Более подробно некоторые вопросы
§ 28-3. Регулирование скорости вращения асинхронных двигателей с фазным ротором
Для двигателей с фазным ротором можно в принципе использовать все те же способы регулирования скорости вращения, как и для двигателей с короткозамкнутым ротором (см. § 28-2).
Однако на практике из числа этих способов для двигателей с фазным ротором применяется только способ регулирования скорости вращения с помощью реакторов насыщения. Ниже рассмотрим способы регулирования скорости вращения, которые специфичны для двигателей с фазным ротором и в которых используется возможность включения регулирующих устройств во вторичную цепь.
Регулирование скорости вращения с помощью реостата в цепи
При М„ =? const рабочее скольжение s с большой точностью пропорционально s m и, следовательно, активному сопротивлению цепи ротора. Поэтому скольжения s и s’, соответствующие случаям г Д = 0 и гд =f= 0, находятся в соотношении
Рассматриваемый способ регулирования скорости связан со значительными потерями энергии в сопротивлении гд и поэтому малоэкономичен. Он применяется главным образом при кратковременной или повторно-кратковременной работе (например, пуско-наладочные режимы некоторых машин, крановые устройства и пр.), а также в приводах с вентиляторным моментом. В последнем случае мощность на валу с уменьшением скорости быстро снижается, и поэтому мощность скольжения и потери в цепи ротора по величине ограничены.
К недостаткам реостатного регулирования
Регулирование скорости вращения посредством введения добавочной э. д. с. во вторичную цепь двигателя.
Регулирование скорости вращения асинхронного двигателя путем увеличения его скольжения всегда связано с выделением во вторичной цепи двигателя значительной электрической мощности скольжения
большая часть которой при реостатном регулировании теряется в реостате. Поэтому, естественно, возникает мысль о полезном использовании этой мощности и о повышении таким образом к. п. д. установки.
Асинхронные исполнительные двигатели
... 3. Опишите, какие процессы происходят в трехфазном асинхронном двигателе с короткозамкнутым ротором и объясните, почему скорость вращения ротора всегда меньше частоты вращения магнитного поля. 4. Объясните возникновение вращающегося магнитного поля ...
Полезное использование мощности скольжения возможно, если вместо реостата присоединить к контактным кольцам фазного двигателя
Эта машина будет работать в режиме двигателя и оказывать воздействие на регулируемый асинхронный двигатель, развивая напряжение на его вторичных зажимах, так как при вращении вспомогательной машины в ее якоре индуктируется э. д. с. Можно также сказать, что задачей вспомогательной
Р SK = m 2 U 2K I 2 cos ф2
во внешнюю цепь двигателя. Вместе с тем, вспомогательная машина
в отличие от реостата позволяет полезно использовать эту мощность.
Прежде всего рассмотрим вопрос о влиянии на работу фазного
асинхронного двигателя внешней добавочной э. д. с. £ д , вводимой
во вторичную цепь двигателя с помощью его контактных колец, при условии, что частота этой добавочной э. д. с. всегда равна частоте вторичного тока и э. д. с. /2 = s/i самого двигателя.
На рис. 28-13, а изображена векторная диаграмма вторичной цепи асинхронного двигателя при Е А — 0. Вторичный ток двигателя
имеет величину, необходимую для создания нужного электромагнитного момента М в соответствии с величиной момента нагрузки М„ на валу.
Рис, 28-13. Векторные диаграммы вторичной цепи асинхронного двигателя при отсутствии добавочной э. д. с. (а) и при введший этой э. д. с, для уменьшения (б) и увеличения (в) скорости вращения
Если теперь so вторичную цепь ввести э. д. с. Е ж встречно э. д. с. скольжения £«« в этой же цепи, то вторичный ток
в первый момент времени уменьшится. Поэтому развиваемый двигателем момент М также уменьшится, двигатель начнет тормозиться, а скольжение s — увеличиваться. При этом, согласно равенству (28-Ш), ток 1 г , а вместе с ним и момент М будут увеличиваться. Это будет происхбдить до тех пор, пока опять не наступит равновесие моментов М = М„ на валу. Двигатель при этом будет работать с увеличенным скольжением s, а векторная диаграмма вторичной цепи приобретет вид, изображенный на рис. 28-13, б. Очевидно, что посредством регулирования величины Е А можно регулировать величину s и, следовательно, скорость вращения двигателя.
Предположим теперь, что э. д с. £д имеет по сравнению с рассмотренным случаем противоположное направление и совпадает
В первый момент после введения э, д. с. Е я ток /2 и момент ЛЯ возрастут, двигатель будет ускоряться и s будет уменьшаться. При достаточной величине £д величина s уменьшится до нуля, и если ток /2 , создаваемый в этом случае только за счет действия Е ж , все еще будет велик по сравнению с током, необходимым для создания момента М — МСт , то ускорение двигателя будет продолжаться и скорость превысит синхронную. Скольжение s и э. д. с. Ёц при этом изменят знаки и будут расти по абсолютной величине до тех пор, пока в соответствии с выражением (28-11) ток не упадет до
Асинхронный двигатель с фазным ротором
... управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора и/или его момента. Существуют следующие способы управления асинхронным двигателем: § реостатный — изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора, ...
необходимой величины. При s < О угол чр2 = aretjg отрицали тельный й векторная диаграмма вторичной цепи двигателя имеет
вид, показанный на рис. 28-13, в. Ток \ % при этом будет иметь составляющую, совпадающую с Ф. Поэтому намагничивающий ток, потребляемый из первичной цепи, уменьшится и cos <p двигателя повысится.
Таким образом, с помощью добавочной э. д. с. £д , путем изменения ее величины и направления, можно осуществить плавной двухзонное регулирование скорости двигателя: ниже и выще синхронной.
Если пренебречь потерями, то мощность источника добавочной э. д. с. равна мощности скольжения sP m , причем при s > 0 этот источник является приемником и потребляет энергию из вторичной цепи двигателя, а при s < 0 — генератором и отдает мощность во вторичную цепь двигателя. Механическая мощность, развиваемая магнитным полем двигателя,
при s > 0 будет меньше Р ш , а при s < 0 в соответствии с изменением знака мощности скольжения Р ш > Р эя .
Каскад асинхронного двигатели с машиной постоянного тока.
Реализация рассмотренного способа регулирования скорости вращения асинхронного двигателя посредством добавочной э. д. с. осуществляется в каскадных соединениях двигателя со вспомогательными электрическими машинами. Рассмотрим здесь каскадные соединения асинхронного двигателя с машиной постоянного тока. На рис. 28-14, а показана схема каскада фазного асинхронного двигателя АД, приводящего в движение некоторую рабочую машину РМ, с машиной постоянного тока независимого возбуждения
МПТ. Цепь якоря МПТ приключена к контактным кольцам асинхронного двигателя через ионный или полупроводниковый выпрямитель В, соединенный по трехфазной мостовой схеме. Выпрямитель преобразовывает переменный ток частоты скольжения /2 = sf x во вторичной цепи АД в постоянный ток в цепи якоря МПТ. Э. д. с. якоря МПТ в данном случае и является той рассмотренной выше добавочной э. д. с. Е л , которая (в данном случае с помощью выпрямителя В) вводится во вторичную цепь двигателя АД. Регулирование величины этой э. д. с. и скорости вращения АД производится путем регулирования тока возбуждения МПТ.
Техническая эксплуатация и ремонт двигателей постоянного тока (2)
... что механическая мощность двигателя может быть выражена через вращающий момент и угловую скорость Следовательно, полезный вращающий момент двигателя М (Н ... постоянного тока в двигательном режиме скорость вращения ротора не связана жестко с частотой сети, как в асинхронных и ... стороны геометрической нейтрали, направлены встречно и взаимно компенсируются. Для того чтобы подать от обмотки якоря во ...
На схеме рис. 28-14, а машина постоянного тока МПТ расположена на валу асинхронного двигателя АД. Она преобразовывает
Рис. 28-14. Схемы электромеханического (а) и электрического (б) каскадов асинхронного двигателя АД с машиной постоянного тока МПТ
мощность скольжения P s , потребляемую из вторичной цепи АД, в механическую мощность, которая через вал двигателя АД вместе с механической мощностью Рмх двигателя передается рабочей машине РМ. Такой каскад называется электромеханическим. Если при регулировании скорости вращения обеспечить полное использование мощности АД (Рх = Рн = const) и пренебречь потерями, то в этом каскаде мощность, передаваемая рабочей машине РМ,
также остается при всех скоростях постоянной и равной номинальной мощности. В связи с этим электромеханический каскад иногда условно называют также каскадом постоянной мощности. Необходимая номинальная мощность вспомогательной машины каскада (в данном случае МПТ) зависит от пределов регулирования скорости:
Каскад с выпрямителями допускает регулирование
Если заменить выпрямитель управляемым ионным или полупроводниковым преобразователем, способным производить также обратное преобразование — постоянного тока в переменный, то можно осуществить также регулирование скорости вверх от синхронной (s < 0).
Указанные на рис. 28-14 направления передачи мощности скольжения при s < 0 изменятся на обратные. Ввиду сложности системы управления таким преобразователем и других причин эти каскады до сих пор применения не получили. Ранее применялись также каскады, выполненные по схеме рис. 28-14, а, в которой вместо выпрямителя использовался одноякорный преобразователь переменного тока в постоянный (см. § 41-1).
На рис. 28-14, б изображена схема каскада, которая отличается от схемы рис. 28-14, а тем, что МПТ соединена механически со вспомогательной асинхронной или синхронной машиной ВМ. В этом каскаде мощность скольжения Р„ при s > 0 передается с помощью ВМ, работающей в режиме генератора, обратно в сеть переменного тока. При s < 0 ВМ работает в режиме двигателя. Такой каскад называется электрическим. В этом каскаде машине РМ передается только механическая мощность двигателя АД
которая при P\ — Pn — const уменьшается пропорционально скорости вращения. Момент на валу РМ при этом остается постоянным, вследствие чего такой каскад иногда условно называют также каскадом с постоянным моментом. Машины ВМ и МПТ на схеме рис. 28-14, б можно заменить трансформатором и полупроводниковым преобразователем постоянного тока в переменный и обратно.
Каскады позволяют осуществить экономичное и
Контроллер шагового двигателя
... работа на высоких скоростях невысокая удельная мощность относительно сложная схема управления Существуют три основных типа шаговых двигателей: двигатели с постоянными магнитами гибридные двигатели Определить тип двигателя ... слабо. Поэтому в отличие от двигателей постоянного тока, магнит гибридного двигателя невозможно размагнитить ни при какой величине тока обмоток. Величина зазора между зубцами ...
Рассмотренные выше каскадные соединения в связи с использованием в них ионных или полупроводниковых вентилей называют также вентильными каскадами.
Существуют также другие системы каскадов, в частности с использованием коллекторных машин переменного тока (см- § 42-3).
Каскадные установки выполняются на мощности в сотни и тысячи киловатт с регулированием скорости вращения в пределах до 3 : 1 и больше.