Технология производства аммиака (2)

Реферат

Благодаря наличию неподеленной электронной пары во многих реакциях аммиак выступает как основание Бренстеда или комплексообразователь (не следует путать понятия «нуклеофил» и «основание Бренстеда». Нуклеофильность определяется сродством к положительно заряженной частице. Основание имеет сродство к протону. Понятие «основание» является частным случаем понятия «нуклеофил»).

Так, он присоединяет протон, образуя ион аммония:

  • Водный раствор аммиака («нашатырный спирт») имеет слабощелочную реакцию из-за протекания процесса:

K o =1,8·10−5

  • Взаимодействуя с кислотами даёт соответствующие соли аммония:
  • Аммиак также является очень слабой кислотой (в 10 000 000 000 раз более слабой, чем вода), способен образовывать с металлами соли — амиды. Соединения, содержащие ионы NH2 , называются амидами, NH2 — имидами, а N3 — нитридами. Амиды щелочных металлов получают, действуя на них аммиаком:

Амиды, имиды и нитриды ряда металлов образуются в результате некоторых реакций в среде жидкого аммиака. Нитриды можно получить нагреванием металлов в атмосфере азота.

Амиды металлов являются аналогами гидроксидов. Эта аналогия усиливается тем, что ионы ОН и NH2 , а также молекулы Н2 O и NH3 изоэлектронны. Амиды являются более сильными основаниями, чем гидроксиды, а следовательно, подвергаются в водных растворах необратимому гидролизу:

и в спиртах:

Подобно водным растворам щелочей, аммиачные растворы амидов хорошо проводят электрический ток, что обусловлено диссоциацией:

Фенолфталеин в этих растворах окрашивается в малиновый цвет, при добавлении кислот происходит их нейтрализация. Растворимость амидов изменяется в такой же последовательности, что и растворимость гидроксидов: LiNH 2 — нерастворим, NaNH2 — малорастворим, KNH2 , RbNH2 и CsNH2 — хорошо растворимы.

При нагревании аммиак проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты:

На восстановительной способности NH 3 основано применение нашатыря NH4 Cl для очистки поверхности металла от оксидов при их пайке:

7 стр., 3429 слов

Загрязнение сточных вод тяжёлыми металлами и их солями

... 4, ст. 217 ] Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и ... 2.1 Реагентный метод Наибольшее распространение в практике очистки сточных вод от ионов тяжелых металлов (ИТМ) получил реагентный метод. Этот метод включает в себя ...

Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:

  • Галогены (хлор, йод) образуют с аммиаком опасные взрывчатые вещества — галогениды азота (хлористый азот, иодистый азот).

  • С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):

(хлорид метиламмония)

  • С карбоновыми кислотами, их ангидридами, галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами — основания Шиффа, которые возможно восстановить до соответствующих аминов (восстановительное аминирование).

  • При 1000 °C аммиак реагирует с углём, образуя синильную кислоту HCN и частично разлагаясь на азот и водород. Также он может реагировать с метаном, образуя ту же самую синильную кислоту:

Жидкий аммиак, хотя и в незначительной степени, диссоциирует на ионы (автопротолиз), в чём проявлется его сходство с водой:

Константа самоионизации жидкого аммиака при −50 °C составляет примерно 10 −33 (моль/л)².

Жидкий аммиак, как и вода, является сильным ионизирующим растворителем, в котором растворяется ряд активных металлов: щелочные, щёлочноземельные, Mg, Al, а также Eu и Yb. Растворимость щелочных металлов в жидком NH 3 составляет несколько десятков процентов. В жидком аммиаке NH3 также растворяются некоторые интерметаллиды, содержащие щелочные металлы, например Na4 Pb9 .

Разбавленные растворы металлов в жидком аммиаке окрашены в синий цвет, концентрированные растворы имеют металлический блеск и похожи на бронзу. При испарении аммиака щелочные металлы выделяются в чистом виде, а щелочноземельные — в виде комплексов с аммиаком [Э(NH 3 )6 ] обладающих металлической проводимостью. При слабом нагревании эти комплексы разлагаются на металл и NH3 .

Растворенный в NH 3 металл постепенно реагирует с образованием амида:

Получающиеся в результате реакции с аммиаком амиды металлов содержат отрицательный ион NH 2 , который также образуется при самоионизации аммиака. Таким образом, амиды металлов являются аналогами гидроксидов. Скорость реакции возрастает при переходе от Li к Cs. Реакция значительно ускоряется в присутствии даже небольших примесей H2 O.

Металлоаммиачные растворы обладают металлической электропроводностью, в них происходит распад атомов металла на положительные ионы и сольватированные электроны, окруженные молекулами NH 3 . Металлоаммиачные растворы, в которых содержатся свободные электроны, являются сильнейшими восстановителями.

Получение аммиака

В лаборатории

В промышленности

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

NH 4 Cl + NaOH = NH3 ↑ + NaCl + H2 O

(NH 4 )2 SO4 + Ca(OH)2 = 2NH3 ↑ + CaSO4 + 2H2 O

Внимание! Гидроксид аммония неустойчивое основание, разлагается: NH 4 OH ↔ NH3 ↑ + H2 O

При получении аммиака держите пробирку — приёмник дном кверху, так как аммиак легче воздуха:

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

N 2(г) + 3H2(г) ↔ 2NH3(г) + 45,9 кДж

Условия:

катализатор – пористое железо

температура – 450 – 500 ˚С

давление – 25 – 30 МПа

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

+ 91,84 кДж

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).

Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях — тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит и больших капиталовложений. Кроме того, равновесие реакции даже при 700 °C устанавливается слишком медленно для практического её использования.

Применение катализатора (пористое железо с примесями Al 2 O3 и K2 O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор. Выход аммиака при таких условиях составляет около 30 %. В промышленных условиях использован принцип циркуляции — аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления.

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

Обычно лабораторным способом аммиак получают слабым нагреванием смеси хлорида аммония с гашеной известью.

Для осушения аммиака его пропускают через смесь извести с едким натром.

Очень сухой аммиак можно получить, растворяя в нём металлический натрий и впоследствии перегоняя. Это лучше делать в системе, изготовленной из металла под вакуумом. Система должна выдерживать высокое давление (при комнатной температуре давление насыщенных паров аммиака около 10 атмосфер)[6] . В промышленности аммиак осушают в абсорбционных колоннах.

Способ получения аммиака из углеводородного сырья, водяных паров, воздуха включает компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородосодержащих соединений, компримирование, синтез аммиака в замкнутом цикле, при этом к исходному воздуху добавляют азот и эту смесь направляют на паровоздушную каталитическую конверсию метана, соотношение между добавляемым азотом и воздухом равно 0,001-1,121. Технический результат заключается в уменьшении удельного расхода углеводородного сырья.

Изобретение относится к производству аммиака и может быть использовано в химической промышленности.

Известен способ получения аммиака из углеводородного сырья, водяных паров, воздуха, кислорода, включающий очистку сырья от соединений серы, парокислородовоздушную каталитическую конверсию метана в шахтном конверторе, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородосодержащих соединений, компримирование и проведение синтеза аммиака в замкнутом цикле.

Способ требует расходовать технический кислород для проведения конверсии метана. Наиболее близким по технической сущности и достигаемому результату к описываемому изобретению является способ получения аммиака из углеводородного сырья, водяных паров, воздуха, включающий компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородосодержащих соединений, компримирование и синтез аммиака в замкнутом цикле.

Данный способ характеризуется высоким удельным расходом углеводородного сырья вследствие подачи на паровоздушную конверсию метана кислорода воздуха в объеме большем, чем это требуется. Кислород связывается с водородом и затем выводится из системы в виде воды. Меньше подавать кислорода нельзя, так как количество подаваемого на паровоздушную конверсию метана кислорода воздуха зависит от стехиометрического соотношения между основными компонентами газовой смеси, которое должно быть (Н 2 +CO)/N2 =3,0…3,04.

Поставленная задача достигается тем, что в способе получения аммиака из углеводородного сырья, водяных паров воздуха, включающем компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородосодержащих соединений, компримирование и синтез аммиака в замкнутом цикле, согласно изобретению к воздуху добавляют азот и эту смесь направляют на паровоздушную каталитическую конверсию метана.

Количество добавляемого азота равно 0,001-1,121 от количества воздуха, направляемого на паровоздушную каталитическую конверсию метана.

Применение

Аммиак относится к числу важнейших продуктов химической промышленности, ежегодное его мировое производство достигает 150 млн тонн. В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров, азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя.

В холодильной технике используется в качестве холодильного агента (R717).

В медицине 10 % раствор аммиака, чаще называемый нашатырным спиртом, применяется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно — невралгии, миозиты, укусах насекомых, для обработки рук хирурга. При неправильном применении может вызвать ожоги пищевода и желудка (в случае приёма неразведённого раствора), рефлекторную остановку дыхания (при вдыхании в высокой концентрации).

Применяют местно, ингаляционно и внутрь. Для возбуждения дыхания и выведения больного из обморочного состояния осторожно подносят небольшой кусок марли или ваты, смоченный нашатырным спиртом, к носу больного (на 0,5-1 с).

Внутрь (только в разведении) для индукции рвоты; также, в составе нашатырно-анисовых капель — в качестве муколитического (отхаркивающего) средства. При укусах насекомых — в виде примочек; при невралгиях и миозитах — растирания аммиачным линиментом. В хирургической практике разводят в тёплой кипяченой воде и моют руки.

Поскольку аммиак является слабым основанием, при взаимодействии с кислотами он их нейтрализует.

Физиологическое действие нашатырного спирта обусловлено резким запахом аммиака, который раздражает специфические рецепторы слизистой оболочки носа и способствует возбуждению дыхательного и сосудодвигательного центров мозга, вызывая учащение дыхания и повышение артериального давления.