Электрический ток в различных средах

Реферат

Электрический Ток в металлах.

Носителями электрического тока в металлах являются свободные электроны. На основании электронной проводимости в металлах можно вывести закон Ома. Кинетическая энергия электрона к моменту соударения его в конце свободного пробега (свободный пробег электрона — расстояние между двумя соседними ударами) Электрический ток в различных средах 1 Обозначим время свободного пробега (интервал времени, за которое электрон проходит длину свободного пробега) через т. Все электроны проводимости, которые имеются в участке проводника длиной l и сечением S, приобретают энергию, равную

Электрический ток в различных средах 2 Электрический ток в различных средах 3где v — скорость электрона перед его столкновением с ионом. Средняя скорость Г7 направленного движения в результате действия электрического стационарного поля будет равна

Электрический ток в различных средах 4 Считаем, что движение электрона между ударами равноускоренное. В формулу, выражающую силу тока через микроскопические величины (I = neSv), подставим

Электрический ток в различных средах 5 получим: 2I = neSv. Из этого выражения находим:

Электрический ток в различных средах 6 которое подставим в формулу (3.18) и получим:

Электрический ток в различных средах 7 Электрический ток в различных средах 8В выражение (3.19) все величины, стоящие перед I, не зависят от напряжения и поэтому:

Электрический ток в различных средах 9 Таким образом, сила тока пропорциональна напряжению. Вольт-амперная характеристика для металлов представлена на рис. 53. Зная силу тока I, заряд электрона е, площадь поперечного сечения проводника и концентрацию электронов, можно определить скорость упорядоченного движения электронов, так называемую дрейфовую скорость.

4 стр., 1738 слов

Электрический ток в металлах, газах и в вакууме

... частицы, переносят электрический заряд в различных средах. Электрический ток в металлах. Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому ...

Электрический ток в различных средах 10

НАЗНАЧЕНИЕ:

Электрический ток присутствует везде, он течет: в нашем организме, передавая нервные импульсы, в атмосфере, вызывая разряды молнии и тому подобное, и, конечно же, в электрических приборах, протекая по металлическим проводам.

УСТРОЙСТВО:

Электрический ток в металлах — это движение отрицательно заряженных свободных электронов под действием электрического поля в пространстве между положительно заряженными ионами упорядоченной кристаллической решетки металла.

ПРИНЦИП ДЕЙСТВИЯ:

Отрицательно заряженные свободные электроны совершают хаотическое движение в пространстве между ионами, но под действием электрического поля они начинают смещаться в сторону положительно заряженного электрода. Скорость этого смещения очень мала, примерно, 1 мм в секунду. Однако электрическое поле распространяется по проводнику со скоростью света (300 000 км/c), и, так как все электроны начинают двигаться одновременно, получается что ток движется со скоростью света!

Электрический Ток в Полупроводниках

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой . При помещении кристалла в электрическое поле возникает упорядоченное движение дырок — дырочный ток проводимости. В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Примеси, отдающие электроны и создающие электронную проводимость, называются донорными (примеси, имеющие валентность больше, чем у основного полупроводника).

Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа. Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

8 стр., 3541 слов

Проводники, диэлектрики, полупроводники

... соли. Молекулы NaCl распадутся на ионы Na+ и Cl?. Под действием электрического поля эти ионы начнут упорядоченное движение, и возникнет электрический ток. Природная вода, даже пресная, является проводником из-за раствор ... газы. Тем не менее, поляризация наблюдается и у неполярных диэлектриков. Каков механизм поляризации в данном случае? приложении 6 Мы видим, что во внешнем поле электрон будет ...

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями — электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости. Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим . Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда — свободные электроны в п-полупроводнике и дырки в р-полупроводнике — будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).

Принцип действия  1Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1. Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля — обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования. Принцип действия  2Полупроводники находят широкое применение в современной электронной технике. Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах — терморезисторах . Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами .

Электрический Ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

SO4 + Cu = CuSO4.
m = kQ = kIt.

электролиза

Принцип действия  3
Принцип действия  4

Здесь m0 и q0 – масса и заряд одного иона, Принцип действия  5 – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m0 иона данного вещества к его заряду q0. Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q0 = ne), то выражение для электрохимического эквивалента k можно записать в виде

F = eNA = 96485 Кл / моль.

постоянная Фарадея.

Принцип действия  6

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества. Закон Фарадея для электролиза приобретает вид:

Явление электролиза широко применяется в современном промышленном производстве.

Электрический Ток в Газах

В газах существуют несамостоятельные и самостояг тельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой .

Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны. Вольт-амперная характеристика представлена на рис. 54. В области ОАВ — несамостоятельный разряд. В области ВС разряд становится самостоятельным.

При самостоятельном разряде одним из способов ионизации атомов является ионизация электронным ударом. Ионизация электронным ударом становится возможна тогда, когда электрон на длине свободного пробега А приобретает кинетическую энергию W k , достаточную для совершения работы по отрыву электрона от атома. Виды самостоятельных разрядов в газах — искровой, коронный, дуговой и тлеющий разряды.

Принцип действия  7

Искровой разряд

Электрический Ток в Вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает — нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.