ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии…
История использования энергии ветра
Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.
«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс . «Машины: применение природных сил и науки»).
шатровых
В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы.
Толедо
В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.
Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт. В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги. Возрождение интереса к ветроэнергетике началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для производителей электроэнергии из ветра.
Размещение ветряных и водяных мельниц Рязанской губернии (первая половина XX в.)
... в начале века (1905 г.), ветряные и водяные мельницы сохранили свою высокую хозяйственную значимость (табл. 2). Таблица 2 Количество мельниц в Рязанской губернии (1860–1922 гг.), единиц Вид мельниц 1860 ... энергии ветра и рек было характерно для мукомольной отрасли (табл. 1, рис. 2). Таблица 1 № п/п Уезд Число водяных мельниц Число поставов на водяных мельницах Число ветряных мельниц Итого ...
Современные методы генерации электроэнергии из энергии ветра
Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.
Мощности ветрогенераторов и их размеры |
|||
Параметр |
1 МВт |
2 МВт |
2,3 МВт |
Высота мачты |
50 м — 60 м |
80 м |
80 м |
Длина лопасти |
26 м |
37 м |
40 м |
Диаметр ротора |
54 м |
76 м |
82,4 м |
Вес ротора на оси |
25 т |
52 т |
52 т |
Полный вес машинного отделения |
40 т |
82 т |
82,5 т |
Воздушные потоки у поверхности земли/моря являются ламинарными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров. Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире. Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.
В августе
E-112 мощностью 4,5 МВт. До декабря
Наибольшее распространение в мире получила конструкция ветрогенератора
Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции . Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года . Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.
5 июня 2009 года компании Siemens AG и норвежская
Статистика по использованию энергии ветра
В 2010 году суммарные мощности ветряной энергетики выросли во всём мире до 196,6 ГВт. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов. В 2010 году в Европе было сконцентрировано 44% установленных ветроэлектростанций, в Азии — 31%, в Северной Америке — 22%.
В то же время, по данным European Wind Energy Association, суммарная вырабатываемая мощность ветряной энергии в России за 2010 год составила 9 МВт, что приблизительно соответствует показателям Вьетнама (31 МВт), Уругвая (30,5 МВт), Ямайки (29,7 МВт), Гваделупы (20,5 МВт), Колумбии (20 МВт), Гайаны (13,5 МВт) и Кубы (11,7 МВт).
В 2007 году ветряные электростанции Германии произвели 6,2 % от всей произведённой в Германии электроэнергии . В 2009 году 19,3 % электроэнергии в Дании вырабатывалось из энергии ветра. В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.
Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии
Суммарные установленные мощности, МВт, в некоторых странах мира 2005—2010 г.
Страна |
2005 г.МВт. |
2006 г.МВт. |
2007 г.МВт. |
2008 г. МВт. |
2009 г. МВт. |
2010 г. МВт. |
Китай |
1260 |
2405 |
6050 |
12210 |
25104 |
41800 |
США |
9149 |
11603 |
16818 |
25170 |
35159 |
40200 |
Германия |
18428 |
20622 |
22247 |
23903 |
25777 |
27214 |
Испания |
10028 |
11615 |
15145 |
16754 |
19149 |
20676 |
Индия |
4430 |
6270 |
7580 |
9645 |
10833 |
13064 |
Италия |
1718 |
2123 |
2726 |
3736 |
4850 |
5797 |
Франция |
757 |
1567 |
2454 |
3404 |
4492 |
5660 |
Великобритания |
1353 |
1962 |
2389 |
3241 |
4051 |
5203 |
Канада |
683 |
1451 |
1846 |
2369 |
3319 |
4008 |
Дания |
3122 |
3136 |
3125 |
3180 |
3482 |
3752 |
Япония |
1040 |
1394 |
1538 |
1880 |
2056 |
2304 |
Швеция |
510 |
571 |
788 |
1021 |
1560 |
2163 |
Польша |
73 |
153 |
276 |
472 |
725 |
1107 |
Литва |
7 |
48 |
50 |
54 |
91 |
154 |
Украина |
77,3 |
86 |
89 |
90 |
94 |
87 |
Россия |
14 |
15,5 |
16,5 |
16,5 |
14 |
15,4 |
Перспективы , Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.
Мощность высотных потоков ветра (на высотах 7-14 км) примерно в 10-15 раз выше, чем приземных. Эти потоки обладают постоянством, почти не меняясь в течение года. Возможно использование потоков, расположенных даже над густонаселёнными территориями (например — городами), без ущерба для хозяйственной деятельности.
Германия
В 2008 году Европейским Союзом установлена цель: к
В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году . Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 ГВт установленной мощности уже в 2010 году.
Индия
Япония планирует к 2010 —, Венесуэла за 5 лет с 2010 года планирует построить ветряных электростанций на 1500 МВт.
Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт — оффшорных.
Экономические аспекты ветроэнергетики
Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (стоимость 1 кВт установленной мощности ВЭУ ~$1000).
Экономия топлива
Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти .
Себестоимость электроэнергии
Себестоимость электричества, производимого
Скорость ветра |
Себестоимость (для США , 2004 год ) |
7,16 м/c |
4,8 цента/кВт·ч; |
8,08 м/с |
3,6 цента/кВт·ч; |
9,32 м/с |
2,6 цента/кВт·ч. |
Для сравнения: себестоимость электричества, производимого на
При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.
В марте 2006 года Earth Policy Institute (США ) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.
Экономика ветроэнергетики в России
В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с, в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы — их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н.роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология — сочетание в одном устройстве генераторов двух видов — вертикального ветрогенератора и ФЭМ (фото-электрические модули) — солнечные панели. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи, пункты наблюдения, погодные и метео-станции и так далее).
Другие экономические проблемы
Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС ).
Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.
Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы, Небольшие единичные ветроустановки могут иметь проблемы с
Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.
Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.
Экономика малой ветроэнергетики
В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:
- Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
- Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
- Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор , сравнимый по стоимости со всей установкой.
В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.
Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:
- Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
- Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
- Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)
В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:
- Отопление является основным энергопотребителем любого дома в России.
- Схема ветрогенератора и управляющей автоматики кардинально упрощается.
- Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле .
- В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
- Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.
Экологические аспекты ветроэнергетики
Выбросы в атмосферу
Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в
По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн.
Влияние на климат
Ветрогенераторы изымают часть
Вентиляция городов
В современных городах выделяется большое количество вредных веществ, в том числе от промышленных предприятий и автомобилей. Естественная вентиляция городов происходит с помощью ветра. При этом описанное выше снижение скорости ветра из-за массового использования ВЭУ может снижать и вентилируемость городов. Особенно неприятные последствия это может вызвать в крупных мегаполисах: смог, повышение концентрации вредных веществ в воздухе и, как следствие, повышенная заболеваемость населения. В связи с этим установка ветряков вблизи крупных городов нежелательна.
Шум
Ветряные энергетические установки производят две разновидности шума:
- механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
- аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)
В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.
Источник шума [Электронный ресурс]//URL: https://inzhpro.ru/referat/vetrovaya-energiya-v-rossii/ |
Уровень шума, дБ |
Болевой порог человеческого слуха |
120 |
Шум турбин реактивного двигателя на удалении 250 м |
105 |
Шум от отбойного молотка в 7 м |
95 |
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м |
65 |
Шумовой фон в офисе |
60 |
Шум от легковой автомашины при скорости 64 км/ч |
55 |
Шум от ветрогенератора в 350 м |
35—45 |
Шумовой фон ночью в деревне |
20—40 |
В непосредственной близости от, Законы, принятые в
Низкочастотные вибрации
Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса. Как правило, жилые дома располагаются на расстоянии не менее 300 м
от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.
Обледенение лопастей
При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.
Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.
Визуальное воздействие
Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.
В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.
Использование земли
Турбины занимают только 1 % от всей территории
Источник энергии [Электронный ресурс]//URL: https://inzhpro.ru/referat/vetrovaya-energiya-v-rossii/ |
|
Геотермальный источник [Электронный ресурс]//URL: https://inzhpro.ru/referat/vetrovaya-energiya-v-rossii/ |
404 |
Ветер |
800—1335 |
Фотоэлектрический элемент |
364 |
Солнечный нагревательный элемент |
3561 |
Уголь |
3642 |
Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии
Вред, наносимый животным и птицам. Данные AWEA
Причины гибели птиц (из расчёта на 10 000) |
штук |
Дома / окна |
5500 |
Кошки |
1000 |
Другие причины |
1000 |
ЛЭП |
800 |
Механизмы |
700 |
Пестициды |
700 |
Телебашни |
250 |
Ветряные турбины |
Менее 1 |
Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков.
Использование водных ресурсов
В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.