Цветные металлы. Их свойства и применение

Реферат

Министерство образования и науки РФ

Государственное образовательное учреждение

высшего профессионального образования

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра экспертизы и управления недвижимостью

Реферат по предмету

Технология конструкционных материалов

По теме:

«Цветные металлы. Их свойства и применение»

Краснодар 2011

Цветные металлы: особенности применения и обработки

На сегодняшний день цветные металлы имеют огромное значение для производства любого типа техники. Металл является химически простым веществом, обладающим такими характеристиками, как ковкость, теплопроводность, электропроводность; внешне отличается особым блеском. Существует несколько классификаций металлов, основными группами металлов являются следующие:

· Черные металлы (железо и его сплавы);

  • Цветные металлы (все остальные металлы и сплавы, за исключением железа);
  • Благородные или драгоценные металлы (серебро, золото, платина и остальные металлы платиновой группы);
  • Легкие металлы (имеющие низкую плотность);
  • Тяжелые металлы (цветные металлы, обладающие плотностью выше, чем железо).

Цветные металлы — техническое название всех металлов и их сплавов (кроме железа и его сплавов, называемых черными металлами).

Термин <цветные металлы> в русском языке соответствует термину <нежелезные металлы> в европейских языках. Во многих других языках цветные металлы называются термином <нежелезные металлы>

В науке принята условная классификация цветных металлов, по которой они разделены по различным признакам, характерным для той или иной группы:

  • легкие металлы (алюминий, титан, магний),
  • тяжелые цветные металлы (медь, свинец, цинк, олово, никель),
  • благородные металлы (в т. ч. платиновые металлы),
  • тугоплавкие металлы,
  • рассеянные металлы,
  • редкоземельные металлы,
  • радиоактивные металлы.

Цветные металлы весьма востребованы в нашей стране, их производство широко распространено во всех регионах.

Цветная металлургия — отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. Различают металлургию легких металлов и металлургию тяжелых металлов.

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии легких металлов (алюминиевая, титано-магниевая промышленность) и тяжелых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).

9 стр., 4023 слов

Цветные металлы и сплавы, применяемые в строительстве

... более точечно. К примеру, добавляются к некоторым железным сплавам, для повышения стойкости производимой из них продукции. Цветные металлы, в свою очередь, делятся на легкие и тяжелые. ... кристаллической решетки и переход металлов из твердого в жидкое состояние. Процесс кристаллизации заключается в росте кристаллов путем отложения новых кристаллических групп вокруг возникших зародышей. Рост ...

Классификация цветных металлов:

1. Легкие металлы — это металлы, которые обладают малой плотностью, широко распространены в природе. Получают методом металлотермии или электротермии. Используют для производства легких сплавов. Самыми основными являются: бериллий, алюминий, литий, магний и титан.

2. Тяжелые металлы — это металлы, которые включают в себя Cu, Ni, Со, Pb, Sn, Zn, Cd, Bi, Sb, Hg. Получают методом цементации и электролиза. Используют в простом состоянии, а также в виде различных сплавов с железом и цветными металлами.

3. Тугоплавкие металлы — это металлы, которые плавятся при температуре 1650-1700 °С. Тугоплавкие металлы включают в себя: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Re. Получают этот вид металла из рудных концентратов в виде ферросплавов для введения в стали с целью легирования; молибденовые концентраты при этом предварительно обжигают. В чистом виде тугоплавкие металла получают из рудных концентратов по сложной технологии в 3 стадии: вскрытие концентрата, выделение и очистка химических соединений, восстановление и рафинирование металла. Используют для материалов в машиностроении, судостроении, химической промышленности, электронной.

4. Благородные металлы — это золото, серебро, платина и металлы платиновой группы (иридий, родий, осмий, рутений, палладий), которые получили название благодаря высокой химической стойкости и красивому внешнему виду в изделиях. Добывают следующими методами: бактериальным выщелачиванием, аффинажем, флотацией, дражным способом и т.д. Широко используют благородные металлы в медицине для изготовления различных инструментов, деталей, приборов, протезов, а также препаратов, которые на основе серебра.

5. Радиоактивные металлы — это химические элементы, изотопы которых являются радиоактивными. К таким металлам относятся: технеций (атомный номер 43), прометий (61), полоний (84) и все последующие элементы в периодической системе Менделеева. Существуют природные и искусственные радиоактивные металлы. Используют как делящийся материал в ядерном оружии и ядерных реакторах.

6. Редкие металлы — это новый вид металлов, их количество больше 50. В рудном сырье этих металлов мало, таким образом, сырьё является сложным и комплексным процессом. Огромное значение в технологии извлечения редких металлов имеют обогащение руд и химические процессы выделения, разделения и очистки соединений этих металлов.

Краткая история

Первые свидетельства того, что человек занимался металлургией, относятся к 5-6 тысячелетиям до н. э. и были найдены в Майданпеке, Плочнике [3] и других местах в Сербии (в том числе медный топор 5500 лет до н. э., относящийся к культуре Винча)[4] , Болгарии (5000 лет до н. э.), Палмеле(Португалия), Испании, Стоунхендже (Великобритания).

Однако, как это нередко случается со столь давними явлениями, возраст не всегда может быть точно определён.

4 стр., 1625 слов

Жаропрочные сплавы Ti-Al. Жаропрочные сплавы на основе интерметаллидов ...

... жаропрочные сплавы на основе интерметаллидов системы Ti–Al. Интерметаллические соединения Интерметаллическими соединениями (ИС) называют фазы, образованные двумя и более металлами, ... позволяет оптимизировать составы сплавов, прогнозировать температурные параметры изготовления полуфабрикатов и уровень ... создающие основу для их жаропрочного применения. К ним относятся: высокие упругие свойства при ...

В культуре ранних времён присутствуют серебро, медь, олово и метеоритное железо, позволявшие вести ограниченную металлообработку. Так, высоко ценились «Небесные кинжалы» — египетское оружие, созданное из метеоритного железа 3000 лет до н. э. Но, научившись добывать медь и олово из горной породы и получать сплав, названный бронзой, люди в 3500 годы до н. э. вступили в Бронзовый век.

Получение железа из руды и выплавка металла было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века. Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян.

Следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока, древний Египет и Анатолия (Турция), Карфаген, греки и римляне античной и средневековой Европы, Китай, Индия, Японияи т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретядоменные печи, чугун, сталь, гидромолоты и т. п.).

Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.

Свойства основных цветных металлов и сплавов

Алюминий

Деформируемые алюминиевые сплавы

В зависимости от возможности термического упрочнения деформируемые алюминиевые сплавы подразделяются на не упрочняемые и упрочняемые термической обработкой.

К сплавам, неупрочняемым т/о относятся сплавы Al c Mn (АМц1), и сплавы Al c Mg (AМг 2, АМг3).

Цифра — условный номер марки.

Эти сплавы хорошо свариваются, обладают высокими пластическими свойствами и коррозионной стойкостью, но невысокой прочностью, Упрочняются эти сплавы нагартовкой. Сплавы данной группы нашли применение в качестве листового материала, используемого для изготовления сложных по форме изделий, получаемых холодной и горячей штамповкой и прокаткой. Изделия, получаемые глубокой вытяжкой, заклепки, рамы и т.д.

Сплавы, упрочняемые т/о, широко применяются в машиностроении, особенно в самолетостроении, т.к. обладают малым удельным весом при достаточно высоких механических свойствах. К ним относятся:

Дуралюмины — основные легирующие компоненты — медь и магний:

Д1 — лопасти воздушных винтов, Д16 — обшивки, шпангоуты, лонжероны самолетов, Д17 — основной заклепочный сплав.

Высокопрочные сплавы — В95, В96 наряду с медью и магнием содержат еще значительное количество цинка. Применяют для высоконагруженных конструкций.

Сплавы повышенной пластичности и коррозионной стойкости — АВ, АД31, АД33. Лопасти вертолетов, штампованные и кованые детали сложной конфигурации.

Медь

Латуни — сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80).

Медные сплавы, предназначенные для изготовления деталей методами литья, называют литейными, а сплавы, предназначенные для изготовления деталей пластическим деформированием — сплавами, обрабатываемыми давлением.

18 стр., 8745 слов

Медь и сплавы на ее основе: латуни, бронзы. Их свойства, применение, ...

... высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры. Кремнистые латуни характеризуются высокой ... цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из ...

Латуни

Латуни дешевле меди и превосходят ее по прочности, вязкости и коррозионной стойкости. Обладают хорошими литейными свойствами.

Латуни, применяются в основном для изготовления деталей штамповкой, вытяжкой, раскаткой, вальцовкой, т.е. процессами, требующими высокой пластичности материала заготовки. Из латуни изготавливаются гильзы различных боеприпасов.

В зависимости от числа компонентов различают простые (двойные) и специальные (многокомпонентные) латуни.

Бронзы — это сплавы меди с оловом (4-33% Sn), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой, фосфором и другими элементами.

Бронзы — это всякий медный сплав, кроме латуни. Это сплавы меди, в которых цинк не является основным легирующим элементом. Общей характеристикой бронз является высокая коррозионная стойкость и антифрикционность (от анти- и лат. frictio- трение).

Бронзы отличаются высокой коррозионной устойчивостью и антифрикционными свойствами. Из них изготавливают вкладыши подшипников скольжения, венцы червячных зубчатых колес и другие детали.

Высокие литейные свойства некоторых бронз позволяют использовать их для изготовления художественных изделий, памятников, колоколов.

По химическому составу делятся на оловянные бронзы и без оловянные (специальные).

Оловянные бронзы обладают высокими механическими, литейными, антифрикционными свойствами, коррозионной стойкостью, обрабатываемостью резанием, но имеют ограниченное применение из-за дефицитности и дороговизны олова.

Магний

В зависимости от содержания примесей установлены следующие марки магния: Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg), магний высокой чистоты (99,9999% Mg).

Магний химически активный металл, легко окисляется на воздухе. Чистый магний из-за низких механических свойств (временное сопротивление 100-190 МПа, относительное удлинение 6-17%, твердость 30-40НВ) как конструкционный материал практически не применяют. Его используют в пиротехнике, в химической промышленности для синтеза органических соединений, в металлургии различных металлов и сплавов как раскислитель, восстановитель и легирующий элемент.

По механическим свойствам магниевые сплавы подразделяют на сплавы невысокой и средней прочности, высокопрочные и жаропрочные, по склонности к упрочнению с помощью термической обработки — на упрочняемые и неупрочняемые.

Деформируемые магниевые сплавы. В сплавах МА1 и МА8 основным легирующим элементом является марганец. Термической обработкой эти сплавы не упрочняются, обладают хорошей коррозионной стойкостью и свариваемостью. Сплавы МА2-1 и МА5 относятся к системе Mg-Al-Zn-Mn. Алюминий и цинк повышают прочность сплавов, придают хорошую технологическую пластичность, что позволяет изготовлять из них кованные и штампованные детали сложной формы (крыльчатки и жалюзи капота самолета).

Сплавы системы Mg-Zn, дополнительно легированные цирконием (МА14), кадмием, редкоземельными металлами (МА15, МА19 и др.) относят к высокопрочным магниевым сплавам. Их применяют для несвариваемых сильно нагруженных деталей (обшивки самолетов, деталей грузоподъемных машин, автомобилей, ткацких станков и др.).

14 стр., 6769 слов

Анализ свариваемости сплавов на основе меди (М1)

... телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной ...

Литейные магниевые сплавы. Наибольшее применение нашли сплавы системы Mg-Al-Zn (МЛ5, МЛ6).

Они широко применяются в самолетостроении (корпуса приборов, насосов, коробок передач, фонари и двери кабин и т.д.), ракетной технике (корпуса ракет, обтекатели, топливные и кислородные баки, стабилизаторы), конструкциях автомобилей, особенно гоночных (корпуса, колеса, помпы и др.), в приборостроении (корпуса и детали приборов).

Вследствие малой способности к поглощению тепловых нейтронов магниевые сплавы используют в атомной технике, а благодаря высокой демпфирующей способности — при производстве кожухов для электронной аппаратуры.

Цинк

Цинк — это цветной металл, который при обыкновенной температуре хрупок, но при нагреве до 100-150 градусов хорошо куется и прокатывается. Цинк устойчив против коррозии, однако разрушается под действием кислот и щелочей. Температура плавления — 419 градусов.

Применение цветных металлов

В современной технике объем применения цветных металлов и сплавов на их основе непрерывно растет. В связи с бурным развитием авиастроения, ракетной и атомной техники, химической промышленности в качестве конструкционных материалов в настоящее время стали применять такие металлы (и сплавы на их основе), как титан, цирконий, никель, молибден и даже ниобий, гафний и др.

Области применения отдельных цветных металлов и сплавов на их основе весьма разнообразны.

Медь и ее сплавы широко используют в химическом машиностроении, для изготовления трубопроводов самого различного назначения, емкостей, различных сосудов в криогенной технике и т. п.

Алюминий и его сплавы применяют для изготовления различных емкостей в химической и пищевой промышленности. Сплавы на основе алюминия широко применяют для самолетов, ракет, судов, в строительстве и т. п. в связи с их сравнительно высокой прочностью при малой плотности, высокой коррозионной стойкостью в некоторых агрессивных средах и высокими механическими свойствами при низких температурах.

Получение цветных металлов

Добыча и получение цветных металлов имеют огромное народнохозяйственное значение. Ведь в ряде случаев цветные металлы просто незаменимы. Алюминий — «король воздуха» — основной материал в самолетостроении. Его главный помощник в сверхзвуковой авиации — титан. Титановые сплавы несколько тяжелее алюминиевых, но зато прочнее их и выдерживают вдвое более высокую рабочую температуру. Чистый титан отлично работает в растворах солей и кислот. Из него поэтому делают насосы, трубы, краны для гидрометаллургических цехов.

Как и черные металлы, цветные получают из рудного концентрата: предварительно обогащенной руды. Но здесь процесс обогащения сложнее, поскольку в рудах всегда присутствуют и «посторонние» элементы, от которых необходимо избавляться. В первую очередь это сера, железо и кислород.

Сначала из руды путем «обмена» удаляют серу: место серы временно должен занять другой элемент. Обычно «заменителем» оказывается кислород. Делают это при обжиге руды: при высокой температуре металлы «соглашаются» расстаться с серой и принять на ее место кислород. Теперь перед металлургами новое соединение — оксид: соединение металла с кислородом. Иногда серу вытесняют не кислородом, а хлором. Тогда концентрат не обжигают, а хлорируют. Затем необходимо освободить металл от кислорода или хлора. С этим процессом — восстановлением металла — вы можете познакомиться в статье Доменная печь. При высоких температурах в расплав вводят углерод, водород или кремний. Кислород покидает металл и соединяется с этими элементами. Также и для хлора подбирают элементы, которые он «любит»: например, титан или цирконий освобождают от хлора с помощью магния.

7 стр., 3225 слов

Реферат сплавы алюминия и меди

... меди и др. металлам. ^ Особо следует упомянуть полуфабрикаты и изделия из алюминия, покрытые по поверхности защитной плёнкой из его оксида, и изделия из спеченных алюминиевых сплавов, ... ^ В зависимости от способа производства промышленные алюминиевые сплавы делятся на спеченные, литейные и деформируемые (рис.1). Литейные сплавы претерпевают эвтектическое превращение, а деформируемые – нет. Последние ...

Сложность получения цветных металлов хорошо видна на примере меди. Ее плавят в печах, напоминающих мартеновские (см. Мартеновская печь).

Но выходит из печей не чистая медь, а так называемый штейн — сплав меди с железом, серой, серебром, золотом, цинком и другими элементами. Этих примесей в штейне 70—80%. Затем штейн заливают в конвертор и продувают через него воздух, в результате чего выжигаются остатки серы и удаляется железо. Занимает этот процесс часы, а не минуты, как в конверторе для переработки чугуна. Штейн превращается в черновую медь, которая содержит всего 1—2% примесей. Но и это слишком много.

Следующая стадия — очистка меди от примесей — огневое рафинирование. Выжигаются последние остатки серы и некоторых других элементов. Зато часть меди вновь окисляется. Чтобы освободить медь от кислорода, в ванну с расплавом погружают деревянные жерди, словно «дразнят» медь. Расплав при этом бурлит и фыркает. Эта операция так и называется — дразнение. Потом в печь забрасывают древесный уголь, который окончательно отбирает от меди кислород. Теперь примесей уже только десятые доли процента, и среди них золото и серебро.

С этим можно было бы мириться. Но электротехнике нужна очень чистая медь. Поэтому в дело вступает электролиз (см. Электрохимические методы обработки).

Пластину очищаемой меди — анод — помещают в электролитическую ванну с раствором серной кислоты и медного купороса. Катодом служит лист чистой меди. Электрический ток переносит на катод только медь. Золото, платина и серебро опускаются на дно ванны, а другие примеси остаются в растворе. С помощью электролиза получают и многие другие цветные металлы. В первую очередь алюминий.

Получать алюминий тоже очень сложно. Его рудный концентрат — глинозем (оксид алюминия) плавится при 2050° С (это почти в 2 раза выше температуры плавления меди), да еще не отдает кислород углероду. Поэтому, чтобы снизить температуру плавки, приходится растворять глинозем в расплавленном криолите — минерале, в состав которого входят алюминий, натрий и фтор. Точка плавления этого раствора ниже 1000° С, а с такой температурой уже можно работать.

В электролитической ванне молекулы глинозема распадаются на составные части — ионы алюминия и кислорода. Электрический ток разносит их в разные стороны. Алюминий осаждается на катод, которым является угольное дно самой ванны. Отсюда его потом и собирают.

Так же с помощью электролиза получают титан, магний, кальций, бериллий и другие металлы, разлагая их соединения с хлором. Хлористые соли этих металлов нагревают до 500—700° С и заливают в ванну с электролитом.

21 стр., 10372 слов

Конъюнктура мирового рынка цветных металлов

... в Интернете на сайтах производителей и международных организаций. 1. Конъюнктура международного рынка цветных металлов 1.1 Обзор рынка цветных металлов Собственно, эксперты отмечают практически полную зависимость расценок на цветмет в ... изменение цен на медь, а рис. 1.1.4. – на никель. Мы можем видеть, что из этих металлов менее всего в последние полгода вырос алюминий, что позволяет говорить ...

Однако цветные металлы можно получать и без нагрева — с помощью жидкости. Есть целая отрасль — гидрометаллургия. Металл переводят в раствор с помощью химического растворителя — воды или растворов кислот, щелочей и солей.

Из раствора чистый металл извлекают разными способами. В одних случаях с помощью электролиза, в других прибегают к обменным химическим реакциям, но тоже в электролизной ванне. Суть их в том, что анодом служит какой-либо другой металл, который отдает в раствор свои ионы. А из раствора извлекают ионы нужного металла. Так получают, например, цинк.

Особенности цветных металлов

1. Некоторые металлы (медь, магний, алюминий) обладают сравнительно высокими теплопроводностью и удельной теплоемкостью, что способствует быстрому охлаждению места сварки, требует применения более мощных источников теплоты при сварке, а в ряде случаев предварительного подогрева детали.

2. Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна даже проваливается под действием собственного веса (алюминий, бронза).

3. Все цветные сплавы при нагреве в значительно больших объемах, чем черные металлы, растворяют газы окружающей атмосферы и химически взаимодействуют со всеми газами, кроме инертных. Особенно активные в этом смысле более тугоплавкие и химически более активные металлы: титан, цирконий, ниобий, тантал, молибден. Эту группу металлов часто выделяют в группу тугоплавких, химически активных металлов.

Особенности обработки цветных металлов

Цветные металлы прочны и долговечны, способны переносить высокие температуры. Недостаток только один — способность корродировать и разрушаться под воздействием кислорода .

Одним из самых эффективных методов защиты цветного металла от атмосферной коррозии считается нанесение защитных лакокрасочных материалов. Существуют три группы средств для защиты металлических поверхностей: грунтовки, краски и универсальные препараты «три в одном». Грунтовка — незаменимое средство борьбы с атмосферным окислением, одно- или двухслойное грунтование производится перед окрашиванием, помимо защитных свойств сообщая финишному покрытию лучшую адгезию к основанию. При выборе состава важно знать, что для разных металлов используются разные грунтовки

Для алюминиевых оснований используют специальные грунтовки на цинковой основе либо уретановые краски. Медь, латунь и бронзу обычно не красят — эти металлы поставляются на рынок с заводской обработкой, защищающей поверхность и подчеркивающей ее красоту. Если же целостность такого «фирменного» покрытия со временем нарушается , его лучше полностью удалить с помощью растворителя , после чего основание следует отполировать и покрыть эпоксидным или полиуретановым лаком