Федеральное агентство по образованию
Федеральное государственное образовательное учреждение
среднего профессионального образования
Забайкальский горный колледж
Кафедра горного дела
По дисциплине
На тему – Насосы.
Горного отделения группы По – 07 — 2
Доржиева С. Л.
Гурулева М. Г.
Чита, 2008
Насосы. Общие сведения.
В состав любой Электрической станции входят два типа машин: машины — орудия (насосы) и машины — двигатели (турбины).
Насосами в широком смысле называют машины для сообщения энергии рабочей среде. В зависимости от рода рабочего тела, различают насосы для капельных жидкостей (насосы в узком смысле) и насосы для газов (газодувки и компрессоры).
В газодувках происходит незначительное изменение статического давления, и изменением плотности среды можно пренебречь. В компрессорах при значительных изменениях статического давления проявляется сжимаемость среды.
динамические
динамических насосах
объемных насосах
Работа любого насоса характеризуется следующими величинами:
Объемная подача, Напор (удельная работа), Частота вращения
Состояние среды на входе: (температура и давление); плотность среды — [кг/м3 ]
Мощность , N [Вт] — полная энергия подводимая к насосу в единицу времени .
Коэффициент полезного действия КПД
объемные, лопаточные, струйные, электромагнитные или магнитогидродинамические (МГД)
поршневые
Рис 1. Схема поршневого насоса
Поршневые и плунжерные насосы (рис.) имеют цилиндр 4 и поршень 3, совершающий возвратно-поступательное движение. Цилиндр снабжен клапанами всасывания 1 и нагнетания 2. При прямом ходе поршня и открытом клапане 2 происходит процесс нагнетания рабочей среды в напорный трубопровод, при обратном ходе и открытом всасывающем клапане — заполнение объема цилиндра. Главная особенность работы поршневых насосов периодичность подачи и возвратно-поступательное движение и в связи с этим более сложный привод.
График подачи поршневого насоса.
Компрессоры и насосы: понятие, классификация, область применения
... мощных компрессорных, насосных и вентиляционных установок, а толчки нагрузки имеют место только при пусках двигателей. Двигатели основных механизмов (компрессоры, вентиляторы, насосы) имеют ... применения. Область преимущественного применения машин объемного действия характеризуется средними и высокими отношениями давлений и сравнительно малыми расходами рабочего тела. Турбокомпрессоры применяют при ...
Рис 2. Схема ротационного насоса
Ротационные насосы (рис.2) имеют цилиндрический ротор 2, эксцентрически расположенный в корпусе 1. В радиальных щелях расположены подвижные пластины, которые под действием центробежных сил прижимаются к внутренней поверхности цилиндра. Рабочая среда поступает через патрубок всасывания 5 и переталкивается лопастями в патрубок нагнетания.
Рис 3. Схема шестеренчатого насоса.
В шестеренчатом насосе (рис.3) полость всасывания 3 и полость нагнетания 2 разобщены находящимися в зацеплении зубчатыми колесами 1. Зубчатые колеса размещены в корпусе насоса с малыми осевыми и радиальными зазорами. Жидкость попадает в межзубчатое пространство и переталкивается из полости всасывания в полость нагнетания.
В струйном насосе-эжекторе (рис 4) поток рабочей жидкости разгоняется в сопле 1 и поступает в камеру смешения 2, в которой устанавливается пониженное давление. Камера 2 соединена с сосудом 6, в котором поддерживается более высокое давление. За счет разницы давлений среда поступает в камеру смешения 2 и смешивается с рабочей жидкостью. Далее смесь поступает в камеру смешения 3 и расширяющиеся сопло, в котором повышается статическое давление и далее в патрубок нагнетания 5. В качестве рабочей жидкости обычно используют воду, пар или газ высокого давления. Преимущества струйных насосов: простота конструкции отсутствие движущихся частей, высокая надежность; недостатки: низкий КПД, высокий шум при использовании пара в качестве рабочей жидкости.
Рис 4. Схема струйного насоса.
Рис 5. Схема МГД — насоса.
В простейшем МГД — насосе (рис. 5) рабочий канал 3 размещен в зазоре между полюсами магнита 2. К каналу по шинам 1 подводится электрический ток (в других конструкциях ток в рабочем канале индуцируется за счет расположенных в непосредственной близости от него катушек-обмоток переменного тока).
За счет взаимодействия электрического и магнитного полей возникает движение электропроводящей жидкости — движение проводника с током в магнитном поле. Преимущества МГД — насосов: простота конструкции и полной герметизации, отсутствие вращающихся частей, высокая надежность; недостатки: малый КПД, громоздкость, для работы многих типов МГД — насосов требуются специальные источники тока большой силы.
Лопаточные насосы
К лопаточным насосам относятся центробежные, диагональные и осевые, отличающиеся друг от друга по направлению потока жидкости на выходе из рабочего колеса.
Лопастные насосы также подразделяются по потоку жидкости за рабочим колесом (с полуспиральным, спиральным или кольцевым отводом, коленчатым отводом), по числу потоков внутри рабочего колеса (одностороннего и двухстороннего входа) и по числу ступеней рабочих колес в насосе — одноступенчатый, многоступенчатый.
Насосы для трубопроводного транспорта нефтепродуктов
... применения колеса и с односторонним подводом жидкости, так как насосы работают с подпором. Наиболее широко для перекачки нефтепродуктов используют центробежные горизонтальные насосы, в однокорпусном секционном исполнении, с рабочими колесами одностороннего входа. Рабочие колеса выполняются ...
Работа этих насосов основана на общем принципе — силовом взаимодействии лопастей рабочего колеса с обтекающим их потоком перекачиваемой жидкости.
межлопастные каналы колеса
Ротор — вал с насаженными на него вращающимися деталями — вращается в подшипниках 6. Между вращающимися и неподвижными деталями могут быть установлены уплотнения 7 для снижения утечек из насоса и уплотнения 8 для уменьшения циркуляции внутри насоса. При вращении колеса на каждую часть жидкости (массой m ), находящейся в межлопастном канале на расстоянии r от оси вала и движущуюся со скоростью v , будет действовать центробежная сила:
Под действием этой силы жидкость выбрасывается из рабочего колеса, в результате чего в центре колеса создается разряжение, а в периферийной его части — повышенное давление. Для обеспечения непрерывного движения жидкости через насос необходимо обеспечить подвод перекачиваемой жидкости к рабочему колесу и отвод от него. Жидкость поступает через отверстие в переднем диске рабочего колеса по всасывающему трубопроводу (подводу 9).
Движение жидкости по всасывающему трубопроводу происходит вследствие разности давлений над свободной поверхностью жидкости в приемном бассейне (атмосферное) и в центральной области колеса (разряжение).
Для отвода жидкости в корпусе насоса имеется расширяющаяся спиральная камера (в форме улитки, куда поступает жидкость, выбрасываемая из рабочего колеса. Спиральная камера (отвод 10) переходит в короткий диффузор, образующий напорный патрубок 11, соединяемый обычно с напорным трубопроводом.
Рис 6. Схема центробежного насоса
Рис 7. Схема осевого насоса.
Рабочее колесо осевого насоса (рис.7) состоит из втулки 1, на которой укреплено несколько лопастей 2, представляющих собой удобообтекаемое изогнутое крыло с закругленной передней, набегающей на поток кромкой.
Рабочее колесо насоса вращается в трубчатой камере 3, заполненной перекачиваемой жидкостью. При динамическом воздействии лопасти на жидкость за счет изменения скорости течения давление перед лопастью повышается, а за ней — понижается. Благодаря образующейся при этом силе основная масса жидкости в пределах колеса движется в осевом направлении, что и определило название насоса. Перед колесом устанавливаются неподвижные проточные элементы 4 (подводы), за колесом — отводы 5;
— Осевые насосы выпускаются с жестко закрепленными на втулке лопастями рабочего колеса и с поворотными лопастями. По сравнению с центробежными осевые насосы имеют значительно большую подачу, но меньший напор. КПД осевых насосов достигает 0,9 и выше.
Диагональные насосы
Поток жидкости, проходящий через рабочее колесо диагонального насоса, направлен не радиально, как у центробежных насосов, и не параллельно оси, как у осевых, а наклонно, как бы по диагонали прямоугольника, составленного радиальным и осевым направлениями.
По своим рабочим параметрам (подача, напор) диагональные насосы занимают промежуточное положение между центробежными и осевыми.
«Пожарно-спасательная техника» : Центробежные насосы
... к тому, что в центральной части колеса создастся разрежение, а на периферии повысится давление. А если повышаться давление, то жидкость из насоса начнёт поступать в напорный ... напорным трубопроводами. Если корпус насоса полностью наполнен жидкостью из всасывающего трубопровода, то при придании вращения рабочему колесу жидкость, которая находится в каналах рабочего колеса, под действием центробежной ...
Явление кавитации
Кавитация в насосах объясняется нарушением сплошности жидкости в тех местах, где давление снижается до давления насыщенного пара при данной температуре, при этом происходит быстрое вскипание жидкости с образованием пузырьков пара, которые после перехода в зону повышенного давления и исчерпания кинетической энергии
Сокращение кавитационного пузырька происходит с большой скоростью и сопровождается гидравлическим ударом и звуковым импульсом. Если кавитационные пузырьки замыкаются вблизи от обтекаемого тела, то многократно повторяющиеся удары приводят к разрушению поверхности этого тела (элементов проточной части насос).
В местах разрушения пузырьков значения давления могут достигать 10000 кгс/см 2 и сопровождаться сильным шумом со сплошным спектром от нескольких до тысяч килогерц.
Элементы проточной части гидравлических машин представляют собой сочетание направляющих поверхностей, предназначенных для управления потоком. Если кавитационная зона возникает на такой поверхности, то она изменяет ее эффективную форму и, следовательно, изменяет путь потока. Такие изменения нежелательны и сопровождаются дополнительными потерями энергии. Снижение энергетических параметров (подача, напор) и уменьшение коэффициента полезного действия являются прямым следствием возникновения кавитации в любой гидравлической машине.
Борьба с кавитацией в насосах и других гидравлических машинах имеет большое значение, так как кавитация приводит к быстрому разрушению элементов проточной части и снижению их надежности.
Кавитационному разрушению подвержены все конструкционные материалы, но в разной степени. Наиболее кавитационно-стойким материалом является аустенитная сталь благодаря равномерности ее структуры. Кроме разрушения материала, кавитация приводит к существенному снижению КПД, повышению вибрации, ударным нагрузкам на элементы проточной части и, в конечном итоге, к срыву характеристик Н, N и КПД.
Основным средством предупреждения кавитации, обеспечивающим надежную работу насоса, является поддержание достаточного избыточного давления на входе в насос над давлением парообразования (Рв > Рп), то есть соблюдение такой высоты всасывания насоса, при которой кавитация не возникает. Превышение напора на входе в насос над напором, равным давлению насыщенного пара перекачиваемой жидкости, называется кавитационным запасом h. Бескавитационный режим работы насосов обеспечивается при соблюдении условия h hдоп. , где допускаемый кавитационный запас hдоп. = k hкр. ; коэффициент запаса k = 1,1 — 1,5 устанавливается в зависимости от условий работы и типа насоса; hкр. — кавитационный запас, соответствующий началу снижения параметров (первому критическому режиму кавитации) при кавитационном испытании насоса. Допускаемый кавитационный запас hдоп. приводится в характеристике насоса, получаемой при кавитационном испытании.
Специальные насосы АЭС
Насосы, используемые в ядерной энергетике, можно приблизительно разделить на следующие девять групп:
1. главные циркуляционные насосы, предназначенные для создания циркуляции теплоносителя с вспомогательными насосами к ним;
2. питательные насосы — для подачи питательной воды в парогенераторы или барабаны-сепараторы;
3. конденсатные насосы — для подачи конденсата в деаэраторы из конденсаторов турбин и подогревателей низкого и высокого давления;
4. насосы циркуляционного водоснабжения для охлаждения конденсатор турбин;
5. насосы технического водоснабжения главного корпуса;
6. насосы систем безопасности;
7. насосы масло снабжения систем турбоагрегатов;
8. насосы спецводоочистки и химводоочистки;
9. насосы вспомогательных систем.
ГЦН.
Главные циркуляционные насосы обеспечивают циркуляцию воды в контуре многократной принудительной циркуляции реакторных установок типа РБМК- 1000.
По расположению вала все ГЦН выполнены вертикальными.
Во всех ГЦН применены нижние радиальные подшипники гидродинамического или гидростатического типа.
В гидростатических подшипниках пара трения не изнашиваются при пуске и останове насоса, так как взвешивающая способность их осуществляется давлением смазывающей воды, подаваемой из постоянного источника водоснабжения, а толщина смазочной пленки значительно больше, чем у подшипника гидродинамического типа. Поэтому износ гидростатического подшипника сведен к минимуму.
В гидродинамических подшипниках при смазке водой толщина смазочной пленки составляет всего 5 — 6 мкм, а при пуске и остановке насоса подшипники работают в режиме граничного или полужидкого трения. По этим причинам износ пар трения гидродинамических подшипников неизбежен.
В ГЦН в качестве привода используются асинхронные электродвигатели вертикального исполнения с радиально-осевым подшипником на масляной смазке. Крутящий момент от электродвигателя к насосу передается при помощи соединительных муфт различных конструкций.
Требования к ГЦН обусловлены назначением и условием их эксплуатации (бесперебойный теплоотвод от реактора, высокая температура и повышенное давление рабочей жидкости — теплоносителя — и ее радиоактивности):
1. высокая надежность; ГЦН должны работать надежно и обеспечивать устойчивую работу при нормальной эксплуатации и в переходных режимах в течение длительного времени (не менее периода между планово-предупредительными ремонтами);
2. обеспечение достаточного выбега (вращение после обесточения электродвигателя насоса), необходимого для охлаждения активной зоны при авариях с потерей электроснабжения собственных нужд;
3. надежная герметизация ГЦН во избежание утечки теплоносителя из первого контура;
4. обеспечение ремонта насосов с минимальным временем нахождения поблизости от них ремонтного персонала для демонтажа выемных частей ГЦН;
5. материалы проточной части ГЦН должны отвечать всем требованиям, предъявляемым к материалам главного циркуляционного контура, т.е. не должны взаимодействовать с теплоносителем в рабочем диапазоне температур и давления, должны допускать дезактивацию щелочными и кислотными растворами, а также должны быть коррозионно-стойкими и устойчивыми против эрозии при предельных скоростях движения теплоносителя в проточных частях.
ТПН.
Питательные насосы применяются для подачи химически очищенной воды в парогенераторы энергоблоков АЭС. Питательные насосы изготавливаются в различных конструктивных исполнениях: горизонтальные, одно- или двухкорпусные, секционного или спирального типа, одноступенчатые с рабочим колесом двухстороннего входа или многоступенчатые с односторонним расположением рабочих колес. Бескавитационная работа питательных насосов обеспечивается применением рабочего колеса с расширенным входом или применением предвключенного колеса или насоса.
Питательные насосы должны отвечать следующим требованиям:
1. обеспечивать динамическую устойчивость во всем диапазоне работы насоса;
2. вибрация на корпусах подшипника не должна превышать 0,05 мм;
3. обеспечивать удобство монтажа, ремонта и обслуживания;
4. насосы должны снабжаться обратными клапанами с линией рециркуляции, чтобы не возникало обратного вращения ротора насоса и перегрева воды до температур, близких к парообразованию.
Конденсатные насосы
Конденсатные насосы применяются для подачи конденсата отработанного пара турбин, конденсата греющегося пара из теплообменных аппаратов энергоблоков АЭС, а также жидкостей, сходных с конденсатом по вязкости и химической активности.
Конденсатные насосы обычно работают с минимальным располагаемым кавитационным запасом в условиях глубокого вакуума на входе и при температуре конденсата, близкой к температуре насыщения. Поэтому для улучшения антикавитационных качеств насоса первую ступень выполняют двухпоточной с уширенным входом или с предвключенным рабочим колесом. Конденсатные насосы с подачей до 200 м3/ч обычно изготавливают в горизонтальном исполнении, а с подачей 200 м3/ч и выше — в вертикальном.
Основные требования, предъявляемые к конденсатным насосам:
1. обеспечение стабильной формы напорной характеристики при параллельной работе насосов;
2. отсутствие подсоса воздуха через работающий и неработающий насос.
Насосы систем безопасности.
Насосы систем безопасности предназначены для поддержания в допустимых пределах параметров работы АЭС, определяющих ее безопасность не только в нормальных условиях эксплуатации (работа энергоблока на мощности, пуск и остановка, плановое изменение нагрузки, плановое расхолаживание и т.п.), но также и в аварийных режимах, вызванных нарушениями в работе или отказом оборудования и систем АЭС.
Вихревые насосы.
Вихревые насосы относятся к машинам трения. Рабочее колесо вихревого насоса аналогично колесу центробежного насоса, засасывает жидкость из внутренней части канала и нагнетает ее во внешнюю, в результате чего возникает продольный вихрь. При прохождении жидкости через рабочее колесо в вихревом насосе, как и в центробежном, увеличиваются кинетическая энергия жидкости (увеличивается ее скорость) и потенциальная энергия давления. Рабочим органом насоса является рабочее колесо с радиальными или наклонными лопатками. Колесо вращается в цилиндрическом корпусе с малыми торцовыми зазорами. Жидкость поступает через всасывающее отверстие в канал, перемещается по нему рабочим колесом и выбрасывается через выходное отверстие.
Конструкционные признаки насоса
Рис. 1. Схема вихревого насоса
1 — рабочее колесо; 2 — лопатка; 3 — корпус; 4 — всасывающее отверстие; 5 — выходное отверстие
Рис. 2. Схема вихревого насоса закрытого типа
Рабочим органом вихревого насоса является рабочее колесо 1 с радиальными или наклонными лопатками (рис. 2), помещенное в цилиндрический корпус с малыми торцевыми зазорами. В боковых и периферийной стенках корпуса имеется концентричный канал 2, начинающийся у всасывающего отверстия и кончающийся у напорного. Канал прерывается перемычкой 4, служащей уплотнением между напорной и всасывающей полостями. Жидкость поступает через всасывающий патрубок 5 в канал, прогоняется по нему рабочим колесом и уходит в напорный патрубок 3.
По типу рабочего колеса вихревые насосы делятся на насосы закрытого и открытого типов. У насосов закрытого типа (см. рис. 2) лопатки рабочего колеса короткие. Их внутренний радиус равен внутреннему радиусу канала. Жидкость подводится из всасывающего патрубка непосредственно в канал.
У насосов открытого типа (рис. 3) внутренний радиус лопаток меньше внутреннего радиуса канала.
Рис. 3. Схема вихревого насоса открытого типа
Жидкость подводится из всасывающего патрубка 1, поступает в подвод 2, из которого через всасывающее окно 3 подводится к лопаткам рабочего колеса 4 и затем поступает в канал 5. От типа колеса зависят его кавитационные свойства, а также самовсасывающая способность и способность работать на газожидкостной смеси. Далее жидкость прогоняется по каналу рабочим колесом и через напорное отверстие 8 уходит в отвод 6 и напорный патрубок 7.
Характеристики насоса
Вихревые насосы изготовляют на подачу до 12 л/с. Напор вихревых насосов достигает 240 м, мощность доходит до 25 кВт, коэффициент быстроходности n s =6÷40. Число оборотов вихревого насоса так же, как и лопастного, ограничено только кавитационными явлениями. Следовательно, насос может быть непосредственно соединен с электродвигателем.
Характеристика вихревого насоса, приведенная на (рис. 5), может быть пересчитана на другую частоту вращения и другие размеры по формулам пересчета теории гидродинамического подобия.
Рис. 5. Характеристика вихревого насоса
Большинство вихревых насосов обладает самовсасывающей способностью. Для самовсасывания насос должен быть заполнен перед пуском небольшим количеством жидкости. Достаточно даже количества жидкости, какое остается в насосе после предыдущего пуска.
Условия входа жидкости на лопатки колеса вихревого насоса открытого типа и лопастного насоса мало отличаются. Поэтому теория кавитации лопастных насосов применима и для вихревых насосов открытого типа.
У насосов закрытого типа жидкость подводится непосредственно в канал. Следовательно, на рабочее колесо она поступает на большем радиусе, при больших окружных и относительных скоростях. Поэтому кавитационные качества вихревых насосов закрытого типа очень низки. Движение на входном участке канала насоса закрытого типа сложное, так как на движение жидкости из всасывающего патрубка в канал накладывается продольный вихрь. Поэтому аналитический расчет кавитационных качеств насоса закрытого типа в настоящее время невозможен. Для улучшения кавитационных качеств насоса закрытого типа перед вихревым рабочим колесом подключают центробежную ступень. Такой насос называется центробежно-вихревым.
Рис. 6. Определение рабочей точки при дросселировании вихревого насоса
Режим работы вихревого насоса определяется точкой А (рис. 6) пересечения характеристики насоса (кривая 2) и характеристики сети (кривая 1).
Достоинства и недостатки данной машины.
Вихревые насосы обычно применяют при необходимости создания большого напора при малой подаче. Вихревой насос по сравнению с центробежным обладает следующими достоинствами: создаваемое им давление в 3-7 раз больше при одинаковых размерах и частоте вращения рабочего колеса; конструкция проще и дешевле; обладает самовсасывающей способностью; может работать на смеси жидкости и газа; подача меньше зависит от противодавления сети. Недостатками насоса являются низкий КПД, не превышающий в рабочем режиме 45%, и непригодность для подачи жидкости, содержащей абразивные частицы (так как это приводит к быстрому изнашиванию стенок торцовых и радиальных зазоров и, следовательно, падению давления и КПД).
Область применения.
Вихревые насосы применяют:
1. в химической промышленности для подачи кислот, щелочей и других химически агрессивных реагентов. Здесь требуются обычно насосы с малыми подачами и высокими напорами (максимальная скорость протекания химических реакций, большие гидравлические сопротивления реакторов и давления, при которых протекают реакции).
Благодаря простой конструкции рабочих органов вихревых насосов возможно применение химически стойких пластмасс, а также металлов, плохо поддающихся механической обработке и отливке;
2. для перекачивания легколетучих жидкостей (бензина, спирта, эфира и т. д.).
Испарение легких фракций этих жидкостей приводит к тому, что в насос засасывается смесь жидкости и пара. Вихревой насос в отличие от центробежного может работать на такой смеси. В частности, вихревые насосы применяют на аэродромных и автомобильных бензораздаточных станциях, а также в бензозаправщиках самолетов. В этих случаях требуется быстрая готовность насоса к пуску при частых остановках и надежность в работе при наличии в трубопроводе воздуха или пара. Вихревой насос, будучи самовсасывающим и способным работать на смеси жидкости и газа, удовлетворяет этим требованиям. Работа насоса в рассматриваемой области кратковременна, поэтому значение КПД несущественно;
3. для подачи жидкостей, насыщенных газами, например жидкостей, содержащих большое количество растворенного газа, который выделяется при прохождении в области пониженного давления; для откачивания жидкости с высокой упругостью пара (например, пропан, бутан) при положительной высоте всасывания из емкости, в которой давление равно упругости насыщенного пара. В последнем случае при подъеме по всасывающему трубопроводу жидкость частично испаряется, ее температура понижается и, следовательно, уменьшается упругость насыщенного пара. Это замедляет процесс испарения, но в насос поступает смесь жидкости и пара;
4. в небольших автоматических насосных станциях например для сельского водоснабжения. Центробежные насосы здесь малопригодны, так как требуются обычно малая подача и большой напор; поршневые насосы дороги, громоздки и также не пригодны вследствие того, что условия эксплуатации препятствуют автоматизации;
6. вместо водокольцевых компрессоров в качестве вакуум-насосов и компрессоров низкого давления;
7. в качестве питательных насосов малых вспомогательных котельных установок.
Способы регулирования насоса.
Более выгодным способом регулирования подачи вихревого насоса является регулирование перепуском (рис. 7 б).
Для этого напорный и всасывающий патрубки насоса соединяют свободным трубопроводом с установленным на нем регулировочным вентилем. Для уменьшения расхода в установке следует открыть вентиль, благодаря чему часть жидкости, подаваемой насосом, возвращается через отводной трубопровод обратно во всасывающий патрубок, и расход жидкости во внешней сети уменьшается.
Рис. 7. Схемы регулирования подачи вихревого насоса
а — дросселированием; б — перепуском Одним из преимуществ регулирования перепуском перед регулированием дросселированием является возможность использования для привода насоса двигателя меньшей мощности. При регулировании перепуском мощность двигателя выбирают по мощности, потребляемой насосом при полностью закрытом перепуске, при дросселировании — по мощности, соответствующей нулевой подаче.
Двухступенчатый пластинчато-роторный вакуумный насос 2 DS 150.
Пластинчато-роторные вакуумные насосы и ротационные насосы являются наиболее экономичными вакуумными насосами для создания вакуума ниже 1 торр (диапазон низкого вакуума).
Так как они еще кроме этого, в противовес к другим вакуумным насосам работают непосредственно контратмосферного давления и при помощи газобалластного устройства создают возможности к отсасыванию паров, эти насосы находят обширное применение в многочисленных отраслях промышленности.
Наш двухступенчатый пластинчато-роторный вакуумный насос 2 DS 150 может применяться в качестве предварительного насоса к диффузионным насосам Рутса. Кроме этого он, в связи с его двухступенчатым исполнением, может быть предназначен для всех процессов, связанных с низким вакуумом. В зависимости от требующихся насосных комбинаций для той или иной цели применения и соответствующих дополнительных устройств (отделители, конденсаторы или холодные ловушки) наши пластинчато-роторные вакуумные насосы можно применять для следующих процессов:
Химическая промышленность:
дистилляция, сублимация, дегазация, сушка, сушка замораживанием
Металлургическая промышленность:
плавка и отливка, легирование, агломерация, дегазация
Электротехническая промышленность:
сушка и дегазация, пропитывание, вакуумирование, вентиляция, селеновое паровакуумирование
Характерным показателем пластинчато-роторного насоса является конечное давление (торр), всасываемая способность (м 3 /ч) и потребление мощности (ватт) в зависимости от давлении при засасывании. Приведенное в таблице значение конечного давления относится к парциальному давлению неконденсирующихся газов, замеренное при помощи Мс. Леод. Это значение является показателем точности и плотности насоса. Наряду с этим можно было бы еще привести общее (тотальное) давление, достижимое насосом. Однако этот показатель подлежит влиянию пара насосного масла, так что полученные данные дали бы только лишь справку о качестве насосного масла. Тотальное давление в данной области определяется термоэлектрическим путем и в общих чертах может быть выражено величиной в 5х10-2 торр.
Данный пластинчато-роторный вакуумный насос-агрегат A2DS 150 предназначен для создания вакуума в испытательной барокамере. Устройство и конструкция установки, её техническая характеристика
Конструкция и принцип действия пластинчато-роторного вакуумного насоса
Пластинчато-роторный вакуумный насос 2DS150 является двухступенчатым воздухом охлаждаемым насосом предварительного вакуума. Этим насосом достигается конечное давление в 5х10 -4 или 1Х10-3 торр без газобалласта и 5Х10-2 торр с газобалластом. Он предназначен для отсасывания воздуха и нейтральных газов. Ввиду наличия газобалластного устройства, этим насосом можно также отсасывать конденсирующиеся пары. Для лучшего понимания принципа действия и конструкции насоса служит чертеж в разрезе — рис. 1. Насос состоит из двух основных групп: кожух и бегун. Из чугунного литья изготовленный кожух (40) подразделен в две ступени; снаружи кожух оснащен охлаждающими ребрами. Перекрытие обеих ступеней насоса осуществляется посредством корпуса подшипника (высокий вакуум) и затворной крышкой (ступень предварительного вакуума).
В кожухе вращается в радиальных шарикоподшипниках эксцентрически расположенный бегун. Он состоит из сквозного вала (22) и на нем насажанных роторов (23 и 24) 1-ой и 2-ой ступеней, как и клиноременного шкива (41).
Последний исполнен в качестве вентилятора для выработки необходимого охлаждаемого воздуха. Места опор находятся во-первых в промежуточной стенке между обоими ступенями кожуха, а во-вторых в подшипниковом корпусе (42), в котором еще кроме этого находится двойное маслостопорное устройство, предохраняющее масло от влияния наружной атмосферы. Тут, как и между обоими ступенями уплотнение осуществляется при помощи радиально уплотнительных колец.
Роторы изготовлены из чугунного литья. В каждом из них находятся 2 золотника, которые благодаря центробежной силе прижимаются наружу, скользят по стенкам кожуха и тем самым обеспечивают хорошее уплотнение. По всасывающему патрубку (43) проникающий газ, золотники подталкивают перед собой и тем самым сгущают его. Когда над маслом перекрытым нагнетательным клапаном (30) существующее давление (атмосферное давление) превышается, клапан открывается и газ выталкивается в верхнюю часть насоса, перекрытая колпачным кузовом (44).
Верхняя часть насоса наполнена маслом, доходящее до визирки по наблюдению за уровнем масла. Это масло служит во-первых в качестве запаса масла для насоса, во-вторых для заполнения вредного пространства под нагнетательным клапаном форвакуумной ступени, а в третьих для уплотнения. В процессе разбега, при котором машина кратковременно работает в более высокой сфере давления, степень уплотнения уже в высоковакуумной ступени превышает наружное давление воздуха, вследствие чего сгущенный газ выталкивается в данной ступени встроенными клапанами. При достижении нормального рабочего диапазона вблизи конечного давления, то тогда еще транспортируемые небольшие количества газа являются недостаточными, чтобы открыть клапаны высоковакуумной ступени. Уплотненный газ по соединительному каналу (45) поступает в рабочую камеру форвакуумной ступени, где с циркулирующим маслом сгущается до значения атмосферного давления и по клапану форвакуумной ступени выталкивается в полость колпачного кузова. По нагнетательному патрубку (46) газ поступает в нагнетательный трубопровод. Легкий изгиб нагнетательного патрубка предотвращает обратный поток конденсата, могущий образоваться в нагнетательном трубопроводе.
Под нагнетательным патрубком расположен маслоотделитель (47), который отделяет масло от чужеродных тел внешней среды.
Для предотвращения попадания грубых загрязнений, в нагнетательном патрубке (43) встроены фильтры (8).
При производственных процессах, связанных с образованием мелких пылевых частиц и т.п., тогда насос необходимо предохранить путем предвключения отделителей или фильтров; в противном случае производственно-техническая безопасность не может быть обеспечена.
Необходимое количество газобалласта для отсасывания паров подводится по газобалластному клапану (13), который прикреплен к корпусу кожуха форвакуумной ступени.
Описание пластинчато-роторного вакуумного насоса — агрегата
Для облегчения встраивания в комплексные вакуумные установки, насос с к нему относящимся электродвигателем смонтированы на фундаментной плите. Привод осуществляется по клиновым ремням. Электродвигатель так рассчитан, что еще имеется достаточно резервной мощности. Расположение электродвигателя на натяжных шинах, позволяет дополнительное натяжение клиновых ремней. Для предотвращения несчастных случаев, клиноременный привод со всех сторон оснащен изоляцией — защитой ремня.
Технические данные
Всасываемая способность при 760 торр …………….. 150 м 3 /ч
при 1 торр ………………. 140 м 3 /ч
Конечное давление, парциальное
без газобалласта ………………. £ 5Х10 -4 торр
- ……………… £ 1Х10 -3 торр
(для применения в низком вакууме)
с газобалластом ……………….. £ 5Х10 -2 торр
Число оборотов вакуумного насоса ………………… 530 об/мин
Число оборотов электродвигателя …………………. 1430 об/мин
Мощность электродвигателя ………………………. 5,5 кВт
Требующееся напряжение сети …………………….. 380 вольт
Сорт масла ……………………………………. V75
Требующиеся свойства рабочего масла
Вязкость ……………… 9-10 °Е при 50 °C
Давление пара …………. ниже чем 5Х10 -2 торр
при 20 °C
Точка затвердевания ……. ниже -20 °C
без воды и прочих загрязнителей
Количество заправки масла (всего) ……………….. около 5л
Средство охлаждения ……………………………. Воздух
Присоединение для стороны всасывания …………….. Фланец NW 65 по
ТГЛ 11 928
Присоединение для стороны нагнетания …………….. Фланец NW 65 по
ТГЛ 11 928
Масса насоса без электродвигателя ……………….. 292 кг
Масса насоса с электродвигателем и с фундаментной плитой ….. 400 кг
Потребность в площади для насоса длХширХвыс ………. 660Х520Х655
Потребность в лощади для агрегата длХширХвыс ……… 1025Х663Х723
Число ступеней ………………………………… 2
Установка агрегата
Место установки пластинчато-роторного вакуум-насоса — агрегата необходимо выбирать с таким расчетом, чтобы со всех сторон имелся бы хороший доступ. Необходимость сего объясняется требованием постоянного надзора за состоянием уровня масла, регулярной смены масла и создания возможности на месте производить небольшие ремонты.
Пластинчато-роторный вакуум-насос — агрегат поставляется в состоянии эксплуатационной готовности. Вакуумная установка уравновешивается при помощи ватерпаса и привинчивается к фундаменту. Для полного предотвращения неизбежных незначительных сотрясений фундамента или остова, можно проложить резиновые амортизаторы..
Для присоединения всасывающих и нагнетательных трубопроводов, необходимо применять к машине приложенные присоединительные фланцы NW65. Эти фланцы вакуумплотно привариваются к трубам, предназначенных для присоединительных трубопроводов.
В целях предотвращения вредных для здоровья масляных туманов, исходящих из нагнетательных патрубков, необходимо нагнетательный трубопровод проложить под открытым небом. Для достижения правильного уплотнения фланцевого соединения, то обычные уплотнительные прокладки, применяющиеся в трубопроводостроении, тут применять нельзя. По этой причине каждый присоединительный фланец должен уплотняться резиновым уплотнительным кольцом, которое направляется посредством во фланце центрированного опорного кольца. При монтаже присоединительных трубопроводов необходимо, поэтому, самое тщательное обращение с тем, чтобы с надежностью избежать повреждение элементов уплотнения.
Для предохранения насоса от загрязнения конденсатами и пылью, могущие в нем попасть по нагнетательным трубопроводам необходимо, чтобы между нагнетательным патрубком и нагнетательным трубопроводом был бы вставлен отделитель (NW 65 — получить из ФЕБ Hochvakuum Дрезден).
Электродвигатель подсоединяется к сети соответствующего напряжения при помощи магнитного пускателя. Включение электродвигателя — непосредственное. Выключатель к объему поставки — не относится.
Ввод агрегата в эксплуатацию
нет необходимости