Начиная разговор о нанотехнологиях, необходимо, прежде всего, понять значение приставки нано.
В переводе с греческого слово «нано» означает карлик. Вначале эта приставка использовалась в таких науках, как химия и биология, в значении маленький, позже её стали употреблять, говоря о нанотехнологии, современной науке находящейся на стыке химии, биологии, физики и Математики.
С физической точки зрения НАНО — приставка для образования наименования дольных единиц, равных одной миллиардной доле исходных единиц. Нанометр во столько же раз меньше одного метра, во сколько раз толщина пальца меньше диаметра Земли.
Удивительно, что на протяжении всего XIX века учёные занимались подробным изучением строения атома, пропуская такие важные элементы как наночастицы.
Наночастицы больше, чем те частицы, которые изучают химия или ядерная и атомная физика, но меньше, чем объекты, изучаемые биологией. С объектами, имеющими размер от 0,1 нм до 100 нм, и предстоит работать людям, занимающимся нанотехнологиями, о которых в последнее время так много говорят.
На самом деле размер частицы не всегда влияет на свойства вещества, и даже когда эта зависимость есть, то для органических и неорганических веществ она проявляется по-разному (важно, что то же самое происходит с их токсичностью для человеческого организма, которая к тому же изменяется в зависимости от размеров и от количества наночастиц неравномерно).
Есть, таким образом, частицы, по своим размерам укладывающиеся в нанодиапазон, но не являющиеся нанообъектами.
История нанотехнологии началась с того, что американский учёный Ричард Фейнман (которого называют пророком нанотехнологической революции), выступая в 1959 году в Калифорнийском технологическом институте, предположил, что вполне возможно собирать устройства и работать с объектами, которые имеют наноразмеры. В те годы это казалось научной фантастикой, но его предположение подтвердилось в 1981 году, когда были изобретены сканирующий туннельный и атомно-силовой микроскопы.
Туннельные микроскопы позволяют наблюдать отдельные атомы, исследовать их участие в разнообразных
Современное развитие нанотехнологии
... распространение получили такие термины с приставкой «нано», как «нанотехнология», «наноматериалы», «наносистема». Нанотехнология – совокупность методов и способов ... годов прошлого столетия создали электронный микроскоп, который впервые позволил исследовать наноструктуры. 1959 году ... по разным данным, примерно до 2000 - 10 000). Полагают также, что для кластеров, в отличие от кристаллических частиц, ...
Нанотехнология стала
В ней он пишет «Наша способность упорядочивать атомы лежит в основе технологии. Мы ушли далеко в своей способности
Но законы природы дают много возможностей для прогресса, и давление мировой конкуренции всегда толкает нас вперед. Хорошо это или плохо, но самое большое технологическое достижение в истории ожидает нас впереди».
Наноматериалы — материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и
Первая категория включает материалы в виде твердых тел, размеры которых в одном, двух или трех пространственных
В связи с этим первую категорию можно классифицировать как наноматериалы с малым числом структурных элементов или наноматериалы в виде наноизделий.
Вторая категория включает в себя материалы в виде малоразмерных изделий с
Третья категория представляет собой массивные (или иначе объемные) наноматериалы с размерами изделий из них в макродиапазоне (более нескольких мм).
Такие материалы состоят из очень большого числа наноразмерных элементов (кристаллитов) и фактически являются поликристаллическими материалами с размером зерна 1…100 нм. В свою очередь третью категорию наноматериалов можно разделить на два класса.
В первый класс входят однофазные материалы (в соответствие терминологией микроструктурно однородные материалы), структура и/или химический состав которых изменяется по объему материала только на атомном уровне. Их структура, как правило, находится в состоянии далеком от равновесия. К таким материалам относятся, например, стекла, гели, пересыщенные твердые растворы. Ко второму классу можно отнести микроструктурно неоднородные материалы, которые состоят из наноразмерных элементов (кристаллитов, блоков) с различной структурой и/или составом. Это многофазные материалы, например, на основе сложных металлических сплавов.
Типизация технологических элементов второй категории
... для которой они разработаны (конструкцию, повторяемость в производстве, размеры, ... на практике не находят применения. Вместе с тем эти методы можно использовать при разработке типовой технологии, но с учетом выбранной для типизации номенклатуры. 1. Типизация ... питатель, боковые стороны остальных элементов вертикально-щелевой секции ... правил выполнения литниковых систем, например, когда питатели попадают ...
Вторая и третья категории наноматериалов подпадают под более узкие определения нанокристаллических или нанофазных материалов.
К четвертой категории относятся
Можно выделить также композиционные материалы со сложным использованием нанокомпонентов.
Каждый из четырёх видов наноматериалов используется в той или иной сфере нанотехнологии, например в наномедицине, создании военных наноизделий, при создании нанороботов, и наноэлектронных приборов. Нанотехнология в медицине — самое перспективное и, на мой взгляд, самое интересное направление науки о нанотехнологиях, потому что непосредственно связано с людьми и требует самых точных и сложных наноустройств.
Глава 2
ПРИМЕНЕНИЕ НАНОТЕХНОЛОГИЙ В МЕДИЦИНЕ
Наномедицина — слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя разработанные наноустройства и наноструктуры. Наномедицина подразумевает применение достижений нанотехнологии при лечении и омоложении человека, включая достижение физического бессмертия.
Новое междисциплинарное направление медицинской науки в настоящее время находится в стадии становления. Ее методы только выходят из лабораторий, а большая их часть пока существует только в виде проектов. Однако большинство экспертов полагает, что именно эти методы станут основополагающими в 21 веке.
Классик в области нанотехнологических разработок и предсказаний Эрик Дрекслер в своих фундаментальных
Лучевые методы обработки материалов
... производстве и ионно-лучевые технологии. Освоение лазерных технологий значительно повышает эффективность современного производства. Электронно-лучевая обработка материалов Электронно-лучевая обработка осуществляется в вакууме ... так и по толщине слоя. Слои из сплавов напыляют двумя методами: многотигельного испарения или однотигельного испарения. При многотигельном испарении компоненты испаряются ...
Типичный медицинский наноробот будет иметь микронные размеры, позволяющие двигаться по капиллярам, и состоять (на базе нынешних взглядов) из углерода. Углерод и его производные выбираются по причине высокой прочности и его химической инертности. Конструкции нанороботов еще не разработаны и находятся в стадии проектирования. Их использование, порядок, время работы и вывода из организма будут зависеть от конкретных задач. Проблема биосовместимости решается за счет выбора оптимального материала и размеров наноробота. В качестве основных источников энергии предполагается использовать локальные запасы глюкозы и аминокислот в теле человека.