Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, “всякий мальчишка теперь знает слово лазер”. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах — квантовой электроники — академик Н.Г. Басов отвечает на этот вопрос так: “Лазер — это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля — лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую еже на сегодняшний день плотность энергии ядерного взрыва… С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля.
Наконец, лазерный луч является самым емким носителем информации и в этой роли — принципиально новым средством ее передачи и обработки”. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер — это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами. Лазерным лучом раскраивают ткани и режут стальные листы, сваривают кузова автомобилей и приваривают мельчайшие детали в радиоэлектронной аппаратуре, пробивают отверстия в хрупких и сверхтвердых материалах. Доводка номиналов пассивных элементов микросхем и методы получения на них активных элементов с помощью лазерного луча получили дальнейшее развитие и применяются в производственных условиях. Причем лазерная обработка материалов позволяет повысить эффективность и конкурентоспособность по сравнению с другими видами обработки. В руках хирурга лазерный луч превратился в скальпель, обладающий рядом удивительных свойств. Лазеры широко используются в современных контрольно-измерительных устройствах, вычислительных комплексах, системах локации и связи. Лазеры позволяют быстро и надежно контролировать загрязненность атмосферы и поверхности моря, выявлять наиболее нагруженные участки деталей различных механизмов, определять внутренние дефекты в них. Лазерный луч становится надежным помощником строителей, картографов, археологов, криминалистов. Непрерывно расширяется область применения лазеров в научных исследованиях — физических, химических, биологических.
Современные лазерные технологии
... передавать тепловую энергию на большие расстояния. Фантазия авторов дала многим ученым почву для размышления о создании высокой технологии будущего. Непосредственно история изобретения лазера началась в ... частоте и фазе с падающей волной. 2.3 Основные свойства лазерного луча Лазеры являются уникальными источниками света. Их уникальность определяют свойства, которыми не обладают обычные источники ...
Замечательные свойства лазеров — исключительно высокая когерентность и направленность излучения, возможность генерирования когерентных волн большой интенсивности в видимой, инфракрасной и ультрафиолетовой областях спектра, получение высоких плотностей энергии как в непрерывном, так и в импульсном режиме — уже на заре квантовой электроники указывало на возможность широкого их применения для практических целей. С начала своего возникновения лазерная техника развивается исключительно высокими темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые: создаются лазерные установки с необходимым для различных конкретных целей комплексом характеристик, а также различного рода приборы управления лучом, все более и более совершенствуется измерительная техника. Это послужило причиной глубокого проникновения лазеров во многие отрасли народного хозяйства, и в частности в машино- и приборостроение.
Значительная импульсная мощность и энергия излечения современных твердотельных и газовых лазеров позволили вплотную подойти к решению проблем лазерной энергетики — разработке лазерного оружия для систем противоракетной обороны, управляемого термоядерного синтеза, разделения изотопов и лучевой передачи энергии, в том числе на космические объекты.
1 Классификация лазеров и их характеристики
Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом — на входе слабое излучение, на выходе — усиленное.
С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.
Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.
Лазеры и их применение в медицине
... применение лазерной техники в хирургии становится исключительно перспективным. Кратко перечисленные некоторые достоинства применения лазеров в хирургии относятся прежде всего к лазерам на углекислом газе (С02-лазерам). Кроме них, в медицине применяют лазеры, ... хрома Сг3+. Возбуждение ионов хрома осуществляют методом оптической накачки с помощью импульсных источников света большой мощности. В одной из ...
Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.
Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 10^6 Вт,
называют высокомощными. При выходной мощности в диапазоне 10^5…10^3 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10^-3 Вт, то говорят о маломощных лазерах.
В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью — у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.
Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10^-3 до 10^2 мкм. За областью 100 мкм лежит, образно говоря, “целина”. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.
Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов — порядка 10^3 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10^-3 до 10^2 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10^-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10^-6 с, мощность составляет 10^6 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 10^3 Дж и сократить ее длительность до 10^-9 с и тогда мощность достигнет 10^12 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 10^5 Вт/см^2, то начинается плавление металла, при интенсивности 10^7 Вт/см^2 — кипение металла, а при 10^9 Вт/см^2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.
Применение лазеров в технологических процессах
... лазерного излучения, необходимо "накачать" активный элемент энергией от некоторого источника (его называют устройством накачки). Действительно, основной физический процесс, определяющий действие лазера, ... использовать в качестве резонатора специально обработанные поверхности самого образца. В том же ... -вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде ...
Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой — около 10…15 угловых градусов.
Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10^-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.
Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.
2 Применение лазера
2.1 Поверхностная лазерная обработка
Поверхность исследуемой мишени мгновенно испаряется и вспыхивает при облучении мощным длительным импульсом углекислотного лазера, излучая десятки киловатт инфракрасного излучения. Обратите внимание, что оператор стоит за листами плексигласа, непрозрачного в инфракрасном свете
2.1.1 Лазерная термообработка
Лазерная закалка (термоупрочнение) — применяется для повышения срока службы различных изделий, которые в процессе работы подвергаются износу. Сущность процесса лазерной закалки заключается в том, что локальный участок поверхности изделия нагревают с помощью излучения до сверхкритических температур. Нагрев металла осуществляется передачей энергии лазерного излучения вглубь материала, используя его теплопроводность. После прекращения действия излучения этот участок охлаждается за счёт отвода теплоты во внутренние слои металла. Высокая скорость охлаждения приводит к образованию в сплавах закалочных структур, характерных только лазерной обработки.
Лазерный отжиг — в отличие от лазерной закалки, преследует цель получения более равновесной структуры (по сравнению с исходным состоянием), обладающей большей пластичностью и меньшей твердостью. Указанный метод широко используется в микроэлектронике для отжига дефектов в полупроводниках. Лазерным лучом можно отжигать мелкие металлические детали.
Лазерный отпуск — применяется при необходимости локального увеличения пластичности или ударной вязкости, например, в местах соединения различных деталей. Сталь после лазерного отпуска имеет большую прочность, твердость, ударную вязкость, чем после традиционной технологии отпуска.
Изобретение лазера в физике
... уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере ... помещаются в эллиптическую полость с хорошо отражающей внутренней поверхностью. Чтобы обеспечить попадание на рубин всего излучения ксеноновой лампы, кристалл рубина и лампа, имеющая также ...
Лазерная очистка, в том числе лазерная дезактивация — используется для удаления разного рода загрязнений с поверхности предмета. Основные направления лазерной очистки: очистка произведений искусства и памятников; очистка металлов в рамках технологических процессов производства; очистка поверхности от радиоактивного загрязнения (лазерная дезактивация); микроочистка в различных отраслях электроники
2.1.2 Лазерное оплавление
Аморфизация поверхности сплава в условиях скоростного облучения (очень коротким импульсом или сканирующим лучом).
Сверхвысокие скорости теплоотвода, достигаемые при этом, обеспечивают своеобразное «замораживание» расплава, образование металлических стекол (метгласса) или аморфного состояния поверхностного слоя. В результате достигаются высокая твердость, коррозионная стойкость, улучшенные магнитные характеристики и другие специфические свойства материала. Процесс лазерной аморфизации можно осуществить при обработке сплавов специальных составов (в том числе и на основе железа), а также других материалов, предварительно покрытых специальными составами, которые самостоятельно или совместно с матричным материалом склонны к аморфизации.
2.1.3 Получение поверхностных покрытий
Лазерное легирование сталей с последующей термической обработкой значительно повышает микротвердость и стабильность структуры поверхности и может во много раз уменьшить интенсивность износа.
Лазерная наплавка — уникальный метод нанесения износостойких поверхностных слоев без поводок и короблений. Лазерное восстановление может широко использоваться в ремонтном производстве для восстановления прецизионных деталей, там, где требуется повышенная твердость и износостойкость слоя, надежность и долговечность (клапана ДВС, распредвалы, полуоси, штоки, коленчатые валы, крестовины, детали трансмиссий и др.).
В отличие от напыления при лазерной наплавке создается монолитный бездефектный слой, который имеет металлургическую связь с основой.
Вакуумно-лазерное напыление заключается в испарении материала участка поверхности под воздействием лазерного излучения в вакууме и конденсировании испарившихся продуктов на подложке, в результате образуется поверхностный слой с химическим составом, отличным от основного металла.
Ударное воздействие лазерного излучения может использоваться для упрочнения поверхности и для инициирования физико-химических процессов, например, для формирования р-n — переходов в полупроводниковых материалах.
Инициирование поверхностных химических реакций на поверхности сплавов с помощью теплового воздействия лазерного излучения или с использованием плазменного облака вблизи поверхности преследует цель окисления или восстановления отдельных компонентов сплава или получения специальных соединений.
2.2 Лазерная сварка
Лазерная сварка в настоящее время является наиболее перспективной технологией для промышленного использования в связи с разработкой мощных лазеров с непрерывным и импульсно-периодическим действием. Сварное соединение получается при нагревании и расплавлении лазерным лучом участков в месте контакта свариваемых деталей. Когда лазерный луч смещается, то же самое происходит и с зоной расплавленного материала. Затем при остывании образуется сварной шов. По форме он получается узким и глубоким, принципиально отличается от сварных швов, полученных при использовании традиционной технологии сварки. Глубина проплавления зависит от мощности лазера, а поперечное сечение лазерного шва похоже на лезвие кинжала, поэтому глубокое лазерное проплавление иногда называют кинжальным. Лазерная сварка с глубоким проплавлением позволяет сваривать толстые слои материалов с большой скоростью при минимальном тепловом воздействии на материал, прилегающий к зоне расплава, что улучшает свойства сварного шва и качество сварного соединения.
Лазерная технология
... (РОС13) с галогенидами элементов III, IV и V групп. Наиболее эффективными лазерными материалами на органических красителях являются кумарины, фталимиды, производные окзасола и диозола, ксантеновые, полиметиновые ... осуществляется между уровнем примеси и зоной собственно полупроводника. В случае сильного легирования уровни уширяются, энергия ионизации уменьшается и в пределе уровни полностью сливаются ...
2.3 Лазерное разделение материалов
Лазерная резка — сфокусированный лазерный луч обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания.
Газолазерная резка -принцип работы газолазерной резки: в зону реза подают луч лазера и технологический газ в виде кольцевой или отдельных сверхзвуковых расчетных струй, векторы скорости которых в их критическом сечении направлены под углом к оси лазерного луча, близким к половине апертурного. Струи технологического газа подают в ограниченный объем, в котором они разворачиваются в волнах сжатия и разрежения до направления векторов скорости параллельно оси лазерного луча, после чего слившуюся сверхзвуковую струю направляют соответственно лазерному лучу в зону реза, при этом число Маха М на участке струи в ограниченном объеме поддерживают в пределах Mi ? M > 1, где Мі — расчетное число Маха для требуемого технологическим процессом отношения давлений технологического газа. Характерно, что газолазерная резка эффективна не только для раскроя хрупких, мягких и нетеплостойких материалов (стекло, резина, ткани), исключая механическое воздействие па них; она обеспечивает обработку и самых твердых и тугоплавких материалов, поддающихся только алмазному инструменту.
Термораскалывание — этот вид лазерной резки применяется для изготовления различных стеклянных изделий. Лазерное термораскалывание характеризуется неоднородностью нагрева стекла с помощью лазерного луча, охлаждаемого струёй инертного газа. Это приводит к появлению трещины, управлять которой можно, перемещая источник нагрева по поверхности стекла.
Скрайбирование — одно из первых и наиболее популярных применений лазера в технологическом оборудовании для электронной промышленности. Лазерное скрайбрирование пластин из кремния, арсенида галлия и других материалов с нанесенными полупроводниковыми структурами выполняется для последующего разделения пластины на отдельные элементы по линии надреза. Глубина риски, полученной пучком сфокусированного лазерного излучения, составляет 40… 125 мкм, а ширина 20…40 мкм при толщине пластины 150… 300 мкм. Скорость скрайбирования 10… 250 мм/с. лазерное скрайбирование по сравнению с обычным скрайбированнем алмазным резцом обеспечивает значительно большую точность разделения пластин и способствует повышению выхода годных изделий.
2.4 Лазерная размерная обработка
лазер сварка гравировка обработка
Назначение и область применения лазеров
... использоваться самостоятельно. Обработка материалов и сварка Обработка материалов с помощью лазеров вылилась в последнее время в мощное направление, которое получило название лазерной технологии. Вот что ... и испарения с выбросом паров при резке и сверлении”. Можно сформулировать основные достоинства, которые имеет лазерная обработка материалов: во- первых, большое разнообразие процессов обработки ...
Лазерная маркировка и гравировка — В настоящее время лазерная маркировка и гравировка применяются практически во всех отраслях промышленного производства для идентификационного и защитного кодирования промышленных образцов, нанесения надписей на приборные панели, измерительный инструмент, клавиатурные поля, изготовление табличек и шильдов; в рекламном бизнесе — для художественной отделки сувениров и изготовления ювелирных изделий. Достоинства гравировки и маркировки лазерным излучением: миниатюрность наносимой информации; отсутствие механического воздействия на изделие, что позволяет маркировать тонкостенные, хрупкие детали, а также узлы и изделия в сборе; высокая точность и качество нанесения знаков, что гарантирует надежность и стабильность их считывания; высокая производительность; возможность полной автоматизации.
Заключение
Освоение лазерных методов или, иначе говоря, лазерных технологий значительно повышает эффективность современного производства. Лазерные технологии позволяют осуществлять наиболее полную автоматизацию производственных процессов. Одновременно при этом экономится сырье и рабочее время, повышается качество продукции. Например, практически мгновенная пробивка отверстий лазерным излучением во много раз увеличивает производительность работы сверловщика и к тому же существенно повышает качество этой работы. Лазерное изготовление микросхем отличается высокой производительностью и высоким качеством. В обоих примерах производственные операции легко поддаются автоматизации; управление лазерным лучом может взять на себя специальное вычислительное устройство. Можно уверенно утверждать, что внедрение и совершенствование лазерных технологий приведет к качественному изменению всего облика современного производства.
Список использованной литературы
[Электронный ресурс]//URL: https://inzhpro.ru/referat/primenenie-lazera-v-promyishlennosti/
1. Применения лазеров. Под редакцией д-ра техн. Наук В.П. Тычинского, издательство “Мир”, Москва 1974.
2. Применение лазеров в машиностроении и приборостроении. Авт.: Крылов К.И., Прокопенко В.Т., Митрофанов А.С. Л. Машиностроение. Ленингр. отд-ние,1978.
3. Лазеры и их применение. Тарасов Л.В. Учебное пособие для ПТУ. М.: Радио и связь, 1983.
4. Лазеры: действительность и надежды. Тарасов Л.В. М.: Наука. Главная редакция физико-математической литературы, 1985.
5. Лазеры. Основы устройства и применения. Федоров Б.Ф. М.: ДОСААФ, 1988.