Разработка энергосберегающей схемы разделения трехкомпонентной азеотропной смеси бензол–циклогексан-гексан методом экстрактивной ректификации с сульфоланом

Дипломная работа

2.1.Методы разделения азеотропных смесей.

В различных отраслях промышленности используют разнообразные жидкие и газовые смеси, подлежащие разделению на чистые компоненты или фракции различного состава. Разделение таких смесей проводят в комплексах, основанных на процессе ректификации.

Необходимо иметь в виду, что смеси, образующие азеотроп, разделить на практически чистые компоненты методом обычной ректификации нельзя. В данном случае необходимо использовать специальные методы ректификации, такие как:

  • разделение в колоннах, работающих под разным давлением;
  • азеотропную ректификацию;
  • экстрактивную ректификацию.

2.1.1. Разделение в колоннах работающих под разным давлением

Для разделения азеотропных смесей путем обычной ректификации используются комплексы (рис.1) , работающие под разным давлением, которые позволяют преодолеть ограничения физико-химического характера и получать продукты требуемой чистоты. При этом используется свойство изменения состава азеотропной смеси с изменением температуры [1].

Составы азеотропов при разных давлениях различны, причем в зависимости от давления состав питания может принадлежать то одной, то другой области ректификации. Именно это свойство используется в двухколонных комплексах, предназначенных для разделения азеотропных смесей, в которых колонны работают при разных давлениях.

Рис.1. Разделение азеотропных смесей в комплексах, работающих под разным давлением

Путем изменения внешнего давления можно передвинуть азеотропный состав в область концентраций, отвечающих практически приемлемой чистоте одного из компонентов системы, и тогда ректификация на практически чистые компоненты окажется уже возможной. Изменение состава азеотропа, приходящееся на один градус температуры, согласно правилу Вревского, зависит от разности молярных теплот испарения компонентов. Следовательно, рассматриваемый метод разделения тем эффективнее, чем больше отличаются теплоты испарения компонентов разделяемой смеси.

Обычно теплоты испарения значительно различаются у веществ различной химической природы. Но практическое применение метода ограничено, т.к. возможный интервал изменения давлений ограничен температурами хладагентов, используемыми для конденсации паров в дефлегматорах, и теплоносителей, применяемых в кубах ректификационных установок. В силу указанных причин метод ректификации при двух различных давлениях не получил широкого практического применения для разделения азеотропных смесей.

13 стр., 6496 слов

Общие сведения о перегонке и ректификации

... разделения смесей. Перегонка с ректификацией ... давлениях по отношению к остатку предыдущего процесса. Из процессов сложной перегонки различают перегонку с дефлегмацией и перегонку с ректификацией. При перегонке ... перегонки нефти характеризуются большим разнообразием схем перегонки, широким ассортиментом получаемых фракций. Даже при одинаковой производительности ректификационные колонны имеют разные ...

2.1.2. Азеотропная ректификация

Достаточно высокая степень разделения жидких смесей на компоненты может быть достигнута путём ректификации. Разделение обычно осуществляется в колонных аппаратах при непрерывном контакте фаз. Проводя последовательно ряд процессов испарения жидкости и конденсации пара, можно получить в итоге жидкость (дистиллят), представляющую собой практически чистый низкокипящий компонент (НКК).

Аналогично, исходя из паровой фазы с соответствующим составом жидкости, путём проведения ряда последовательных процессов конденсации и испарения можно получить жидкость (кубовый остаток), состоящую почти из чистого высококипящего компонента (ВКК).

Процесс ректификации осуществляется путём многократного контакта между неравновесными жидкой и паровой фазами, движущимися относительно друг друга. При взаимодействии фаз между ними происходит массо- и теплообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами. Многократное контактирование приводит к практически полному разделению исходной смеси.

Таким образом, отсутствие равновесия при движении фаз с определённой скоростью и многократность их контактирования являются непременным условием проведения ректификации.

Метод азеотропной ректификации (АР) основывается на проведении процесса ректификации с разделяющими агентами, обладающими свойством либо разбивать азеотроп, либо образовывать с одним или несколькими компонентами исходной смеси азеотропные системы и тем самым увеличивать коэффициенты относительной летучести разделяемых компонентов [2].

Процессы азеотропной ректификации стараются проводить так, чтобы вводимый в колонну разделяющий агент полностью выводился с дистиллатом. В виде кубового продукта можно получить один компонент или смесь нескольких компонентов с минимальным содержанием разделяющего агента (РА).

Так как в этом процессе РА выводится из системы в виде азеотропных смесей, его регенерация представляет большие трудности. В связи с этим наиболее желательными являются РА, обладающие ограниченной взаимной растворимостью в компонентах, отбираемых в виде дистиллата. В этом случае рецикл РА может быть осуществлен путем расслаивания охлажденного конденсата, отбираемого из верха колонны, и отбора в качестве дистиллата слоя, обогащенного целевым веществом. Содержащийся в этом растворе РА может быть отогнан в регенерационной колонне в виде азеотропа, также подвергаемого расслаиванию после конденсации и охлаждения.

Практический чистый целевой компонент получается в регенерационной колонне в виде кубовой жидкости. Типичная схема процесса азеотропной ректификации в присутствие РА представлена на рис.2

Рис. 2 Схема установки для азеотропной ректификации

1 -ректификационная колонна; 2- колонна регенерации РА; 3 — холодильник; 4 — расслаиватель.

2.1.3. Теоретические основы экстрактивной ректификации

Экстрактивная ректификация (ЭР) весьма часто применима в промышленности и она становится все более и более значимым методом разделения в нефтехимической инженерии. Масштаб отбираемого продукта на промышленном оборудовании варьируется от нескольких килотонн (диаметр колонны около 0,5 м) до сотен килотонн (диаметр колонны около 2,5 м).

15 стр., 7126 слов

Расчет ректификационной колонны (2)

... чем исходная) азеотропную смесь. Эта азеотропная смесь выделяется в качестве дистиллята, а другой практически чистый компонент удаляется в виде кубового остатка. При описании и расчетах процессов, осуществляемых в ректификационных аппаратах ...

Процесс главным образом используется в следующих случаях: одним из применений является разделение углеводородов с близкими значениями температур кипения, таких как смеси состава С 4 , С5 , С6 и т.д. Другое — это разделение смесей, образующих азеотроп, например спирт-вода, ацетокислота-вода, ацетон-метанол, метанол-метил-ацетат и т.д.

В ЭР добавляемый растворитель, т.е. разделяющий агент (РА), используется для изменения относительной летучести разделяемых компонентов. Таким образом возможно получить в одной колонне один чистый компонент с верха, а второй вместе с растворителем с низа, которые могут быть легко разделены во второй дистилляционной колонне, благодаря высокой температуре кипения растворителя. В процессе экстрактивной ректификации не обязательно выпаривать растворитель. Тогда как в азеотропной ректификации и растворитель и компоненты должны быть выпарены на верх азеотропной колонны ректификации. Более того, количество растворителя, применяемого в процессе азеотропной ректификации, обычно весьма велико. Это приводит к большему расходу энергии по сравнению с экстрактивной ректификацией. По этой причине, последняя является более предпочтительней. Недавно был предложен особый метод экстракции, адсорбционная экстракция, который представляет некий интерес. [3]

В общем, экстрактивная ректификация является одним из случаев реализации принципа перераспределения полей концентраций. При этом с одной стороны, преобразуется концентрационное пространство за счет добавления одного или нескольких экстрактивных агентов, которое обладает новым фазовым портретом по сравнению с исходным. С другой стороны, за счет разновысотной подачи экстрактивного агента и исходной смеси преобразуется динамическая система ректификации. Последнее порождает экстремумы на температурном профиле, соответствующем распределению компонентов по высоте колонны, что свидетельствует, о наличии элементов обратной ректификации,. Разновысотная подача потоков в колонну является обязательным условием реализации принципа перераспределения в данном методе.

В процессах экстрактивной ректификации регенерация разделяющего агента чаще всего не представляет затруднений. В связи с большим различием относительной летучести компонентов заданной смеси и разделяющего агента его регенерация легко осуществляется путем обычной ректификации, в процессе которой он отбирается в виде кубовой жидкости и вновь подается в колонну для экстрактивной ректификации. Традиционный комплекс экстрактивной ректификации состоит из двух ректификационных колонн: экстрактивной и колонны регенерации экстрактивного агента (ЭА).

Такой комплекс представлен на рис.(3), где первая колонна является экстрактивной, куда подается тяжело- кипящий разделяющий агент, а сверху отбирается один из азеотропообразующих компонентов; продуктами второй колонны являются второй компонент азеотропной пары (дистиллат) и регенерированный экстрактивный агент (куб), который направляется на рецикл.

Рис.3 Схема установки для экстрактивной ректификации

1 — экстрактивно-ректификационная колонна; 2 — отгонная колонна

2.2. Экстракционное выделение аренов из катализатов риформинга бензиновых фракций.

В качестве экстрагентов аренов в промышленности применяются сульфолан, диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ), тетраэтиленгликоль, N-формилморфолин, диметилсульфооксид, смеси N-метилпирролидона или N-метилкапролактама с этиленгликолем. Важнейшие требования к экстрагентам, от которых зависят степень извлечения и качество выделенных аренов, следующие:

  • высокая групповая селективность, которую можно характеризовать отношением коэффициентов активности разделяемых групп углеводородов при бесконечном разбавлении в экстрагенте (предельных коэффициентов активности), например отношением предельных коэффициентов активности циклогексана и бензола ( ? 0 цг /? 0 б );
  • высокая растворяющая способность по отношению к аренам, от которой зависит степень их извлечения и требующееся соотношение экстрагента к сырью;
  • растворяющая способность, или «емкость», экстрагента тем выше, чем ниже предельные коэффициенты активности аренов, поэтому ее можно характеризовать величиной, обратной предельному коэффициенту активности бензола в экстрагенте (1/ ? 0 б );
  • низкая селективность по молекулярным массам, которая зависит от отношения предельных коэффициентов активности углеведородов — гомологов, напрмер, октана и гептана (lg( ? 0 окт /? 0 гп ));
  • только при этом условии экстрагенты высокой групповой селективностью могут обеспечить высокую степень извлечения и качество не только бензола, но и его гомологов — толуола, ксилолов.

Характеристика промышленных экстрагентов по всем этим важнейшим критериям представлена в табл.1. Некоторые селективные растворители с повышенной растворяющей способностью — N-метилпирролидон, N-формилморфолин, а также диметилформамид — применяются не только в качестве экстрагентов, но и как растворители для выделения аренов С 68 из более узкокипящих фракций в процессах экстрактивой ректификации.

Зависимость групповой селективности экстрагентов от температуры представлена на рис.4. С повышением температуры селективность сильно ассоциированных растворителей, в частности этиленгликоля, снижается более резко, чем слабо ассоциированных экстрагентов с повышенной растворяющей способностью, к которым относятся N-метилкапролактам, N-метилпирролидон, диметилформамид, N-формилморфолин.

Табл.1

Предель?ные коэффициенты активности углеводородов, селективность экстрагентов по отношению к системе циклогексан-бензол (?0 цг /?0 б ), селективность по молекулярным массам (lg(?0 окт /?0 гп )) и растворяющая способность экстрагентов (1/?0 б )

Экстрагент

Т,0 С

?0 гп

?0 окт

?0 цг

?0 б

?0 цг /?0 б

lg(?0 окт /?0 гп )

(1/?0 б )

Сульфолан

30

60

80

99,0

60,0

50,7

141

80,1

65,6

33,8

23,0

19,9

2,43

2,38

2,49

13,9

9,66

7,99

0,154

0,125

0,122

0,412

0,420

0,402

N-формилморфолин

30

61,7

46,68

32,06

63,35

41,78

17,90

13,77

2,03

1,99

8,82

6,92

0,133

0,115

0,493

0,503

Диметилсульфоксид

20

40

60

149

95

65

220

136

87

46,0

33,0

25,0

3,83

3,20

3,03

12,0

10,3

8,25

0,169

0,159

0,126

0,261

0,312

0,330

Этиленгликоль

20

40,8

60

1370

930

457

2380

1440

663

278

258

188

31,6

33,3

32,0

8,80

7,75

5,88

0,240

0,190

0,162

0,032

0,030

0,031

Диэтиленгликоль

25

60

100

164,5

260

71,7

6,41

6,5

6,2

11,2

0,199

0,156

Триэтиленгликоль

30

80

94,5

40,8

139

54,5

29,3

15,2

3,86

3,02

7,59

5,03

0,168

0,126

0,259

0,331

Тетраэтиленгликоль

30

70

57,9

85,8

18,3

2,46

2,48

7,44

0,171

0,407

0,403

N-метилпирролидон

30

60

17,7

11,5

21,6

13,1

8,52

6,30

1,08

1,08

7,89

5,83

0,086

0,057

0,926

0,926

N-метилкапролактам

20

40

60

7,9

6,8

5,8

9,1

7,1

6,7

4,2

4,0

3,3

0,85

0,85

0,87

4,9

4,7

3,8

0,061

0,019

0,063

1,176

1,176

1,149

Диметилформамид

25

40

22,7

18,9

29,4

24,2

11,6

9,9

1,47

1,43

7,89

6,92

0,122

0,107

0,680

0,699

N-метилморфолинон-3

30

55,7

80,4

21,9

2,20

9,95

0,159

0,455

N-ацетилоксазолидин

30

40,6

52,6

17,6

1,84

9,57

0,089

0,543

N-метилоксазолидинон-2

30

53,1

70,4

21,2

1,98

10,7

0,123

0,505

Тиетан-1-оксид

30

59,6

79,0

21,2

1,97

10,8

0,122

0,508

Тиофан-1-оксид

30

38,2

53,1

14,6

1,64

8,9

0,143

0,610

2-метилтиетан-1,1-диоксид

30

44,2

58,8

18,1

1,90

9,53

0,124

0,526

2-тетрагидрофурфурил-оксипропионитрил

30

15,6

19,6

7,10

1,17

6,07

0,099

0,855

Цианэтильные производные метилденглицеринов

30

40

77,0

62,8

109

88,2

24,5

20,8

2,26

2,12

10,8

9,81

0,151

0,147

0,442

0,472

Левулинонитрил

30

63,0

90,0

24,0

2,43

9,88

0,155

0,412

Рис.4

Зависимость селективности растворителей по отношению к системам гексан-бензол и циклогексан-бензол от температуры

1-сульфолан, 2-диметилсульфоксид, 3 — N-формилморфолин, 4-ТЭГ, 5-этиленгликоль, 6 — N-метилпирролидон, 7 — диметилформамид, 8 — N-метилкапролактам.

По селективности по отношению к системе циклогексан-бензол при 60 0 С экстрагенты располагаются в следующий ряд: сульфолан > диметилсульфооксид > N-формилморфолин > ТЭГ ? тетраэтиленгликоль ? ДЭГ ? ЭГ > N-метилпирролидон диметилформамид > N-метилкапролактам.

Практически в той же последовательности располагаются экстрагенты и по селективности к системе циклогексан — бензол, только в этом случае N-метилпирролидон и диметилформамид оказываются близки к гликолям.

По растворяющей способности к аренам при одинаковой температуре экстрагенты располагаются в следующий ряд: N-метилкапролактам > N-метилпирролидон > диметилформамид > N-формилморфолин ? сульфолан > тетраэтиленгликоль > диметилсульфооксид > ТЭГ > ДЭГ > этиленгликоль.

Низкая растворяющая способность характерна для сильно ассоциированных растворителей — гликолей, диметилсульфооксида. Эти же растворители проявляют и повышенную селективность по молекулярным массам, что обусловлено высокими значениями удельных энтальпий образования полости в структуре ассоциированных экстрагентов и быстро возрастающими затратами энергии при растворении углеводородов-гомологов с увеличением их молярных объемов.

В табл. 1 представлены также данные о селективности и растворяющей способности ряда растворителей, предложенных для экстракции аренов в результате многолетних исследований, проводимых в Санкт-Петербурском государственном технологическом институте. По сочетанию высокой групповой селективности и растворяющей способности, умеренной селективности по молекулярным массам эти растворители не уступают наиболее эффективным промышленным экстрагентам — сульфолану и N-формилморфолину.

Предложенные селективные растворители не нашли применения из-за отсутствия их промышленного производства.

К экстрагентам предъявляется еще и ряд технологических требований:

  • Плотность, отличающаяся от плотности сырья, — для быстрого расслаивания экстрактной и рафинатной фаз;
  • Температура кипения, отличающаяся от температуры кипения компонентов сырья, — для регенерации экстрагента из экстрактной фазы ректификацией;
  • Хорошая растворимость в воде и высокие коэффициенты распределения при экстракции водой из рафинатной фазы и экстракта;
  • Низкая вязкость, что повышает коэффициент полезного действия тарелок экстракционной колонны или снижает высоту, эквивалентную теоретической ступени экстракции;
  • Высокая термическая и гидролитическая стабильность — при температуре в колонне регенерации экстрагента из экстрактной фазы ректификацией с водяным паром;
  • Низкая коррозионная активность;
  • Невысокая температура плавления;
  • Низкая удельная теплоемкость и теплота испарения — для снижения энергозатрат при нагревании и глубокой регенерации экстрагента вакуумной ректификацией;
  • Доступность сырья для производства и низкая стоимость экстрагента;
  • Низкая токсичность;
  • Взрывобезопасность.

Физико-химические свойства экстрагентов, применяющихся в промышленности для выделения аренов С 68 , представлены в табл.2. Преимущества и недостатки применяющихся селективных растворителей сопоставлены в табл.3.

Табл.2

Физико-химические свойства экстрагентов аренов

Экстрагент

? 20 4

Т кип ,0 С

Т пл ,0 С

?

(при 20 0 С), мПа*с

Ср,( при 20 0 С), кДж/(кг*К)

Н исп , (при 25 0 С), кДж/моль

?

(при 20 0 С), мН/м

ПДК,

мг/м3

Сульфолан

1,2604

(30 0 С)

285

28,4

10,0

(30 0 С)

1,34

(30 0 С)

61,5

(200 0 С)

60,33

(40 0 С)

50

Этиленгликоль

1,1135

197,6

-12,6

19,9

2,40

(22 0 С)

52,5

(197,6 0 С)

48,43

0,1

Диэтиленгликоль

1,1161

245,8

-7,8

35,7

2,093

62,0

48,5

(25 0 С)

0,2

Триэтиленгликоль

1,1242

285

-4,3

49,0

2,17

71,6

45,57

Тетраэтиленгликоль

1,1247

327,3

-6,2

61,3

2,14

88,8

45

(25 0 С)

N-формилморфолин

1,1528

244

20-21

9,37

1,97

46,06

Диметилсульфооксид

1,0960

(25 0 С)

189

18,45

2,473

2,05

57,28

43,49

20

N-метилпирролидон

1,0328

202

-24

1,65

(25 0 С)

1,97

53,06

39,91

100

N-метилкапролактам

1,0129

237

6,0

5,61

1,95

61,6

39,9

Диметилформамид

0,9445

(25 0 С)

153

-61

0,80

2,05

47,4

36,76

10

Табл. 3

Сравнительная характеристика селективных растворителей

Селективный растворитель

Преимущества растворителя

Недостатки растворителя

Диэтиленгликоль

Достаточно высокая Ткип, низкая Ткрист, высокая плотность, относительно низкая стоимость, достаточно высокая стабильность, малая коррозионная активность, полная смешиваемость с водой и высокие коэффициенты распределения ДЭГ при водной отмывке рафинатной фазы и экстракта

Низкая растворяющая способность по отношению к аренам, невысокая групповая селективность, высокая селективность по молекулярным массам, низкие коэффициенты распределения аренов, высокая вязкость, высокая теплоемкость

Триэтиленгликоль

То же

То же, но растворяющая способность по отношению к аренам выше, чем у ДЭГ

Тетраэтиленгликоль

То же (кроме Ткип)

То же, но растворяющая способность выше, чем у ДЭГ и ТЭГ; чрезмерно высокая Ткип, что осложнает регенерацию тетраэтиленгликоля

Сульфолан

Наивысшая групповая селективность по сравнению с другими экстрагентами , высокая плотность, низкая теплоемкость, достаточно высокая стабильность

Меньшие коэффициенты распределения сульфолана при водной отмывке его рафинатной фазы и экстракта, необходимость вакуумной отгонки аренов из экстрактной фазы, высокая Т крист

Диметилсульфоксид

Достаточно высокая групповая селективность(выше, чем у гликолей), низкая вязкость

Низкая термическая и гидролитическая стабильность, что приводит к необходимости регенерации ДМСО реэкстракцией аренов низкокипящими алканами; невысокая растворяющая способность и коэффициенты распределения аренов.

Смесь N-метилпирролидон-этиленгликоль ? 60/40 %(масс.)

Высокая растворяющая способность по отношению к углеводородам, высокие коэффициенты распределения аренов, низкая селективность по молекулярным массам, низкая вязкость, высокая термическая и гидролитическая стабильность, полная смешиваемость с водой, низкая токсичность

Невысокая групповая селективность по отношению к аренам С6-С 8 , высокая стоимость растворителя

Смесь N-метилкапролактам -этиленгликоль ? 35/65 %(масс.)

То же, но с введением в N-метилкапролактам этиленгликоля эти преимущества в значительной степени нивелируются

Низкая групповая селективность ( ниже, чем у N-метилпирролидона)

N-формилморфолин

Высокая групповая селективность и низкая селективность по молекулярным массам, позволяющие выделить бензол и толуол в одной колонне экстрактивной ректификации; достаточно высокая растворяющая способность, что дает возможность использовать растворитель не только при экстракции, но и при экстрактивной ректификации; высокая стабильность

Высокая Т крист

Диметилформамид

Высокая растворяющая способность, низкая вязкость

Невысокая гидролитическая стабильность; коррозионная активность; токсичность

Однако все предложенные в последние годы экстрагенты и их смеси уступают по селективности к аренам наиболее эффективным растворителям — сульфолану и N-формилморфолину, применяющимся в промышленности.[4]

2.2.1.Экстракция аренов

Первая публикации о разработке промышленного процесса экстракции аренов С 68 из катализатов риформинга появилась в 1959г. К.Г. Дил с соавторами сообщили о разработке фирмами Shell Development и Shell Oil процесса экстракции бензола, толуола и ксилолов, более эффективного по сравнению с Udex — процессом, в котором применялся диэтиленгликоль. Отмечалось, что разработанный процесс может быть использован и для повышения октанового числа моторных топлив.

Капитальные затраты на строительство промышленной установки оценивалась в 75% от капитальных затрат на установку Udex — процесса. В качестве полярного экстрагента предлагался сульфолан с 1.3% (масс) воды при массовом отношению к сырью 6.8 : 1, а в качестве промывного растворителя — высокипящая парафиновая фракция со средней молярной массой 460 (типа гексадекана, но МС16Н34 = 226).

Температура процесса экстракции рекомендовалась 212 0 F, а температура низа колонны отгонки аренов из экстрактной фазы 375 0 F ( 100 и 90 0 C соответственно).

В следующем сообщении тех же авторов отмечаются преимущества сульфолана как экстрагента аренов по сравнению с диэтиленгликолем: более высокая селективность и растворяющая способность по отношению к аренам, более высокая термоокислительная стабильность, меньшая вязкость и теплоемкость. В связи с жэтим удельные энергозатраты при использовании диэтиленгликоля и сульфолана составляют 587 и 206 тыс.ккал/м 3 сырья. Однако коэффициенты распределения сульфолана приводной отмывке его из рафинатной фазы и экстракта ниже, чем коэффициенты распределения диэтилегликоля, поэтому для отмывки сульфолана необходима экстракционная колонна эффективностью в несколько теоретических ступеней.

На установке выделения аренов из катализата риформинга в Хьюстане, США, заменили экстрактивную ректификацию с фенолом на экстракцию сульфоланом. Уже на этой установке отказались от использования высококипящих парафинов в качестве промывного растворителя. Насыщенные углеводороды, как и в схеме Udex — процесса остающиеся в экстрактной фазе, отгоняли с острым водяным паром и рисайкл возвращали в экстрактор. Степень извлечения бензола составляет 99.7%, толуола 98.0% и ксилолов 80%, а содержание основного вещества в товарных продуктах 99.96, 99.9 и 99.75% (масс.) соответственно.

Близкие к отмеченным выше результаты были достигнуты и на первой установке экстракции аренов сульфоланом, построенной в 1961 г. в Италии.

Впоследствии показатели работы установок были улучшены, степень извлечения аренов составила, %: бензол — 99.9, толуол — 99.5, арены С8 — 98, а содержание неароматических примесей в бензоле снизилось до 0.01, в толуоле — до 0.02 и аренах С 8 — до 0.1% (масс.)

Принципиальная технологическая схема процесса представлена на рис.5. Регенерация сульфолана из экстрактной фазы проводится ректификацией с острым водяным паром. В колонне 2 отпаривается рисайкл (остающиеся в экстрактной фазе насыщенные углеводороды вместе с частью бензола), который возвращается в экстрактор 1. В колонне 3 с острым водяным паром и при небольшом разрежении для снижения температуры низа колонны отгоняется экстракт, который после отделения от воды в сепараторе 6 разделяется ректификацией на товарный бензол, толуол и арены С8. Рафинатная фаза промывается водой в экстракционной колонне 4 для удаления растворенных примесей сульфолана.

Рис.5

Принципиальная технологическая схема процесса экстрактивной ректификации аренов

1-экстрактор; 2-ректификационная колонна (отпаривание рисайкла); 3-колонна выделения экстракта; 4 -колонна водной промывки рафинатной фазы; 5,6-сепараторы.

В промышленной эксплуатации к 1992 г. находились 107 установок экстракции аренов сульфоланом. Мощность установок удалось повысить при использовании в экстракторе новых тарелок фирмы UOP типа «Multiple Upcomer», а в отпарных колоннах — «Multiple Downcomer», при этом пропускная способность колонн возросла на 35%.

Д. Григориу с сотрудниками исследовано влияние различных факторов на коэффициенты разделения углеводородов при экстракции аренов сульфоланом (и другими экстрагентами) из фракции 65-154 0 С катализата риформинга (табл.4).

Табл. 4.

Влияние параметров процесса экстракции аренов сульфоланом из фракции 65-154

t, 0 C

?

SF

?

Содержание воды,%(масс.)

?

100

9.32

0.26:1

6.26

1

9.32

125

7.91

5.65:1

8.69

4

9.90

150

6.99

21.4:1

9.90

7

11.1

Влияние температуры процесса на значения ? исследовалось при содержании воды в сульфолане 1% (масс.); влияние массового соотношения сульфолан :сырье (SF) — при 100 0 С, содержание воды в сульфолане 4% (масс.); влияние содержания воды в сульфолане — при 100 0 С и концентрации аренов в сырье 9% (масс.) как следует из табл.4, коэффициенты разделения увеличиваются при снижении температуры, повышения соотношения сульфолан : сырье и добавлении воды к сульфолану. Полученные результаты можно объяснить аналогичным влиянием рассмотренных факторов на групповую селективность, которая хорошо коррелирует с коэффициентами разделения. Отмечено, что влияние соотношения экстрагент : сырье на значение ? проявляется для сульфолана более резко, чем для диметилсульфоксида и N-метилпирролидона с 10% (масс.) воды. Добавление же воды, наоборот, в меньшей степени повышает селективность сульфолана, чем селективность (lg ?) диметилсульфоксида и N-метилпирролидона.

Различный характер изменения селективности отмечен и при добавлении воды к сульфолану и N-формилморфолину: обводнение сульфолана резко снижает его растворяющую способность по отношению к аренам, мало влияя на селективность; добавление же воды к N-формилморфолину значительно повышает селективность при относител ………..

Страницы: [1] | | 3 | 4 |