Глава 2. Социальная работа как технологический процесс. Социальная работа, как деятельность представляет собой технологический процесс, который повторяется при решении новой задачи, поэтому необходимо остановиться конкретно на этом понятии. Процесс ... воздействия на жизнедеятельность клиента. Технологии социальной работы как процессу ...

В курсовой работе будут рассмотрены проблемы создания моделей данного типа и пути их решения.

I. Описание динамики социальных систем.

При создании логико-математических моделей социально-исторических процессов возникает много трудностей, поскольку

моделирование социодинамики — одна из наиболее сложных научных

задач. Основными причинами трудностей являются

многопараметричность, динамическая неустойчивость социальных

процессов, их многоуровневость и разномасштабность, слабая

формализуемость многих параметров (таких, как «социальная активность»,

«конформизм» и т.п.), необходимость учета социально- психологических

факторов (таких, как соотношение личных и групповых интересов,

особенности индивидуальной и национальной психологии при принятии

решений и др.), слабая предсказуемость «человеческого фактора» и т.п.

Основной проблемой при изучении и моделировании социальных систем

(СС) является опасность «утонуть» в деталях, сконцентрироваться на

второстепенных вопросах, упустив главное, неверно расставить

приоритеты в выделении определяющих параметров и процессов. Чтобы

избежать данной опасности, необходимо двигаться от общего к частному,

от изучения наиболее общих закономерностей эволюции подобных систем

к исследованию особенностей их динамики в конкретных условиях.

С точки зрения логико-математического моделирования социальные

системы относятся к широкому классу многокомпонентных нелинейных

динамических систем распределенного типа. Такие системы изучаются в

физике, химической кинетике, физической географии, экологии,

популяционной динамике, биологии, информатике и т.д.

К настоящему времени получено много результатов, позволяющих понять

базовые, наиболее общие свойства подобных систем и прогнозировать особенности их поведения в различных условиях. Проведем анализ общих методов моделирования сложных динамических систем и полученных в ходе моделирования результатов.

II. Общие методы моделирования сложных динамических систем.

Изучение закономерностей самоорганизации и эволюции природных

и общественных систем было предметом многочисленных исследований со

времен Канта, Гегеля, Маркса и Дарвина. С другой стороны,

математическое моделирование подобных процессов сформировалось в

качестве самостоятельного направления науки совсем недавно.

Пионерские идеи в этой области принадлежат Л. Берталанфи, А.Тьюрингу,, И.Пригожину, М.Эйгену, Г.Хакену, Н.Н.Моисееву, С.П.Курдюмову,, Ю.Л.Климонтовичу. В последние годы появились первые обзоры и

монографии, последовательно излагающие весь круг затрагиваемых

проблем. Общность проблем способствовала выделению

методов их решения в отдельное научное направление, которое в Европе

13 стр., 6425 слов

Имитационное моделирование экономических процессов

... теории моделирования экономических систем и процессов 1.1 Понятие моделирования Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и ...

по инициативе Г.Хакена принято называть синергетикой, а в Америке —

нелинейной динамикой или наукой о сложности.

Моделирование динамики нелинейных систем проводится на основе

использования многомерных дифференциальных уравнений,

разностных уравнений, математического аппарата клеточных

автоматов, математического аппарата теории катастроф,

математического аппарата теории самоорганизованной критичности, стохастических дифференциальных уравнений Ланжевена и Ито-

Стратоновича, анализа систем с хаосом и реконструкции устойчивых

состояний (аттракторов) по временным рядам.

Чаще всего для моделирования сложных систем используются

дифференциальные уравнения, описывающие динамику изменения

фазовых переменных рассматриваемой системы. Как правило, эти

уравнения имеют вид:

(1)

где X = ( ) — вектор зависимых переменных, характеризующих

состояние социальной системы; — скорость изменения переменных X ;

t — время; — вектор-функция (в общем случае нелинейная),

отражающая изменение этих переменных во времени; а — вектор

параметров системы, в общем случае зависящих от времени.

Решения уравнений X(а, t) обычно представляют в виде траекторий в

фазовом пространстве системы (рис.1).

Рис.1. Структура фазового пространства социальной системы с двумя

аттракторами

и и соответствующими им областями притяжения и

На рисунке точки

(аттракторы) типа «центр», к которым результате

своей эволюции; области

система находится в какой-либо точке фазового

принадлежащей этим областям, то с течением времени она окажется,

соответственно, в точке

сделать заключение о характере эволюции системы, определять области ее

детерминированного поведения и области бифуркаций (то есть области

параметров, при которых возникает неустойчивость и происходит

изменение числа и/или вида решений системы (1)).

Как правило, переход от устойчивого к неустойчивому состоянию и наоборот происходит при изменении какого-либо из параметров системы (1).

В этом случае данный параметр называется параметром порядка.

Посредством уменьшения (или увеличения) значений параметров порядка

можно влиять на поведение системы, на изменение ее состояния. Таким

образом, описание динамики сложной системы с помощью возможных

траекторий в пространстве фазовых переменных позволяет исследовать

особенности ее поведения при различных внешних условиях и при

4 стр., 1578 слов

CAD-системы — область применения, примеры программных продуктов

... именуются системами автоматизированного проектирования САПР). Как правило, в современные CAD-системы входят ... систем с системами PDM, другими средствами информационной поддержки изделий.[3] 1.4 Лидеры рынка В настоящее время крупнейшими разработчиками CAD/CAM-систем ... Внедрение современных компьютерных технологий на рос сийских промышленных ... в стремительное развитие новой области.[3] Аналитики считают, ...

различных управляющих воздействиях.

III. Моделирование динамики социальных систем.