Технически чистое железо и электротехническая сталь

Реферат

Технически чистое железо и электротехническая сталь

1. Технически чистое железо, АРМКО-железо

Технически чистое железо устойчиво к коррозии, обладает повышенной электропроводностью и очень высокой пластичностью, а также железо имеет малое удельное электрическое сопротивление, обладает повышенными потерями на вихревые токи, в связи с чем применение его ограничено. В основном применяется при изготовлении электротехнических изделий, работающих в постоянных и медленно меняющихся магнитных полях (сердечники и полюсные наконечники электромагнитов, детали реле и т.п.).

В металлургии применяют как основной элемент при изготовлении многих магнитных сплавов и как шихту при производстве легированной стали.

Обычное технически чистое железо изготавливают рафинированием чугуна в мартеновских печах или в конверторах. Особо чистое железо содержащее малое количество примесей (менее 0,05%), получают двумя сложными способами, в результате которых получаем:

1. Электролитическое железо

Электролитическое железо, получаемое при осталивании, по своему химическому составу приближается к малоуглеродистой стали с содержанием углерода 0 03 — 0 06% и характеризуется специфическими механическими свойствами; в частности, по твердости и износостойкости наращенный слой приближается к закаленной стали. Природа высокой твердости электролитического железа еще не имеет достаточного научного обоснования.

Электролитическое железо применяется главным образом в виде порошка, используемого для магнитодиэлектриков (для тональных частот, прельфер ТЧ-30) и для радиочастот (радиофер), но может использоваться и в виде компактных изделий после переплавки.

2. Карбонильное железо

Пентакарбонил железа представляет собой продукт воздействия окиси углерода на железо при температуре около 200 градусов и давлении примерно 15 МПа. Карбонильное железо имеет вид тонкого порошка, что делает его удобным для изготовления прессованных магнитных сердечников. В карбонильном железе отсутствуют кремний, фосфор и сера, но содержится углерод.

Карбонильное железо характеризуется специфической кривой первоначального намагничивания, соответствующей формой петли гистерезиса и определенными значениями составляющих магнитных потерь. При этом электромагнитные свойства карбонильного железа в блоке, получаемом металлокерамическим способом из порошка, и в частицах порошка существенно различны. Это в первую очередь объясняется изменением структуры материала при его металлокерамической обработке, а также влиянием на электромагнитные свойства размера частиц.

8 стр., 3568 слов

«Техническая диагностика. Магнитный контроль. Реализация при ...

... и определение их местоположения в объекте контроля методами магнитного неразрушающего контроля [2]. Магнитопорошковый метод метод МНК, основанный на использовании в качестве индикатора магнитного порошка [2]. Индукционный метод метод МНК, основанный ...

Карбонильное железо широко применяется в различных отраслях современной техники. Особенно важно его использование в радиотехнике в качестве ферромагнитной основы магнитодиэлектрических сердечников для повышения параметров катушек индуктивности, работающих в широком диапазоне радиочастот и напряженности поля.

Таблица №1

Магнитная проницаемость

Коэрцитивная

Индукция

Удельное со-

Материал

Начальная

Максимальная

Сила, А/м

Насыщения Тл

противление, мкОмм

Технически чистое железо

250 — 400

3500 — 4500

50 — 100

2,18

0,1

Электролитическое железо

600

15000

30

2,18

0,1

Карбонильное железо

2000 — 3000

20000 — 21500

6,4

2,18

0,1

Монокристалл чистейшего железа

>20000

1430000

0,8

0,097

Магнитные свойства различных видов чистого железа приведены в таблицы №1. Примеси относительно слабо влияют на магнитные свойства железа, если их концентрация ниже предела растворимости. Низким пределом растворимости в железе обладают углерод, кислород, азот и сера. Соответственно, эти примеси оказываются и наиболее вредными. При охлаждении металла после термообработки такие примеси из-за ограниченной растворимости выделяются в виде микровключений побочных фаз, которые затрудняют смещение доменных границ в слабом магнитном поле.

Свойства железа зависят не только от содержания примесей, но и от структуры материала, размера зерен, наличия механических напряжений. Из таблицы №1 видно, что магнитные свойства даже лучших промышленных разновидностей железа далеки от того, чего можно добиться, используя современные технологические методы получения чистых и однородных по структуре материалов.

2. Электротехническая сталь

карбонильный железо электролитический сталь

Электротехническая сталь — тонколистовая сталь, используемая при изготовлении магнитопроводов электротехнического оборудования — электромагнитов, трансформаторов, генераторов, электродвигателей, дросселей, реле, стабилизаторов и так далее.

В зависимости от требуемых свойств, электротехническая сталь содержит различное количество кремния. В зависимости от технологии производства электротехнические стали разделяют на холоднокатаные (изотропные или анизотропные; количество кремния до 3,3%) и горячекатаные (изотропные; количество кремния до 4,5%).

Нередко в качестве легирующей добавки в электротехнической стали может содержаться алюминий (до 0,5%).

Иногда электротехнические стали условно разделяют на динамную (изотропную), трансформаторную (анизотропную), релейную (изотропную, нелегированную) К электротехнической стали также относится чистое железо в виде листов или ленты толщиной 0,1-8 мм либо в виде сортового проката (круг или квадрат) различных размеров. Качество электротехнической стали характеризуется электромагнитными свойствами (удельными потерями, коэрцитивной силой и магнитной индукцией), изотропностью магнитных свойств (разницей в значениях магнитных свойств металла вдоль и поперёк направления прокатки), геометрическими размерами и качеством листов и полос, механическими свойствами, а также параметрами электроизоляционного покрытия. Снижение удельных потерь в стали обеспечивает уменьшение потерь энергии в магнитопроводах; повышение магнитной индукции стали позволяет уменьшить габариты магнитопроводов; снижение анизотропии магнитных свойств улучшает характеристики устройств с вращающимися магнитопроводами.

3. Свойства и производство электротехнических сталей

Электротехнические стали (ЭТС) — это специальный класс магнитно-мягких ферромагнитных материалов, которые используются для изготовления магнитопроводов и магнитоактивных частей разнообразных электротехнических устройств.

Свойства ЭТС в значительной степени определяют характеристики, экономичность, габариты устройств и возможность их совершенствования, поэтому улучшению технологии производства и повышению характеристик ЭТС, особенно магнитных свойств, во всем мире уделяется большое внимание.

Современные ЭТС — это сплавы технического железа с кремнием и иногда алюминием.

В обычной холоднокатаной ЭТС содержание кремния не превышает 3,5% и алюминия 0,5%. Сплавы такого состава имеют кубическую решетку, где направлением легкого намагничивания является ребро куба. В других направлениях намагничивание требует больших затрат энергии. Чем выше степень анизотропии, тем более высокими магнитными свойствами обладает сталь вдоль направления холодной прокатки.

Различают изотропную (динамную) и анизотропную (трансформаторную) стали. Изотропные электротехнические стали, характеризуются одинаковостью электромагнитных свойств по всем направлениям, что достигается за счет создания равнозеренной структуры. Анизотропные электротехнические стали, имеют ярко выраженную текстуру, то есть структуру зерен с преимущественной ориентировкой в направлении прокатки. Текстура создается в процессе деформации и термообработки стали при формировании и выделении по границам зерен ингибиторной фазы (обычно AlN, MnS), сдерживающей рост зерна на определенных этапах передела стали.

Кремний оказывает влияние на структуру, и магнитные свойства стали, увеличивает удельное сопротивление, снижает потери на вихревые токи, уменьшает потери на гистерезис и увеличивает магнитную проницаемость. С повышением содержания кремния происходит выклинивание — области. Повышение содержание кремния в стали, повышает предел текучести, предел прочности, твердость и хрупкость, что затрудняет холодную прокатку стали. Обычно содержание кремния в электротехнических сталях составляет 0,8-3,2%.

Сталь чувствительна к дефектам кристаллической решетки, границам зерен, порам, неметаллическим включениям (влияют на электромагнитные свойства).

По своему воздействию на дефекты кристаллической решетки особенно опасны примеси C, O, N, которые образуют растворы внедрения.

Различными технологическими приемами может быть достигнуто и такое структурное состояние в готовой полосе стали, при котором она будет изотропной — свойства ее во всех направлениях будут одинаковыми. В действительности полной изотропности достигнуть, как правило, не удается, и устанавливается некоторая допускаемая величина анизотропии свойств обычно для разности удельных потерь или магнитной индукции в продольном и поперечном направлениях. Такая сталь применяется в магнитопроводах разнообразных электродвигателей, генераторов, преобразователей, реле и других изделиях, где магнитный поток либо вращается, либо охватывает все направления в плоскости листа.

Химический состав холоднокатаной анизотропной стали не нормируется. Однако с тем, чтобы обеспечить в конечной продукции заданный уровень магнитных свойств, сталь выплавляется с содержанием кремния в пределах 2,8 — 3,2% (в стали марки 3311 содержание кремния снижено).

В соответствии с ГОСТ 21427.1-83 сталь изготовляют марок: 3311 (3411); 3411; 3412; 3413; 3414; 3415; 3404; 3405; 3406; 3407; 3408; 3471 и 3472.

По видам продукции сталь подразделяется на: лист, рулонную сталь и ленту резаную (ленту).

В производстве изотропных электротехнических сталей применяют две разновидности технологического процесса, отличающиеся количеством операций холодной прокатки — это, так называемые, одностадийный и двухстадийный процессы.

В обоих процессах выплавка, разливка, горячая прокатка и обработка горячекатаной полосы аналогичны и имеют своей целью обеспечить выплавку и обработку металла с минимальным количеством вредных примесей (серы, азота, кислорода, углерода) и их дисперсных выделений в виде неметаллических включений и карбидов.

Холодная прокатка при двухстадийном процессе ведется в две операции: первая — с обжатием 70-80%, вторая-5-25%. Промежуточный отжиг проводится в промежуточных печах при 850-950°С с выдержкой продолжительностью 2,5-3,5 мин в обезуглероживающий азото-водородной атмосфере.

Заключительный отжиг проводят при 900 — 1050° С.

При одностадийном процессе холоднокатаная полоса конечной толщины подвергается совмещенному обезуглероживающе-рекристаллизационному отжигу также в проходной печи сначала при 850-900°С (2,5-3,0 мин) в обез-углероживающей атмосфере, затем при 950 — 1050° С (1,5-2,0 мин) в защитной среде. В обоих процессах после отжига на полосу наносят электроизоляционное покрытие различных (в зависимости от назначения) состава и свойств: неорганические износостойкие, полуорганические или органические. Покрытия последних двух типов повышают стойкость штампового инструмента.

Преобладающая часть (более 95%) листовых ЭТС используется в магнитопроводах электрических машин и аппаратов, работающих в переменных магнитных полях промышленной частоты тока и напряженности поля порядка до 103 А/м и более. Это трансформаторы самых разнообразных типов и назначений, электрические генераторы, все виды электродвигателей — от самых мощных промышленных до очень маленьких бытовых и приборных./

При организации производства изотропной стали, получение определенного уровня магнитных свойств конечной продукции четко регламентируется химическим составом стали. Качественно влияние отдельных примесей на ход технологических операций можно оценить следующим образом.

Одним из основных факторов, влияющих на свойства изотропной стали, является содержание углерода. Уменьшение содержания углерода в стали, увеличивает склонность к росту зерен, снижению общих удельных ваттных потерь, повышает полноту и снижает длительность операции обезуглероживания при обезуглероживающем отжиге, вследствие чего возрастает производительность непрерывных агрегатов. Для уменьшения содержания углерода при выплавке используют способы внепечной обработки — вакуумирование, аргонно-кислородное рафинирование.

Марганец отрицательно воздействует на магнитные свойства. Кремний уменьшает растворимость углерода и азота в феррите, повышение содержания кремния в стали, увеличивает электросопротивление металла, ограничивая развитие вихревых токов. Фосфор улучшает штампуемость стали, и способствует получению равномерного распределения твердости и механических свойств по ширине и длине рулона. Сера и кислород оказывают отрицательное действие на пластичность стали при высоких температурах. Увеличение содержания серы повышает полные удельные ваттные потери в стали и температуру рекристаллизационного отжига, увеличивая его длительность.

В целом можно отметить, что основными физико-химическими предпосылками, обеспечивающими получение высоких магнитных свойств в изотропной стали, являются: повышение содержания легирующих элементов (Si, P, Al); снижение в металле концентрации C, N, O, S.

Выше были названы два основных вида холоднокатаных ЭТС: анизотропная сталь и изотропная сталь. Основное различие между ними в особенностях магнитных свойств: анизотропная ЭТС имеет высокие магнитные свойства (высокую магнитную индукцию и низкие удельные магнитные потери) в одном направлении — вдоль направления прокатки; в направлении поперек прокатки магнитные свойства невысоки; изотропная ЭТС имеет примерно одинаковые магнитные свойства во всех направлениях.

Это различие в свойствах анизотропной и изотропной ЭТС определяет и различие в их применении и должно правильно учитываться при конструировании магнитопроводов.

В действующих стандартах на холоднокатаные анизотропные (ГОСТ 21427.1-83) и изотропные (ГОСТ 21427.2-83) стали нормируются удельные магнитные потери при частоте тока 50 Гц и магнитной индукции В=1,0; 1,5 и 1,7 Тл (P1,0/50, Р1,5/50 и P1,7/50 Вт/кг соответственно (последняя характеристика только для анизотропной стали) и по величине магнитной индукции при напряженности магнитного поля Н= 100; 1000, 2500 А/м B100, B1000, B2500 Тл соответственно (первая характеристика только для анизотропной стали).

Для изотропной стали гарантируется однородность магнитных свойств в плоскости листа — установлена максимальная допустимая разность магнитной индукции B2500 Тл при измерении в продольном и поперечном направлениях.

Изотропные электротехнические стали, предназначены для электрических машин с вращающимися магнитопроводами: генераторов, машинных преобразователей и др. Небольшая часть этих сталей используется также в сварочных трансформаторах, некоторых видах малых распределительных трансформаторов реле и других изделиях, где магнитный поток не вращается, но охватывает все направления в плоскости листа.

Изотропные электротехнические стали изготавливают в вид полос и листов.

Кроме магнитных свойств, действующими стандартами нормируется еще ряд важных характеристик качества ЭТС: механические свойства, характеристики электроизоляционных покрытий, коэффициенты старения и заполнения, размерные параметры (допуски на толщину и ширину, разнотолщинность, состояние поверхности).

Стандарт регламентирует гарантированный, минимально допустимый предел свойств стали, определяющий ее марку при аттестации у поставщика и приемке у потребителя. При отработанной технологии производства и правильно установленных требованиях действительные свойства металла всегда лучше гарантированного уровня и могут быть охарактеризованы так называемым типичным уровнем. Типичный уровень свойств — это наиболее часто встречающиеся фактические оценки при контроле металла данной группы за продолжительный период (квартал, год).

Эти цифры отражают истинное качество металла и их рекомендуется принимать в расчетах при конструировании электротехнических устройств, характеристики которых допускают колебания свойств используемых материалов от среднего уровня. И только при требовании максимальной надежности в значениях расчетных параметров следует брать гарантируемый уровень свойств.

Магнитопроводы электротехнических устройств часто имеют сложную форму; направление магнитного потока и величина магнитной индукции в различных их частях изменяются. Даже при простом магнитопроводе магнитный поток не бывает постоянным и изменяется в зависимости от режима работы. Поэтому при электромагнитных расчетах конструктору совершенно недостаточно иметь только регламентированный стандартами ограниченный набор магнитных характеристик ЭТС. Возникает необходимость иметь, во-первых, типичные значения свойств и характеристик поставляемой стали разных марок и, во-вторых, основные характеристики магнитных свойств при изменении напряженности поля и индукции в широком диапазоне значений.

Используемая литература

[Электронный ресурс]//URL: https://inzhpro.ru/referat/tehnicheskoe-jelezo/

1. Дубров Н.Ф., Лапкин Н.И., Электротехнические стали 1963

2. Дружинин В.В., Свойства электротехнической стали 1974.

3. Отрывки из статьи про ЭТС из Большой советской энциклопедии

4. Меськин В.С., Основы легирования стали 1959

5. Wikipedia.org