Инструментальные и конструкционные материалы

Реферат

Большинство деталей машин, обрабатываемых на металлорежущих станках, изготавливается из металлов и их сплавов. Наибольшее распространение имеют чугуны и стали, в меньшей степени — цветные металлы. Для режущих инструментов широко применяются твердые сплавы и абразивные материалы.

Обрабатываемость металлов резанием характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.

Твердость — способность металла оказывать сопротивление проникновению в него другого, более твердого тела. Наиболее распространены два способа определения твердости: Бринелля и Роквелла.

Твердость по Бринеллю устанавливается вдавливанием в испытуемый металл стального закаленного шарика под определенной нагрузкой. Полученную этим способом твердость обозначают буквами HB и определяют делением нагрузки на площадь сферического отпечатка. Прибор Бринелля применяется для определения твердости сырых или слабо закаленных металлов, так как при больших нагрузках шарик деформируется и показания искажаются.

Твердость по Роквеллу определяется вдавливанием в подготовленную ровную поверхность алмазного конуса или закаленного шарика. Значение твердости выражается в условных единицах и отсчитывается по черной или красной индикаторным шкалам прибора. Для очень твердых металлов незначительной толщины применяют алмазный конус с нагрузкой 588 Н, а значение твердости определяют по черной шкале и обозначают HRA.

Твердость закаленных сталей определяют, вдавливая алмазный конус при нагрузке 1470 Н, по черной шкале и обозначают HRCэ.

Испытание твердости шариком с нагрузкой 980 Н на приборе Роквелла предусмотрено для мягких незакаленных металлов. В этом случае отсчет показаний ведут по красной шкале, а твердость обозначают HRB.

Прочность — способность металла сопротивляться разрушению под действием внешних сил.

Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление) и обозначают У в (сигма).

Пластичность — способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.

При испытании на растяжение пластичность характеризуется относительным удлинением Д (дельта), которое соответствует отношению приращения длины образца после разрыва к его первоначальной длине в процентах.

4 стр., 1851 слов

Методы измерения твердости

... скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом). Широкое распространение испытаний на твердость объясняется рядом ... внесет погрешность в результаты испытаний. Таблица 1 Условия испытания металлов на твердость по Бринеллю Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10 ...

Черные металлы

металл инструментальный сталь сплав

Железоуглеродистые сплавы с примесями марганца, кремния, серы, фосфора и некоторых других элементов принято называть черными металлами. В зависимости от содержания углерода они делятся на две группы: чугуны и стали.

Чугун — сплав железа с углеродом, содержащий свыше 2,3% углерода (практически от 2,5 до 4,5%).

Углерод в нем может находиться в химически связанном состоянии в виде карбида железа (цементита) и в свободном состоянии — в виде графита. В соответствии с этим чугуны делятся на белые — передельные и серые — литейные.

В белом чугуне почти весь углерод находится в состоянии карбида железа (Fe 3 C), обладающего высокой твердостью. Такие чугуны имеют мелкозернистое строение с серебристо-белой поверхностью в изломе, высокую твердость, трудно поддаются обработке резанием, плохо заполняют форму и поэтому используются в основном для выплавки сталей.

В сером чугуне большая часть углерода находится в свободном состоянии в виде мелких пластинок графита. Последние, разделяя структуру чугуна и действуя как надрезы, значительно уменьшают его прочность и увеличивают его хрупкость. Такие чугуны имеют в изломе серый цвет, обладают хорошими литейными свойствами, почти не дают усадку в отливках и сравнительно легко обрабатываются резанием. Однако, имея в своем составе твердые зерна цементита, серые чугуны значительно ускоряют изнашивание инструмента, что не позволяет обрабатывать их с высокими скоростями резания.

Марки серого чугуна обозначаются буквами СЧ и числами, соответствующими его пределу прочности при растяжении в кгс/мм 2 .

В промышленности также применяются отливки из высокопрочных и ковких чугунов.

Высокопрочный чугун получают прибавлением к расплавленному чугуну присадок магния и ферросилиция, благодаря чему выделяющийся углерод приобретает шаровидную форму. Такой чугун обладает повышенной прочностью и пластичностью. Его применяют для деталей, работающих при значительных механических нагрузках.

В ковком чугуне графит имеет хлопьевидную форму. Этот чугун получают длительным отжигом отливок из белого чугуна. Такие чугуны обладают повышенной прочностью и пластичностью и по своим свойствам занимают промежуточное положение между серым чугуном и сталью.

Высокопрочные и ковкие чугуны маркируются буквами и цифрами: ВЧ — высокопрочный чугун, КЧ — ковкий чугун; первые две цифры — предел прочности при растяжении в кгс/мм 2 (1кгс/мм2 = 9,608МПа ? 10МПа).

Сера и фосфор — вредные примеси. Сера придает хрупкость чугуну, делает его густотекучим и пузырчатым. Фосфор увеличивает хрупкость чугуна, но делает его жидкотекучим.

Сталь — это сплав железа с углеродом, содержащий до 1,8% углерода.

Стали относятся к пластичным металлам, которым деформированием можно придать необходимую форму. По химическому составу они делятся на углеродистые и легированные; по назначению — на конструкционные, инструментальные, особого назначения (нержавеющие, жаропрочные и др.).

6 стр., 2862 слов

Железоуглеродистые сплавы — стали и чугуны

... сталь. Синтетический чугун получают плавлением металлического лома в электрических печах путем науглероживания. Их него изготовляют отливки повышенного качества [Лахтин Ю. М., Леонтьева В. П. Материаловедение. — М.: Машиностроение, 1980]. 2. Стали ... область применения чугуна Согласно ГОСТ 4832-86, ... с целью увеличить содержание в ней железа. Обогащение ... целиком состоящий из углерода. В России и бывшем ...

Углеродистые конструкционные стали подразделяются на обыкновенного качества, качественные и автоматные. Стали обыкновенного качества обозначаются буквами Ст и цифрами о 0 до 7. Качественные имеют меньше посторонних примесей. Они маркируются цифрами 08, 10, 15, 20 и так далее до 60, указывающие содержание углерода в сотых долях процента. Выпускаются две группы таких сталей: I — с нормальным и II — с повышенным содержанием марганца. Последние в конце маркировки имеют букву Г — марганец. Качественные стали группы II обладают повышенной прочностью и упругостью.

Легированные конструкционные стали, кроме обычного состава, содержат хром, ванадий, вольфрам, никель, алюминий и др. Эти элементы придают стали определенные свойства: прочность, твердость, прокаливаемость, износостойкость и т.д.

Марки легированных сталей обозначают буквами и цифрами. Первые две цифры указывает среднее содержание углерода в сотых долях процента; затем следуют цифры, обозначающие легирующий элемент; цифры после букв — примерное содержание легирующего элемента в процентах. Если содержание элемента близко к 1%, цифра после буквы не ставится.

В маркировке приняты следующие буквенные обозначения элементов: Г — марганец, С — кремний, Х — хром, Н — никель, М — молибден, В — вольфрам, Ф — ванадий, К — кобальт, Ю — алюминий, Т — титан, Д — медь. Буква А в конце марки означает, что сталь высококачественная.

Инструментальные стали делятся на углеродистые, легированные и быстрорежущие.

Углеродистые инструментальные стали содержат углерода от 0,65 до 1,35%, обладают высокой прочностью, твердостью в закаленном состоянии 63-65 HRCэ и теплостойкостью до 200-250 градусов С.

Они делятся на качественные и высококачественные. Последние содержат меньше серы, фосфора и остаточных примесей. Марки этих сталей обозначают буквой У — углеродистая, а цифры после нее указывают среднее содержание углерода в десятых долях процента. У высококачественных сталей в конце маркировки указывается буква А. Углерод существенно влияет на свойства стали. С повышением его содержания твердость, износостойкость и хрупкость стали увеличиваются, но вместе с тем ухудшается его обработка резанием.

Легированную инструментальную сталь получают введением в высокоуглеродистую сталь хрома, вольфрама, ванадия и других элементов, которые повышают ее режущие свойства. Благодаря легирующим элементам эта сталь приобретает повышенную вязкость и износостойкость в закаленном состоянии, меньшую склонность к деформациям и трещинам при закалке, более высокую теплостойкость (до 300-350 градусов С) и твердость в состоянии поставки. Легированные инструментальные стали маркируются аналогично конструкционным с той лишь разницей., что первая цифра в начале марки означает содержание углерода в десятых долях процента.

Быстрорежущие стали представляют собой легированные инструментальные стали с высоким содержанием вольфрама (до 18%).

После термообработки (закалки и многократного отпуска) они приобретают высокую красностойкость до 600 градусов С, твердость 63-66 HRCэ и износостойкость.

Быстрорежущие стали маркируются буквами и цифрами. Первая буква Р означает, что сталь быстрорежущая. Цифры после нее указывают среднее содержание вольфрама в процентах. Остальные буквы и цифры означают то же, что и в марках легированных сталей.

Быстрорежущие стали, легированные ванадием и кобальтом, имеют повышенные режущие свойства. Они предусмотрены для труднообрабатываемых сталей и сплавов высокой прочности и вязкости.

Структура быстрорежущей стали (рисунок слева) — мелкие, твердые, однородно распределенные карбиды и мартенсит, легированный для теплостойкости вольфрамом и (или) молибденом

Примерное назначение и свойства быстрорежущих сталей

Марка стали, прочность, износостойкость, особенности стали

Назначение

Р18.

Удовлетворительная прочность и повышенная шлифуемость, широкий интервал закалочных температур

Для всех видов инструментов, особенно подвергаемых значительному шлифованию, при обработке конструкционных материалов прочностью до 1000 МПа

Р9

Повышенная износостойкость, более узкий интервал оптимальных закалочных температур, повышенная пластичность при горячей пластической деформации.

Для изготовления инструментов простой формы, не требующих большого объема шлифования, применяемых для обработки конструкционных материалов

Р6М5

Повышенная прочность, более узкий интервал закалочных температур, повышенная склонность к обезуглероживанию. Шлифуемость удовлетворительная.

Для всех видов инструментов при обработке конструкционных материалов прочностью до 1000 МПа.

Р12Ф3

Повышенная износостойкость, удовлетворительная прочность. Шлифуемость пониженная.

Для чистовых инструментов (резцов, зенкеров, разверток, сверл, протяжек и др.) при обработке на средних режимах резания вязких аустенитных сталей, а также материалов, обладающих повышенными режущими свойствами.

Р6М5Ф3

Повышенная износостойкость, удовлетворительная прочность. Шлифуемость пониженная.

Для чистовых и получистовых инструментов (фасонных резцов, разверток, фрез, протяжек и др.).

Предназначенных для работы на средних скоростях резания, преимущественно обрабатывающих углеродистые и легированные инструментальные стали.

Р9К5, Р6М5К5, Р18К5Ф2

Повышенная вторичная твердость, теплостойкость, удовлетворительная прочность и вязкость. Шлифуемость пониженная.

Для изготовления черновых и получистовых инструментов (фрез, долбяков, метчиков, сверл и т.п.), предназначенных для обработки углеродистых и легированных конструкционных сталей на повышенных режимах резания, а также некоторых труднообрабатываемых материалов

Цветные металлы

Из цветных металлов наибольшее промышленное применение получили медь, алюминий и сплавы на их основе.

Медь — мягкий пластичный металл розовато-красного цвета, обладающий высокой электропроводностью, теплопроводностью, коррозийной стойкостью.

В отожженном состоянии она характеризуется пределом прочности при растяжении У в = 19,6 — 23,6 МПа. Твердостью по Бринеллю 35 -45 НВ.

Медные сплавы — латуни и бронзы по сравнению с медью более дешевы, имеют лучшие литейные свойства, большую прочность и хорошо обрабатываются резанием. Кроме свойств, присущих меди, они обладают способностью прирабатываться и противостоять изнашиванию. Это важное эксплуатационное качество — антифрикционность — обусловливает широкое применение медных сплавов, особенно бронз, в деталях машин, работающих в условиях повышенного трения (червячные колеса, гайки винтовых передач, вкладыши подшипников скольжения и др.).

Латунь — медноцинковый сплав. Различают простые латуни, состоящие из меди и цинка, и специальные — содержащие дополнительно легирующие элементы, которые улучшают механические свойства латуни.

Маркировка латуней: первая буква Л указывает на название сплава — латунь. Следующая за ней цифра обозначает среднее содержание меди в процентах. Специальные латуни маркируются дополнительно буквами, обозначающими легирующие элементы: А — алюминий, Мц — марганец, К — кремний, С — свинец, О — олово, Н — никель, Ж — железо. Первые две цифры, стоящие за буквами, указывают среднее содержание меди в процентах, последующие цифры — содержание других элементов; остальное в сплаве цинк. Буква Л — в конце марки указывает, что латунь литейная. Например, марка ЛАЖ60-1-1 — специальная, алюминиево-железистая латунь содержит 60% меди, 1% — алюминия, 1% — железа, остальное цинк.

Бронза — сплав меди с оловом, марганцем, алюминием, фосфором, никелем и другими элементами.

В зависимости от состава бронзы делятся на оловянистые и специальные (безоловянисые).

Маркировка бронз основана на том же принципе, что и латуней. Впереди стоят буквы Бр — бронза, далее следуют буквенные обозначения элементов, входящих в состав сплава, и за ними — цифры, указывающие среднее содержание этих элементов в процентах.

Алюминий — мягкий пластичный металл серебристо-белого цвета, отличается высокой электропроводностью, коррозийной стойкостью, малой плотностью и хорошо обрабатывается давлением.

В отожженном состоянии алюминий обладает малой прочностью У в =78,5 — 118 МПа и твердостью 15-25 НВ.

Алюминиевые сплавы, имея положительные качества алюминия, обладают, кроме того, повышенной прочностью и лучшими технологическими свойствами. Благодаря малой плотности их принято называть легкими сплавами.

В зависимости от состава и технологических свойств алюминиевые сплавы делятся на деформируемые и литейные. Их марки обозначаются буквами и цифрами. Так, например, деформируемые сплавы на основе алюминий — медь — магний (дюралюминий) маркируются буквой Д; алюминий — марганец : АМц, алюминий — магний: АМг; сплавы для поковок и штамповок — АК; литейные сплавы АЛ. Цифры после букв соответствуют порядковому номеру сплава. Лучшими литейными сплавами являются сплавы на основе алюминий — кремний, называемые силуминами.

Твердые сплавы

Твердые сплавы выпускаются в виде пластинок различных форм и размеров, получаемых методом порошковой металлургии (прессованием и спеканием).

Основой для них служат порошки твердых зерен карбидов тугоплавких металлов (вольфрама, титана, тантала), сцементированных кобальтом.

Промышленностью выпускаются три группы твердых сплавов: вольфрамовые — ВК, титановольфрамовые — ТК и титанотанталовольфрамовые — ТТК.

В обозначении марок сплавов используются буквы: В — карбид вольфрама, К — кобальт, первая буква Т — карбид титана, вторая буква Т — карбид тантала. Цифры после букв указывают примерное содержание компонентов в процентах. Остальное в сплаве (до 100%) — карбид вольфрама. Буквы в конце марки означают: В — крупнозернистую структуру, М — мелкозернистую, ОМ — особомелкозернистую.

Характерными признаками, определяющими режущие свойства твердых сплавов, являются высокая твердость, износостойкость и красностойкость до 1000 градусов С. Вместе с тем эти сплавы обладают меньшей вязкостью и теплопроводностью по сравнению с быстрорежущей сталью, что следует учитывать при их эксплуатации.

При выборе твердых сплавов необходимо руководствоваться следующими рекомендациями.

Вольфрамовые сплавы (ВК) по сравнению с титановольфрамовыми (ТК) обладают при резании меньшей температурой свариваемости со сталью, поэтому их применяют преимущественно для обработки чугуна, цветных металлов и неметаллических материалов.

Сплавы группы ТК предназначены для обработки сталей.

Титанотанталовольфрамовые сплавы (ТТК), обладая повышенной прочностью и вязкостью, применяются для обработки стальных поковок, отливок при неблагоприятных условиях работы.

Для тонкого и чистового точения с малым сечением стружки следует выбирать сплавы с меньшим количеством кобальта и мелкозернистой структурой.

Черновая и чистовая обработки при непрерывном резании выполняются в основном сплавами со средним содержанием кобальта.

При тяжелых условиях резания и черновой обработке с ударной нагрузкой следует применять сплавы с большим содержанием кобальта и крупнозернистой структурой.

Основные марки вольфрамо-содержащих твердых сплавов и области их применения

Применяемость по системе ISO

Цвет маркировки

Марка сплава

Области применения

Группа

Подгруппа

Без покрытия

С покрытием

Обрабатываемый материал