Развитие высоковольтных линий электропередачи

Реферат
Содержание скрыть

Электроэнергетика имеет большое значение в хозяйстве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.).

Отличительной чертой электроэнергии является одновременность её генерирования и потребления.

Основная часть электроэнергии вырабатывается крупными электростанциями: тепловыми (ТЭС), гидравлическими (ГЭС), атомными (АЭС).

Электростанции, объединённые между собой и с потребителями высоковольтными линиями электропередачи (ЛЭП), образуют электрические системы.

Высоковольтная линия электропередачи, линия электропередачи напряжением выше 1 кв. В. л. э. бывают воздушные и подземные (подводные).

Воздушной называют устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и закреплённым на опорах при помощи изоляторов и арматуры. Опоры, изготовленные из дерева, железобетона или металла, отстоят одна от другой на 50—500 м в зависимости от марки провода и типа опоры. Расстояние от провода до земли составляет не менее 6—8 м. Подземные (подводные) В. л. э., в которых используются провода в специальной изоляции, применяют для распределения энергии на территории городов и промышленных предприятий, а также при переходе через широкие водные преграды.

Считается, что ушли в прошлое времена, когда решался вопрос, каким быть электросетям в мире – сетям постоянного или переменного тока (так называемая «война токов или напряжений», имевшая место на рубеже 19-20 веков).

В настоящее время большинство сетей – это сети переменного напряжения с частотой 50 / 60 Гц. Тем не менее, последние события в энергетике показывают, что старая дискуссия может вернуться.

Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередач (ЛЭП) переменного тока. Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании переменного тока. В определённых ситуациях ЛЭП постоянного тока могут оказаться полезными даже на коротких расстояниях, несмотря на высокую стоимость оборудования.

5 стр., 2311 слов

Тахогенераторы и область их применения. Тахогенераторы постоянного ...

... У тахогенераторов постоянного тока Сu = (6ч 260).10ЇіВ/(об/мин), что превышает крутизну асинхронных тахогенераторов. Выходная характеристика тахогенератора постоянного тока - прямая линия. Однако опыт ... Погрешность измерительных тахогенераторов составляет 0.2….0.5% 3. Ассинхронные тахогенераторы 3.1 Конструкция и принцип действия асинхронного тахогенератора Конструкция асинхронного тахогенератора ...

ЛЭП постоянного тока позволяет транспортировать электроэнергию между несинхронизированными энергосистемами переменного тока, а также помогает увеличить надёжность работы, предотвращая каскадные сбои из-за рассинхронизации фазы между отдельными частями крупной энергосистемы. ЛЭП постоянного тока также позволяет передавать электроэнергию между энергосистемами переменного тока, работающими на разной частоте, например, 50 Гц и 60 Гц. Такой способ передачи повышает стабильность работы энергосистем, так как, в случае необходимости, они могут использовать резервы энергии из несовместимых с ними энергосистем.

Современный способ передачи HVDC использует технологию, разработанную в 30-х годах XX века шведской компанией ASEA. Одни из первых систем HVDC были введены в строй в Советском Союзе в 1950 году между Москвой и городом Кашира, и островом Готланд и Швецией в 1954 году, с мощностью системы 10-20 МВт.

Самая длинная HVDC линия в мире в настоящее время находится в Китае и соединяет ГЭС Сянцзяба (англ.)русск. с городом Шанхай. Её длина 1980 км, мощность 6400 МВт при 800 кВ. В 2013 году в Бразилии будет сдана в эксплуатацию самая длинная HVDC линия (длиной 2375 км), она будет соединять ГЭС Санто-Антонио (англ.)русск. и Жирау (англ.)русск. с городом Сан-Паулу.

Первая ЛЭП постоянного тока для передачи электроэнергии на большое расстояние была запущена в 1882 году на линии Мисбах-Мюнхен. Она передавала энергию от вращаемого паровой машиной генератора постоянного тока на печь стекольного завода. Передаваемая мощность составляла всего 2,5 кВт и на линии не было преобразователей постоянного тока в переменный.

Первая ЛЭП, использующая разработанный швейцарским инженером Рене Тюри (Rene Thury) метод преобразования токов генератор-двигатель, была построена в 1889 году в Италии компанией Acquedotto de Ferrari-Galliera. Для увеличения напряжения пары генератор-двигатель были соединены последовательно. Каждая группа была изолирована от земли и приводилась в движение основным двигателем. Линия работала на постоянном токе, с напряжением до 5000 В на каждой машине, некоторые машины имели двойные коммутаторы для уменьшения напряжения на каждом коммутаторе. Эта система передавала мощность 630 кВт на постоянном напряжении 14 кВ на расстояние 120 км.

По ЛЭП Moutiers-Lyon передавалась вырабатываемая ГЭС мощность 8600 кВт на расстояние 124 мили, включая 6 миль подземного кабеля. Для преобразования тока использовались восемь последовательно соединенных генераторов с двойными коммутаторами, выдававшими на выходе напряжение в 150 кВ. Эта линия работала примерно с 1906 по 1936 гг.

К 1913 году в мире действовало пятнадцать ЛЭП системы Тюри, работавших на постоянном напряжении 100 кВ, которые использовались до 1930-х, но вращающиеся электрические машины были ненадёжны, дороги в обслуживании и имели низкий КПД. В первой половине 20-го столетия были опробованы и другие электромеханические устройства, но они не получили широкого распространения.

6 стр., 2995 слов

Расчет электроприводов постоянного и переменного тока

... автоматизированного электропривода. ЭЛЕКТРОПРИВОД С ДВИГАТЕЛЕМ ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ 1.1. Построение нагрузочной диаграммы двигателя постоянного тока Известны ... х частей: электрического двигателя, осуществляющего электромеханическое преобразование энергии, механической части, передающей механическую энергию ... в естественной схеме включения при колебаниях напряжения питания в пределах (20%. 1.5. ...

Для преобразования высокого постоянного напряжения в низкое было предложено сначала заряжать последовательно соединенные аккумуляторы, а затем подключать их параллельно и подсоединять к потребителю. В начале XX века существовало, как минимум, две ЛЭП постоянного тока, использовавших этот принцип, но дальнейшего развития эта технология не получила из-за ограниченной ёмкости аккумуляторов, неэффективного цикла заряда/разряда и трудностей переключения между последовательным и параллельным соединением.

В период с 1920 по 1940 гг. для преобразования тока использовались ртутные вентили. В 1932 г. Дженерал Электрик применила в Mechanicville, Нью-Йорк ртутные вентили на ЛЭП постоянного тока напряжением 12 кВ, которая также использовалась для преобразования генерируемого переменного тока частотой 40 Гц в переменный ток нагрузки частотой 60 Гц. В 1941 г. была разработана 115-километровая подземная кабельная линия, мощностью 60 МВт, напряжением +/-200 кВ, для города Берлина, использовавшая ртутные вентили (Проект Эльба), но вследствие краха Третьего Рейха в 1945 проект не был завершен. Использование кабеля объяснялось тем, что во время военного времени подземный кабель будет менее заметной целью бомбардировок. Оборудование перешло Советскому Союзу и было введено в эксплуатацию в 1950 году.

Дальнейшее использование ртутных вентилей в 1954 г. положило начало современным высоковольтным ЛЭП постоянного тока. Первая такая ЛЭП была создана компанией ASEA между материковой Швецией и островом Готланд. Ртутные вентили использовались на всех ЛЭП, строившихся до 1975 г., но позднее были вытеснены полупроводниковыми приборами. С 1975 по 2000 гг. для преобразования тока широко применялись тиристоры, которые сейчас активно вытесняются транзисторами.[11] С переходом на более надёжные полупроводниковые приборы были проложены десятки подводных высоковольтных ЛЭП постоянного тока.

На данный момент в мире осталось всего две ЛЭП с преобразователями на ртутных вентилях, все остальные были демонтированы или заменены преобразователями на тиристорах.

Как известно, мощность равна произведению напряжения на ток (P = U * I).

Таким образом, увеличив напряжение можно уменьшить передаваемый по проводу ток и, как следствие, можно уменьшить сечение провода, необходимого для передачи этой мощности, что удешевит ЛЭП.

На сегодняшний день не существует способа без больших потерь изменять в широких пределах напряжение постоянного тока. Самым эффективным устройством для изменения величины напряжения является трансформатор, работающий на переменном токе. Соревнование между сторонником постоянного тока Томасом Эдисоном и переменного тока Николой Тесла и Джорджа Вестингауза, известное как «Война токов», привело к победе сторонников переменного тока. Поэтому на входе всех высоковольтных ЛЭП постоянного тока устанавливается трансформатор для повышения напряжения переменного тока и оборудование для преобразования переменного тока в постоянный, а на выходе — оборудование преобразования постоянного тока в переменный и трансформатор для понижения напряжения этого переменного тока.

Первым способом преобразования больших мощностей из постоянного тока в переменный и обратно была система генератор-двигатель, разработанная швейцарским инженером Рене Тюри (Rene Thury).

13 стр., 6455 слов

Высоковольтные кабельные линии постоянного тока

... переменного тока при той же толщине изоляции. Поэтому эти кабели и получили наибольшее применение при сооружении кабельных линий постоянного тока. В настоящее время создан кабель на напряжение 400 кВ и ток ... поливинилхлоридной изоляцией марок ПВ1, ППВ, АППВ используются в цепях переменного тока напряжением до 450 В, а в цепях постоянного тока - до 1000 В; кабели с пропитанной бумажной изоляцией на ...

Простыми словами, на входе ЛЭП двигатель переменного тока вращает генератор постоянного тока, а на выходе — двигатель постоянного тока вращает генератор переменного тока. Такая система имела довольно низкий КПД и низкую надёжность.

Практическое применение ЛЭП постоянного тока стало возможным только с появлением мощного дугового электроприбора под названием ртутный (англ.)русск. вентиль.

Позднее появились мощные полупроводниковые приборы — тиристоры, биполярные транзисторы с изолированным затвором (IGBT), мощные полевые транзисторы с изолированным затвором (MOSFET) и запираемые тиристоры (GTO).

по сравнению с ЛЭП переменного тока

Основным преимуществом высоковольтных ЛЭП постоянного тока является возможность передавать большие объёмы электроэнергии на большие расстояния с меньшими потерями, чем у ЛЭП переменного тока. В зависимости от напряжения линии и способа преобразования тока потери могут быть снижены до 3% на 1000 км. Передача энергии по высоковольтной ЛЭП постоянного тока позволяет эффективно использовать источники электроэнергии, удаленные от энергоузлов нагрузки.

В ряде случаев высоковольтная ЛЭП постоянного тока более эффективна, чем ЛЭП переменного тока:

  • При передаче энергии по подводному кабелю, который имеет довольно высокую ёмкость, приводящую при использовании переменного тока к потерям на реактивную мощность (например, 250 км линия Baltic Cable между Швецией и Германией).

  • Передача энергии в энергосистеме напрямую от электростанции к потребителю, без дополнительных ‘отводов’, например, в удаленные районы.

  • Увеличение пропускной способности существующей энергосистемы в случаях, когда установить дополнительные ЛЭП переменного тока сложно или слишком дорого.

  • Передача энергии и стабилизация между несинхронизированными энергосистемами переменного тока.

  • Присоединение удаленной электрической станции к энергосистеме, например, линия Nelson River Bipole.

  • Уменьшение стоимости линии за счет уменьшения количества проводников. Кроме того, могут использоваться более тонкие проводники, так как HVDC не подвержен поверхностному эффекту.

  • Упрощается передача энергии между энергосистемами, использующими разные стандарты напряжения и частоты переменного тока.

  • Синхронизация с сетью переменного тока энергии, производимой возобновляемыми источниками энергии.

Длинные подводные кабели имеют высокую емкость. В то время как этот факт имеет минимальную роль для передачи электроэнергии на постоянном токе, переменный ток приводит к зарядке и разрядке емкости кабеля, вызывая дополнительные потери мощности. Кроме того, мощность переменного тока расходуется на диэлектрические потери.

Высоковольтная ЛЭП постоянного тока может передавать большую мощность по проводнику, так как для данной номинальной мощности постоянное напряжение в линии постоянного тока ниже, чем амплитудное напряжение в линии переменного тока. Мощность переменного тока определяет действующее значение напряжение, но оно составляет только приблизительно 71 % амплитудного напряжения, которое определяет фактическую толщину изоляции и расстояние между проводниками. Поскольку у линии постоянного тока действующее значение напряжения равно амплитудному, становится возможным передавать на 41% больше мощности по существующей линии электропередачи с проводниками и изоляцией того же размера, что на переменном токе, что снижает затраты.

10 стр., 4820 слов

Устройство тягового генератора переменного тока

... тягового генератора, тем больше частота f переменного тока. Как отмечалось ранее, в генераторах большой мощности вместо постоянных магнитов ... тягового генератора, то внешнюю электрическую цепь, соединяющую тяговый генератор с потребителем энергии (например, ТЭД), можно просто закрепить на станине генератора ... пересекают наибольшее количество магнитных силовых линий. Именно в этом положении показан ...

Поскольку высоковольтная ЛЭП постоянного тока допускает передачу энергии между несинхронизированными распределительными системами переменного тока, это позволяет увеличить устойчивость системы, препятствуя каскадному распространению аварии с одной части энергосистемы на другую. Изменения в нагрузке, приводящие с десинхронизации отдельных частей электрической сети переменного тока, не будут затрагивать линию постоянного тока, и переток мощности через линию постоянного тока будет стабилизировать электрическую сеть переменного тока. Величину и направление перетока мощности через линию постоянного тока можно непосредственно регулировать и изменять для поддержания необходимого состояния электрических сетей переменного тока с обоих концов линии постоянного тока.

Основным недостатком высоковольтной ЛЭП постоянного тока является необходимость преобразования типа тока из переменного в постоянный и обратно. Используемые для этого устройства требуют дорогостоящего ЗИП, так как, фактически, являются уникальными для каждой линии.

Преобразователи тока дороги и имеют ограниченную перегрузочную способность. На малых расстояниях потери в преобразователях могут быть больше чем в аналогичной по мощности ЛЭП переменного тока.